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Abstract— In this paper a control structure based on feed-
back (Input-Output) linearization has been applied to the
longitudinal subsystem of a laboratory double-rotor helicopter.
This article focuses on the longitudinal subsystem which is
underactuated in sense that the number of control variables
is less than the number of degrees of freedom. A switching
control law between exact and approximate input-output
linearization is proposed. The Feedback Linearization has been
applied in two steps, first to the nonlinear actuator, and then
to the entire system. This law has been tested by simulated
and experimental results.

I. INTRODUCTION

In this paper a study on feedback linearization applied
to the longitudinal subsystem of a double-rotor helicopter
is made. The double-rotor system is a highly nonlinear,
multivariable, underactuated, strongly coupled and non-
minimum phase system. The longitudinal system, in turn,
is a nonlinear and underactuated system.

In previous works, see [7] and [8] for details, the control
structure was based on partial feedback linearization. Partic-
ularly, the computed torque technique was used to linearize
the slow dynamics of the system (body dynamics)[2]. The
rotor dynamics was considered to be fast enough to separate
both dynamics. In this way, the angular velocity of the rotor
was considered as constant from the point of view of the
body dynamics.

A complete linearization for the longitudinal subsystems
was searched in [9], taking into account ideas such as
approximate linearization, exposed in [5]. It was proved
that the input-state linearization was not suitable when the
velocity of the rotors were next to zero, since the control
law saturated.

In this paper, a switching control between the exact
linearization and an approximate linearization is proposed,
where the first one is not valid for rotor velocities next to
zero, and the second one is only valid for rotor velocities
next to zero. The switching law allows the system to be
controlled in the whole working range.

Besides, both types of linearization laws have been
divided into two steps in order to simplify the practical
implementation. The two-step linearization is applied to the
longitudinal subsystem: first applying feedback linearization
to actuator and then to the entire system.

The remainder of the paper is structured as follows:
In Section 2 the system is described and a model is
presented. In the third section the two-step input-output
linearization carried out is described. The next section
shows the switching control between an approximate and
the exact linearization law. In section 5 experimental results
are presented. And finally, last section summarizes the
major conclusions of the paper.

II. SYSTEM DESCRIPTION AND MODEL

The laboratory helicopter consists of a 2 DOF mechanism
thrusted by two rotors resembling a helicopter. The degrees
of freedom are the yaw and the pitch angles.

Fig. 1. Double-Rotor Laboratory Helicopter

In this analysis, the orientation angle is fixed(θ = const),
and the angular velocity of the tail rotor is null(ωt = const =

0). The pitch angle will be controlled by the main rotor.
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Fig. 2. Longitudinal Subsystem



The equations of the longitudinal dynamics are as fol-
lows:

Iϕϕ̈ + GsS(ϕ) + GcC(ϕ) + Kϕ·ϕ̇ = L̂g |ωg |ωg (1)

Igω̇g = Pm − (Bg + D̂g |ωg |)ωg (2)

where:
ϕ: Pitch Angle measured from the horizontal plane.

Iϕ: Inertia of the longitudinal system with respect to its
rotation axis.

ωg: Angular Velocity of the main rotor.
Ig: Inertia of the propeller with respect to its rotation axis.

L̂g|ωg|ωg: Torque due to the aerodynamic force of thrust
in main rotor.

Kϕ·ϕ̇: Friction Torque.
GsS(ϕ): Gravity Torque 1.(S(ϕ) = sin(ϕ))
GcC(ϕ): Gravity Torque 2.(C(ϕ) = cos(ϕ))

Pm: Engine Torque.
Bg: Friction constant of the engine.
D̂g: Drag Constant of the propeller.

Rewriting (1) and (2):[
Iϕ 0

0 Ig

][
ϕ̈

ω̇g

]
+

[
GsS(ϕ) + GcC(ϕ) + Kϕ·ϕ̇ − L̂g|ωg|ωg

(Bg + D̂g|ωg|)ωg

]
=

[
0

Pm

]
(3)

It can be seen that there is only an engine (Pm) and 2
DOF, the pitch angle (ϕ) and the angular velocity of the
rotor (ωg). Therefore it is an underactuated system in the
sense that it has less control inputs than degrees of freedom
(see [10] for details).

