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Abstract. In a companion paper (Krstic, “Feedforward
systems linearizable by coordinate change,” ACC’04)
we revealed that the family of feedforward systems con-
tains a substantial class that is linearizable by a diffeo-
morphic coordinate change. In this paper we present
two subclasses for which explicit control formulae can
be derived. Our procedures follow the general in-
tegrator forwarding algorithm of Sepulchre-Jankovic-
Kokotovic but avoid the requirements to solve (analyti-
cally) a series of nonlinear ODEs and to compute (ana-
lytically) a series of integrals with respect to time.

1 Introduction

In a companion paper [2] we showed that the family of
feedforward systems [6, 3, 1, 4, 5, 7] contains a substan-
tial class that is linearizable by a diffeomorphic coordi-
nate change. In this paper we present two subclasses
for which explicit control formulae can be derived. Our
procedures follow the general integrator forwarding al-
gorithm of Sepulchre-Jankovic-Kokotovic [5] but avoid
the requirements to solve (analytically) a series of non-
linear ODEs and to compute (analytically) a series of
integrals with respect to time.

The paper is organized as follows. For two important
subclasses of linearizable feedforward systems, control
laws are given explicitly in Sections 2 and 3. Second
and third order examples of those classes of systems are
presented in some detail in Section 4, shedding light on
how typical, or atypical, linearizability is for feedfor-
ward systems, which is further pursued in Section 5. To
comply with length restrictions, most of the proofs are
omitted.

2 Linearizable Feedforward Systems of Type I

Consider the class of strict-feedforward systems,

ẋ1 = x2 +
n−1

∑
j=2

π j(x j)x j+1 +πn(xn)u (1)

ẋi = xi+1 , i = 2, . . . ,n−1 (2)
ẋn = u, (3)

whereπ j(0) = 0. Any system in this class is DECI [2].

Theorem 1 The diffeomorphic transformation

y1 = x1−
n

∑
j=2

Z x j

0
π j(s)ds (4)

yi = xi , i = 2, . . . ,n (5)

converts the strict-feedforward system (1)–(3) into the
chain of integrators

ẏi = yi+1 , i = 1,2, . . . ,n−1 (6)
ẏn = u. (7)

The feedback law

u = α1(x) =−
n

∑
i=1

(
n

i−1

)
yi (8)

globally asymptotically stabilizes the origin of (1)–(3).

We note that in the design (4), (5), (8) we have com-
pletely circumvented the SJK procedure. It is there-
fore worth noting that, following the SJK procedure,
one would have obtained

αi(xi) = −
n

∑
j=i

(
n− i +1

j − i

)
x j +δi,1

n

∑
j=2

Z x j

0
π j(s)ds(9)

wi = 1, (10)

whereδi,1 denotes the Kronecker delta.

While in [2] we showed that one can avoid having to an-
alytically solve a sequence of nonlinear ODEs, in The-
orem 1 we showed that, for the feedforward subclass
(1)–(3), one can also avoid having to calculate the SJK
integrals (see [2]). In the next result we go even further
and show that, not only does one have a closed-form
formula for the control law (8) but one can even get a
closed-form formula for thesolutionsof the system un-
der that control law. This is not just an aesthetically
pleasing result—it will allow us, in a future compan-
ion paper, to derive bounds on the control effort given
explicitly in terms of the size of initial conditions.



Theorem 2 Starting from the initial condition x, the so-
lution of the feedback system (1)–(3), (4)–(8) at timeτ
is1

ξi(τ,x) = e−τ

[
n

∑
j=i

(
n− i
j − i

)
(−1) j−i

×
j−1

∑
k=0

(−τ)k

k!

n

∑
l= j−k

(
n− j +k
l − j +k

)
xl

+(−1)i
n

∑
j=i

(
n− i
j − i

)
τ j−1

( j −1)!

×

(
n

∑
m=2

Z xm

0
πm(s)ds

)]
(11)

for i = 2, . . . ,n and

ξ1(τ,x) = e−τ

[
n

∑
j=1

(
n−1
j −1

)
(−1) j−1

×
j−1

∑
k=0

(−τ)k

k!

n

∑
l= j−k

(
n− j +k
l − j +k

)
xl

−
n

∑
j=1

(
n−1
j −1

)
τ j−1

( j −1)!

×

(
n

∑
m=2

Z xm

0
πm(s)ds

)]

+
n

∑
j=2

Z ξ j (τ,x)

0
π j(s)ds, (12)

whereas the control signal is

u = α̃1(τ,x)

= −e−τ
n

∑
i=1

(
n

i−1

)[ n

∑
j=i

(
n− i
j − i

)
(−1) j−i

×
j−1

∑
k=0

(−τ)k

k!

n

∑
l= j−k

(
n− j +k
l − j +k

)
xl

+(−1)i
n

∑
j=i

(
n− i
j − i

)
τ j−1

( j −1)!