III. CONTROL STRATEGIES

In this section the control structure is presented, which is
based on two control loops (see Fig. 3). The inner one will
carry out a feedback input-output linearization in such a way
that the resultant system is equivalent to three integrators.
The goal of the outer loop is to fulfill the specifications
imposed on the system.

With respect to the linearization loop, it was seen in
[9] that such a law was not suitable next to the static
equilibrium point of the system. In order to control the
system in a region around this point, the system model is
modified (see [5]) and a new approximate law is obtained,
which is suitable only in this region. Next, a switching
control based on the two laws is studied and applied
depending on the working point.

On the other hand, the outer loop is closed using an
LQR controller that is designed to control a chain of three
integrators.

To obtain the linearization law, the input-output lineariza-
tion technique explained in [3] is applied. First, it is applied
to the nonlinear actuator dynamics (see Fig.4), and then to
the complete set of equations. This is carried out in two
steps in order to simplify the practical implementation of
the control laws.

Fig. 3. Controller Scheme

Fig. 4. Linearized Servo

Feedback Linearization of the Actuator

Equation 2 represents the dynamics of the actuator. This
is a first order equation, but nonlinear in the rotor velocity.
It is linearized to a simple integrator using feedback lin-
earization. Then the loop is closed in such a way that it
becomes a linear first order system, in which the input is
the reference velocityWref and the output is the velocity
of the rotorωg (see Fig.4).

In order to linearize this subsystem, the linearization law,
denoted byν (see Fig.4), will be taken asν = ω̇g, which
corresponds to a simple integrator. Therefore,ν can be
expressed as follows:

ν = ω̇g = 1
Ig

(Pm − (Bg + D̂g|ωg|)ωg) (4)

The resultant system can be expressed in terms of a
transfer function asωg

ν = 1
s . The equation that is intended

to be introduced corresponds to a linear first order system.
Therefore, the loop of the integrator will be closed using a
proportional controller. The resultant transfer function can
be expressed as:

ωg

Wref
=

k

k + s
=

1

1 + 1
k
s

=
1

1 + τs

which expressed in the time domain gives rise to

ω̇g = kWref − kωg (5)

Input-Output Linearization

Once the feedback linearization of the actuator has been
applied, the system dynamics can be expressed with this
new set of equations:

Iϕϕ̈ + GsS(ϕ) + GcC(ϕ) + Kϕϕ̇ = L̂g|ωg|ωg (6)

ω̇g = kWref − kωg

Next, Feedback linearization is applied again to this set
of equations. First of all, the system is expressed in the state
space defining the state vector as follows:



X =

[
ϕ− ϕeq

ϕ̇
ωg

]
=

[
x1

x2

x3

]
(7)

Using the above definition, (6) can be expressed as
follows:

Ẋ = f(X) + g(X)·ue

where:

f(X) =

 x2

−GsS(ϕeq+x1)−GcC(ϕeq+x1)−Kϕ·x2+L̂g|x3|x3
Iϕ

−kx3

 (8)

g(X) =

[
0

0

k

]
(9)

ue = Wref (10)

(Note thatWref is denoted byue, which represents the
exact linearization law (Fig.3)).

The longitudinal system is controllable if the rotor ve-
locity is not next to zero, in fact, in [9] a non global
diffeomorphism was obtained.

The Input-Output Linearization is based on expressing
the output or a derivative output as a function of the control
signal. After this, the control signal will be isolated and the
derivative output will be made equivalent to the input signal
of the resultant linearized system.