×

(
n

∑
m=2

Z xm

0
πm(s)ds

)]
. (13)

1We emphasize thatx, which denotes the initial condition, is con-
stant. We also point out that, relative to the notation in [2],ξ(τ,x) and
ζ(τ,z) should be understood, respectively, asξ[1](τ,x) andζ[1](τ,z).

3 Linearizable Feedforward Systems of Type II

Consider the class of the strict-feedforward systems

ẋi = xi+1 +φi(xi+1)u, i = 1, . . . ,n−1(14)
ẋn = u, (15)

whereφi(0) = 0. In this section we construct control
laws for a linearizablesubclassof (14), (15).

To characterize the linearizable subclass, let us con-
sider the functionsφn−1(xn) and φi(0, . . . ,0,xn), i =
1, . . . ,n− 2, as given and introduce the following se-
quence of functions:

µn(xn) =
R xn

0 φn−1(s)ds

xn
(16)

µi(xn) =
1
xn

Z xn

0
[φi−1(0, . . . ,0,s)

−
n

∑
j=i+1

µj(s)φi+n− j(0, . . . ,0,s)

]
ds(17)

for i = n−1,n−2, . . . ,2, and

γ1(xn) = µ′n(xn) (18)

γk(xn) =
k−1

∑
l=1

γl (xn)µl+n+1−k(xn)+
dµn+1−k(xn)

dxn
(19)

for k = 2, . . . ,n−2.

Theorem 3 If

φi(xi+1) =
n−1

∑
j=i+1

γ j−i(xn)x j +φi(0, . . . ,0,xn) (20)

∀x, i = 1, . . . ,n−2, then the diffeomorphic transforma-
tion

yi = xi −
n

∑
j=i+1

µi+1+n− j(xn)x j , i = 1, . . . ,n−1 (21)

yn = xn (22)

converts the strict-feedforward system (14)–(15) into
the chain of integrators (6)–(7). The feedback law

u = α1(x) =−
n

∑
i=1

(
n

i−1

)
yi (23)

globally asymptotically stabilizes the origin of (14)–
(15).



As in Section 2, we point out that, following the SJK
procedure, one would have obtained

αi(xi) = −xi −
n

∑
m=i+1

xm

[(
n− i +1

m− i

)

−
m

∑
j=i

(
n− i +1

j − i

)
µj+1+n−m(xn)

]
(24)

wi = 1. (25)

Example 1 To illustrate the above concepts (and nota-
tion), let us consider a fourth order example of a Type
II feedforward system:

ẋ1 = x2 +
(x2

2
− x3x4

12

)
u (26)

ẋ2 = x3 +
x3

2
u (27)

ẋ3 = x4 +x4u (28)
ẋ4 = u. (29)

The control law

u = −y1−4y2−6y3−4y4 (30)
= −z1−z2−z3−z4 , (31)

where

y1 = x1−
x4x2

2
+

x2
4x3

6
− x4

4

24
(32)

y2 = x2−
x4x3

2
+

x3
4

6
(33)

y3 = x3−
x2

4

2
(34)

y4 = x4 , (35)

which is obtained with

µ2 =
x3

4

24
(36)

µ3 = −x2
4

6
(37)

µ4 =
x4

2
, (38)

andzi = xi −βi+1 with

β4 =
(x4

2
−1
)

x4 (39)

β3 =
(x4

2
−2
)

x3−x4 +x2
4−

x3
4

6
(40)

β2 =
(x4

2
−3
)

x2 +
(
−3+

3
2

x4−
x2

4

6

)
x3

−x4−
3
2

x2
4 +

1
2

x3
4−

1
24

x4
4 , (41)

achieves

ż=


−1 0 0 0
−1 −1 0 0
−1 −1 −1 0
−1 −1 −1 −1

z (42)

and(s+1)3y1(s) = 0. �

For using the results of this section for control designs
beyond the Type II class of systems, we need the inverse
of the coordinate transformation (21). The explicit form
of the inverse transformation is given in the following
theorem.

Lemma 1 Consider the series of functions

λn(xn) = µn(xn) (43)

λi(xn) =
1
xn

Z xn

0

(
s

n

∑
l=i+1

γl−i(s)λl (s)

+φi−1(0, . . . ,0,s))ds (44)

for i = n− 1, . . . ,2. The inverse of the diffeomorphic
transformation (21) is

xi = yi +
n

∑
j=i+1

λi+1+n− j(yn)y j , i = 1, . . . ,n−1 (45)

xn = yn . (46)

As in Theorem 2, in the next result we give a closed-
form formula for thesolutionsof the feedback system
from Theorem 3.