Thus, choosing

y = h(x) = x1 = ϕ − ϕeq

the first derivative output yields:

ẏ = Łfh + Łghue

whereue only can be isolated if Łgh is non-null. (Note
that Ł represents the directional derivative, also known as
Lie derivative). Computing this value, it gives rise to:

Łgh = ∇h·g =
[

1 0 0
]
·

[
0
0
k

]
= 0

Since this is not the case, a second derivative output has
to be obtained, yielding:

ÿ = Ł2
fh + ŁgŁfhue = Łf (∇h·f) + Łg(∇h·f)ue

= ∇(∇h·f)·f + ∇(∇h·f)·gue (11)

where,

Łf h = ∇h·f =
[

1 0 0
]
·

[
f1

f2

f3

]
= f1 = x2

ŁgŁf h = ∇(∇h·f)·g = ∇x2·g =
[

0 1 0
][ 0

0
k

]
= 0

Since ue cannot be isolated, it is necessary to derive
again.

y(3) = Ł3
fh + ŁgŁ2

fhue

Taking into account that:

ŁgŁ2
f h = Łg(Łf x2)

Łf x2 = ∇x2·f =
[

0 1 0
]
·f = f2

Łg(f2) = ∇(f2)·g =
[

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

][ 0
0
k

]
=

∂f2

∂x3
k =

2kL̂g

Iϕ
|x3| 6= 0 ⇐⇒ |x3| 6= 0 (12)

SinceŁgŁ2
fh 6= 0 is non null, the system is said to have

relative degree three. Next, the control signalue will be
calculated taking the input of the linearized system (see
Fig. 3) asV = y(3) which corresponds to a chain of three
integrators.

In this way, the linearization law can be expressed as
follows:

V = Ł3
fh + ŁgŁ2

fhue (13)

Isolatingue, the control signal to apply to the actuator is
obtained as follows:

ue = Wref =
V − Ł3

f h

ŁgŁ2
f h

whereV is computed by the external LQR controller and

ŁgŁ2
f h =

IgL̂g

Iϕ
2|x3| 6= 0 ⇐⇒ |x3| 6= 0 (14)

Ł3
f h = Ł2

f Łh = Ł2
f (∇h·f) = Ł2

f x2

= Łf Łf x2 = Łf (f2) = ∇(f2)·f (15)

∇(f2) =

[
∂f2

∂x1
,

∂f2

∂x2
,

∂f2

∂x3

]
Ł3

f h =

(
Kϕ (GsS(ϕeq + x1) + GcC(ϕeq + x1))

I2
ϕ

)
+ (16)

+

(
GcS(ϕeq + x1)−GsC(ϕeq + x1)

Iϕ
+

(
Kϕ

Iϕ

)2
)
·x2−

−
(

L̂g

Iϕ

(
Kϕ

Iϕ
+ 2k

))
·x3·|x3|

It can be seen that the obtained law is well-defined for
all values of the state, X, except for the valuex3 = 0.
Therefore, the control law will be well-defined if and only
if Ł gŁ2

fh is well-defined for all values of the state X, which
is not satisfied whenx3 = 0. In this way, the attained
linearization is not global for all X. Thus, a region around
the x3 = 0 has to be studied in order to find the set of
values ofx3 = ωg makes ŁgŁ2

fh be too small andue be
too high. This set causes a saturation phenomenon in the
actuator without having null velocity.

Furthermore, the minimum velocity of the rotor that do
not cause saturation of the law have to be determined. This
velocity will be denoted asωs.



Approximate Input-Output Linearization

In this section a simplified model of the aerodynamic
forces applied to the system has been used. It is well-known
that these forces vary proportionally with the square of the
angular velocity. The simplification consists of linearizing
the aerodynamic force in a region that containsx3 = 0,
that is, linearizing the force when the angular velocity is
next to zero. Therefore, this approximate model is valid
only for small forces. In this region, the constantLg has a
value proportional to the angular velocity when switching
between both laws. This fact will be demonstrated in next
section.

The equations of the longitudinal dynamics are now
changed by the following ones:

Iϕϕ̈ + GsS(ϕ) + GcC(ϕ) + Kϕ·ϕ̇ = Lgωg (17)

ω̇g = k̂Wref − k̂ωg (18)

where the constantLg and k̂ are different from those of
the quadratic forceŝLg andk.

Rewriting the equations in the state space, yields:

Ẋ = f(X) + g(X)·ua

where:

f(X) =

 x2

−GsS(ϕeq+x1)−GcC(ϕeq+x1)−Kϕ·x2+L̂gx3
Iϕ

−k̂x3

 (19)

g(X) =

[
0

0

k̂

]
(20)

ua = Wref (21)

(Note thatWref is denoted byua, which represents the
approximate linearization law (Fig.3)).

Applying the same procedure as before to this set of
equations, it is necessary to calculate the third derivative
output to obtain a function of the signal input.

Thus, choosing

y = h(x) = x1 = ϕ − ϕeq

and computing the first, the second and the third derivative
output, the following terms are obtained:

Łgh = ∇h·g =
[

1 0 0
]
·

[
0
0
k

]
= 0

Łf h = ∇h·f =
[

1 0 0
]
·

[
f1

f2

f3

]
= f1 = x2

ŁgŁf h = ∇(∇h·f)·g = ∇x2·g =
[

0 1 0
][ 0

0
k

]
= 0

ŁgŁ2
f h = Łg(Łf x2)

Łf x2 = ∇x2·f =
[

0 1 0
]
·f = f2

Łg(f2) = ∇(f2)·g =
[

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

][ 0
0

k̂

]
=

∂f2

∂x3
k̂ =

k̂L̂g

Iϕ
6= 0 (22)

Since ŁgŁ2
fh is non-null, the system is said to have

relative degree three, andua can be isolated from

y(3) = Ł3
fh + ŁgŁ2

fhua

Thus, taking
V = y(3)

as the input to the linearized system, this will be equivalent
to a chain of three integrators.

The control signal to apply to the actuator is obtained,
isolatingua.

ua = Wref =
V − Ł3

fh

ŁgŁ2
fh

whereV is computed by the external LQR controller and

Ł3
fh = Ł2

f Łh = Ł2
f (∇h·f) = Ł2

fx2

= Łf Łfx2 = Łf (f2) = ∇(f2)·f (23)

∇(f2) =
[

∂f2

∂x1
,
∂f2

∂x2
,
∂f2

∂x3

]

Ł3
fh =

(
Kϕ (GsS(ϕeq + x1) + GcC(ϕeq + x1))

I2
ϕ

)
+ (24)

+

(
GcS(ϕeq + x1) − GsC(ϕeq + x1)

Iϕ
+

(
Kϕ

Iϕ

)2
)
·x2−

−
(

L̂g

Iϕ

(
Kϕ

Iϕ
+ k̂

))
·x3

It can be noticed that this law is well-defined for all value
of the state vector X. Furthermore, the control law is also
well-defined due to the fact that the value ofŁgŁ2

fh =
k̂L̂g

Iϕ

is a non-null constant. Therefore, the obtained linearization
is global for all X, although its applicability is limited to
small thrust forces, where the model is valid.

IV. SWITCHING BETWEEN EXACT AND
APPROXIMATE INPUT-OUTPUT LINEARIZATION

In previous sections, exact feedback linearization has
been demonstrated to be valid far from the point of static
equilibrium of the system, in which engine saturation en-
sues. It has been also shown that in a region next to the static
equilibrium of the system, an approximate linearization law
is valid using a linear model of thrust.

To follow up, in this section, a switching law between
the exact and the approximate laws will be carried out.
The choice of the switching velocity depends only on the
saturation phenomenon (ωs), taking into account a non-
abrupt switching.

Next, the conditions to ensure a soft switching will be
developed.



Approximate Linear Thrust Model

To sum up, the control law applied to the actuator will
follow the law

ua =
V − Ł3

f h

ŁgŁ2
f h

=
V − α1

β1
=

V

β1
− ξ1

where

β1 =
L̂gK̂

Iϕ
6= 0 (25)

α1 = K1 + K2 −
[

L̂g

Iϕ

(
Kϕ

Iϕ
+ K̂

)]
x3 (26)

ξ1 =
(K1 + K2)Iϕ

L̂gK̂
−
(

Kϕ

IϕK̂
+ 1

)
x3 (27)

and

K1 =
Kϕ

I2
ϕ

[GsS(ϕeq + x1) + GcC(ϕeq + x1)] (28)

K2 =

[
GcS(ϕeq + x1) − GsC(ϕeq + x1)

Iϕ

+

(
Kϕ

Iϕ

)2]
x2 (29)

Quadratic Thrust Model

ue =
V − Ł3

f h

ŁgŁ2
f h

=
V − α2

β2
=

V

β2
− ξ2

where

β2 =
2LgK|x3|

Iϕ

(30)

α2 = K1 + K2 −
[

Lg

Iϕ

(
Kϕ

Iϕ

+ 2K

)]
|x3|x3 (31)

ξ2 =
(K1 + K2)Iϕ

2LgK|x3|
−
(

Kϕ

2IϕK
+ 1

)
x3 (32)

andK1 y K2 are the same as in the fore mentioned case.