Theorem 4 Starting from the initial condition x, the so-
lution of the feedback system (14)–(20), (23) at timeτ



is

ξi(τ,x) = e−τ

[
n

∑
j=i

(
n− i
j − i

)
(−1) j−i

×
j−1

∑
k=0

(−τ)k

k!

n

∑
l= j−k

(
n− j +k
l − j +k

)

×

(
xl −

n

∑
m=l+1

µl+1+n−m(xn)xm

)

+
n

∑
p=i+1

λi+1+n−p

(
e−τ

n−1

∑
k=0

(−τ)k

k!

×
n

∑
l=n−k

(
k

l −n+k

)

×

(
xl −

n

∑
m=l+1

µl+1+n−m(xn)xm

))

×
n

∑
j=p

(
n− p
j − p

)
(−1) j−p

×
j−1

∑
k=0

(−τ)k

k!

n

∑
l= j−k

(
n− j +k
l − j +k

)

×

(
xl −

n

∑
m=l+1

µl+1+n−m(xn)xm

)]
,(47)

where i= 1, . . . ,n, and the control signal is

u = α̃1(τ,x)

= −e−τ
n

∑
i=1

(
n

i−1

) n

∑
j=i

(
n− i
j − i

)
(−1) j−i

×
j−1

∑
k=0

(−τ)k

k!

n

∑
l= j−k

(
n− j +k
l − j +k

)

×

(
xl −

n

∑
m=l+1

µl+1+n−m(xn)xm

)
. (48)

4 Type I and II Systems in Dimensions Two and
Three

We start by pointing out that in dimension two all strict-
feedforward systems are simultaneously of Types I and
II. This implies that all second order strict-feedforward
systems are linearizable.

Theorem 5 Consider the system

ẋ1 = x2 +φ1(x2)u (49)
ẋ2 = u, (50)

whereφ1(0) is continuous andφ1(0) = 0. The control
law

u =−x1−2x2 +
Z x2

0
φ1(s)ds (51)

ensures global asymptotic stability of the origin.

Example 2 Let us now consider an example with
φ1(x2) = −x2

2. This example was worked out in [4].
In this case the formula (51) gives2

u =−x1−2x2−
x3

2

3
. (52)

One should recognize that the “−x1− 2x2” portion of
the control law (52) is responsible for exponential sta-
bilization of the linearized system. To see that this lin-
ear controller is not sufficient for global stabilization,
we plug it back into the plant and obtain a closed loop
system, written in the form of a second order equation,
as

ẍ2 +(2−x2
2)ẋ2 +x2 = 0. (53)

This is a Van der Pol equation with an unstable limit
cycle, which exhibits a finite escape instability. Hence,

the nonlinear term “− x3
2
3 ,” designed to accommodate the

input nonlinearityφ1(x2) = −x2
2, is crucial for global

stabilization. �

The possibilities, as well as the limits, of Type I/II lin-
earizability for strict-feedforward systems are best un-
derstood in dimension three. The following class of sys-
tems, which represents a union of all Type I and Type
II feedforward systems in dimension three, is linearized
in the next theorem.

Theorem 6 Consider the class of systems

ẋ1 = x2 +π2(x2)x3

+
(

x3φ2(x3)−
R x3

0 φ2(s)ds

x2
3

x2 +π3(x3)
)

u (54)

ẋ2 = x3 +φ2(x3)u (55)
ẋ3 = u, (56)

whereπ2(·),π3(·) ∈C0 andφ2(·) ∈C1 are vanishing at
the origin and

π2(x2)φ2(x3)≡ 0. (57)

2A reader checking back the details in [4] will notice that this
control law differs from (6.2.12) in [4]. This is due to an extra “x2

3”
term that has crept into the calculations in [4], in equation (6.2.7).
If it wasn’t for this little mistake in algebra, feedback linearizability
would have undoubtedly been apparent to the authors of [4].



Then the control law

u =−y1−3y2−3y3 (58)

where

y1 = x1−
Z x2

0
π2(s)ds−µ3(x3)x2−

Z x3

0
π3(s)ds

+
1
2

x3 (µ3(x3))
2 +

1
2

Z x3

0
(µ3(s))

2ds (59)

y2 = x2−
Z x3

0
φ2(s)ds (60)

y3 = x3 (61)

and

µ3(x3) =
R x3

0 φ2(s)ds

x3
, (62)

achieves global asymptotic stability of the origin.

Proof. On can verify that
...
y1 +3ÿ1 +3ẏ1 +y1 = 0. �

A Type II example of a system from this class is

ẋ1 = x2 +
(

1
2

x2 +x3sinx3

)
u (63)

ẋ2 = x3 +x3u (64)
ẋ3 = u, (65)

which is stabilized (and feedback linearized) using

u = −x1−3x2−3x3 +
x2x3

2
+

3
2

x2
3

−1
6

x3
3 +x3sinx3 +cosx3−1. (66)

We point out that the key restriction in this example is
the boldfaced 1/2. If this value were anything else (say,
1, or 0), this system would not be linearizable.

The focus on third order systems is partly motivated by
the fact that the celebrated “benchmark problem”

ẋ1 = x2 +x2
3 (67)

ẋ2 = x3 (68)
ẋ3 = u, (69)

first solved by Teel [6] using his method of nested sat-
urations, is of third order. The system (67)–(69) is not
feedback linearizable. However, the following similar
(at least visually) systems, are linearizable. The system

ẋ1 = x2 +x2
3u (70)

ẋ2 = x3 (71)
ẋ3 = u (72)

is linearizable, as it is of both Type I and Type II. The
system

ẋ1 = x2 +x2
2x3 (73)

ẋ2 = x3 (74)
ẋ3 = u (75)

is of Type I, and therefore linearizable. Other such sys-
tems exist, outside of Types I or II, that are linearizable.
For example,

ẋ1 = x2 +x2
3 +x2u (76)

ẋ2 = x3 (77)
ẋ3 = u (78)

(which is temptingly close in appearance to Type I but
is not in that class), is linearizable using the coordinate
change

y1 = x1−x2x3 (79)
y2 = x2 (80)
y3 = x3 . (81)

The above examples all had the last two equations actu-
ally linear. The neither-Type-I-nor-II feedforward sys-
tem

ẋ1 = x2 +x2
2x3 +

x2
3

3
−x2

2x2
3u (82)

ẋ2 = x3−x2
3u (83)

ẋ3 = u, (84)

which includes nonlinearities in both of the first two
equations, is linearizable using the coordinate change

y1 = x1−
x3

2

3
(85)

y2 = x2 +
x3

3

3
(86)

y3 = x3 . (87)

Clearly, since the systems (76)–(78) and (82)–(84) are
neither of Type I nor II, the coordinate changes (79)–
(81) and (85)–(87) cannot be obtained from the explicit
formulae in Sections 2 and 3. However, they can be
obtained following the simplified SJK procedure in [2],
which, we remind the reader, avoids the requirement to
solve a series of nonlinear ODEs.

5 (In Lieu of) Conclusions: More on Type I and II
Systems

How generic, or nongeneric, is linearizability within the
class of strict-feedforward systems? It is hard to quanti-
tatively state what “percentage” of feedforward system



are linearizable, or, how close (in some metric) a feed-
forward system is to a linearizable feedforward system.
However, it is clear from the results of this paper that
one should not expect the majority of feedforward sys-
tems to be linearizable.

The Type II class is particularly interesting because of
its structural peculiarity (recall (16)–(20)). Based on
the third order case where any linearizable system with
ψ1(x2,x3) ≡ 0 is of Type II, one might be tempted to
conjecture that all linearizable systems (of any order)
with ψi(xi+1) ≡ 0, i = 1, . . . ,n− 2 are of Type II.3 A
fourth order counter-example to this conjecture is

ẋ1 = x2 +
(
2x2

2x4−x2x2
3

)
u (88)

ẋ2 = x3 (89)
ẋ3 = x4 (90)
ẋ4 = u, (91)

which is linearizable via coordinate change

y1 = x1−
(

x2x4−
x2
3
2

)2
(92)

y2 = x2 , y3 = x3 , y4 = x4 (93)

but is not of Type II.

It is not clear at this point what the avenues for possible
generalization of the results of this paper might be. The
most immediate idea would be to start by exploring the
possibilities for combining the systems of Type I and
Type II. Theorem 6 does this, at least notationally, for
systems of order three. The condition (57) shows ac-
tually that these two classes do not mix well, i.e., that
Theorem 6 is a concise statement of two results, not a
statement for a mixed Type I/II class. However, while
mixing is impossible in order three, it is not impossible
in higher orders. For example, the fourth order system

ẋ1 = x2 +
x3a(x3)−

R x3
0 a(s)ds

x2
3

x2x4 +b(x4)u (94)

ẋ2 = x3 +a(x3)x4 (95)
ẋ3 = x4 (96)
ẋ4 = u, (97)

wherea(·) andb(·) are any nonlinearities vanishing at
zero (a also must beC1), is a system that mixes the

3We remind the reader thatψn−1(xn)≡ 0 [2].

features of Types I and II and is linearizable via

y1 = x1−µ(x3)x2 +
1
2

x3 (µ(x3))
2

+
1
2

Z x3

0
(µ(s))2ds−

Z x4

0
b(s)ds (98)

y2 = x2−
Z x3

0
a(s)ds (99)

y3 = x3 (100)
y4 = x4 , (101)

where

µ(x3) =
R x3

0 a(s)ds

x3
. (102)
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