Non-Abrupt Switching Conditions

In order to ensure a soft switching between both laws,
the conditionua = ue has to be imposed at the switching
instant. SimilarlyV will be imposed to be the same at the
switching instant. Due to this, it can be obtained that

ua =
V

β1
− ξ1 = ue =

V

β2
− ξ2

and then
β2 − β1

β1β2
V = ξ1 − ξ2

Since this equality has to be valid for allV , the following
two conditions are obtained.

β1 = β2 (33)

=⇒ ξ1 = ξ2 (34)

The analysis of these conditions gives the following
relations. From the first condition, (33):

β1 = β2 ⇒
L̂gK̂

Iϕ
=

2LgK|x3|
Iϕ

⇒ L̂gK̂ = 2LgK|x3| (35)

From the second condition, (34):

(K1 + K2)Iϕ

L̂gK̂
−
(

Kϕ

IϕK̂
+ 1

)
x3 =

(K1 + K2)Iϕ

2LgK|x3|
−
(

Kϕ

2IϕK
+ 1

)
x3

Substituting (35) in the above equation:(
Kϕ

IϕK̂
+ 1

)
=

(
Kϕ

2IϕK
+ 1

)
(36)

and finally, isolating parameters:

K̂ = 2K (37)

L̂g = Lg |x3| (38)

wherex3 will be the rotor velocity at the switching instant
denoted asωs. This velocity has to be chosen in such a way
that the engine does not saturate when the velocity is next
to zero.

V. EXPERIMENTAL RESULTS

Switching linearization laws with an external LQR

Taking into account the non-abrupt switching conditions,
an appropriate value ofωs has to be chosen in such a way
that the exact linearization law does not generate a control
signalu that makes the engine saturate. The value ofωs =
0.08·ωmax has been chosen, whereωmax is the maximum
velocity of the rotor.

Figs. 5, 6, 7 and 8 show respectively the external con-
troller signalV , the reference velocity of the rotorWref , the
rotor velocity ωg, the control signal applied to the engine
Pm and the pitch angleϕ, when applying this controller.
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Fig. 5. Control signal generated by the external controller, V

The noise in the external control signal, V, is due to
the quantizer effect introduced by the encoder that reads
the pitch angle. This measurement is used to estimate the
angular velocity and the angular acceleration, which are
used by the external LQR controller to compute V. This
noise also affects the other signals,Wref andPm (see Figs.
6 and 7 respectively). In order to check the quality of
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Fig. 6. Switched Linearization SignalWref versus Rotor Velocityωg
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Fig. 7. Control signal applied to the engine,Pm
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Fig. 8. Pitch angle of the systemϕ (degrees)

the control performance achieved, the response of the pitch
angle, using a square wave as reference, is shown in Fig.7.

Notice that pitch oscillation values, when the reference
angle is zero, are less than 0.4 degrees, which represents
twice the resolution of the encoder.

VI. CONCLUSIONS

In this paper an input-output linearization law has been
applied to the longitudinal subsystem of a laboratory
double-rotor helicopter. As the exact input-output lineariza-
tion provides a law that cannot be applied in the whole
operating range, a switching law has been developed. The
second law applied, has been obtained using an approxima-
tion of the model in the working range, in which the exact
law made the engine saturate. In order to make the practical
implementation easier the linearization has been carried out
in two steps. One to linearize the engine-rotor system and
the other one to linearize the complete system.

Both laws have been experimentally tested using external
LQR controllers designed for a chain of three integrators,
which bring forth the improvements achieved with the
proposed switching law.

As a possible future development, a suitable linearization
law will be worked out for the complete laboratory heli-
copter, using new results for non-minimum phase MIMO
systems and taking into account [3] and [4].
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