
 

  

Abstract–The potential use of IP networks for real-time 
high performance robots and automation is enormous and 
appealing. A widely attractive objective for an IP-based 
mobile robot is to control a mobile robot over the IP network 
to track a predefined path. This paper proposes a model 
predictive path tracking control methodology over an IP 
network via middleware. In addition to the normal use of 
middleware, this paper utilizes middleware to schedule a 
control parameter for IP network delay compensation. The 
parameter is adjusted externally at the output of the path 
tracking algorithm with respect to the current network traffic 
conditions and a predictive performance measure computed 
by a neural network. Simulation results show that the mobile 
robot with neural network middleware provides significantly 
better IP networked control system performance. 
 

Index Terms–mobile robot, Internet, networks, adaptive 
control, control systems, DC motors, distributed control, real 
time system. 

I. INTRODUCTION 
RECENT and advancing trend in the networked control 
area is to replace specialized industrial networks with 

a general computer network such as Ethernet and wireless 
Ethernet to control high performance applications in the 
area of distributed control and teleoperation over the 
Internet or IP (Internet Protocol) networks [1]. A general 
protocol like Ethernet has advantages such as its 
affordability, widespread usage, and well-developed 
infrastructure for Internet connection. Nevertheless, once a 
networked control system is connected through the Internet, 
the network delays induced by IP can vary substantially, 
depending on network traffic conditions. Several 
methodologies to handle network delays have been applied 
on some robotic applications. For example, gain scheduling 
[2], wave variables [3, 4], and event-based approaches [5] 
have been applied on robotic manipulator control. 
Likewise, control of a mobile robot over an IP network is 
another robotic application that gains much attention. An 
widely attractive objective for an IP-based mobile robot is 
to control the mobile robot over an IP network to track a 
predefined path. Some techniques have been proposed to 
handle network delays in this particular problem such as 
gain scheduling [6] and predictive control [7]. 

This paper proposed a model predictive path tracking 
control methodology over an IP network via middleware. 
Middleware is an implementation to seamlessly link a 
network and a control application together [8]. In general, 

middleware is designed to monitor network traffic 
conditions, and handle network transmissions between a 
source and a destination. In addition to normal use of 
middleware, this paper utilizes middleware to schedule a 
control parameter externally for the network delay 
compensation. Thus, the path tracking algorithm used 
needs not to be modified. In this proposed approach, the 
middleware measures network traffic conditions to predict 
the current position of the robot. Then, the future 
performance of the robot is calculated by a neural network. 
If the performance of the robot cannot be satisfied as 
required, the middleware will virtually adapt the control 
parameter at the output of the path tracking controller. 

II. SYSTEM DESCRIPTION 

A. System Configuration 
In this paper, we consider a distributed networked 

mobile robot system configuration over an IP network as 
shown in Fig. 1. 
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Fig. 1. An overall distributed networked mobile robot system over an IP 
network. 

1) IP Network 
The IP network under consideration links all action 

agents including mobile robots. In this paper, we assume 
that control and action agents use UDP (User Datagram 
Protocol) as the layer-4 protocol on the IP network to avoid 
additional delays from retransmissions. 

2) Control Agent 
Each control agent can be a high performance computing 

unit to manage operations of action agents. Periodically, 
the control agent converts the sensory signals in a packet 
sent across the IP network from each action agent to 
numerical feedback data for closed-loop control. The 
control or reference signal from the control agent is then 
sent back as a packet to each action agent via the IP 
network as well. 

3) Action Agent 
Each action agent such as a mobile robot contains an 

action agent controller and an action agent plant. The 

                                  Yodyium Tipsuwan                                                   Mo-Yuen Chow 
                                           Student Member, IEEE                                                              Senior Member, IEEE 
                                          ytipsuw@unity.ncsu.edu                                                              chow@eos.ncsu.edu 
                     Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA, 27606 

Model Predictive Path Tracking via Middleware for 
Networked Mobile Robot over IP Network 

A 



 

action agent controller is a simple hardware unit to 
periodically convert the control or reference signal in a 
packet from the control agent to an actual signal to control 
the action agent plant. The sensory output of the action 
agent plant such as a motor speed is also monitored and 
sent back to the control agent. 

B. Mobile Robot Model 
The robot used to illustrate the proposed approach is a 

differential drive mobile robot with two driving wheels and 
one caster wheel [9] as shown in Fig. 2. 
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Fig. 2. Differential drive mobile robot. 

The kinematics of the mobile robot in Fig. 2 is described 
as: 
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 cosx v θ=� , (2) 
 siny v θ=� , (3) 
 θ ω=� , (4) 
where ( ),x y  is the position in the inertial coordinate, 
( ),M Mx y  is the position in the robot coordinate, θ  is the 
azimuth angle of the robot, v is the linear velocity of the 
robot, W is the distance between two wheels, ρ  is the 
radius of wheels, ω  is the angular velocity of the robot, 
and Lω  and Rω  are the angular velocities of the left and 
right wheels, respectively. 

C. Path Tracking Algorithm 
A generalization of the quadratic curve approach 

proposed in [9] is used as the path tracking algorithm to 
illustrate the proposed approach. The main concept of this 
path tracking algorithm is to move the robot along a 
quadratic curve to a reference point on a desired path. A 
point on the path is described in the inertial coordinate as 

( ) ( )( ),p px s y s , where s is the distance traveled on the 
path. By assuming that the orientation of the mobile robot 
comes close to the right value in the motion along the 
desired path, this algorithm controls only the position of the 
robot regardless to its orientation. This algorithm is suitable 
for real-time usage because of its simple computation with 
minimal amount of information compared to other 
approaches. The algorithm is outlined as: 

1)  Based on the current robot position ( ) ( )i x i= x  
( ) ( )

T
y i iθ  , where i +

∈�  is the iteration number, 
optimize: 

 ( ) ( )( ) ( ) ( )( )
2 2

min p ps
x s x i y s y i− + − , (5) 

to find 0s s=  that gives the closest distance between the 
robot and the path. Depending on the forms of ( )px s  and 

( )py s , this optimization could be performed in real-time 
by using a closed-form solution, or a lookup table and a 
numerical technique such as linear interpolation. The 
iteration number i can be thought of as the sampling time 
index of the path tracking controller if 1i it t

+
−  is constant 

2) Compute the reference point for the robot to track by:  
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 ( ) ( ) ( ) ( )
T

r r r ri x i y i iθ=   x , (7) 

where maxs +

∈�  and β +

∈�  are positive constants, a∈  
[ ]0 0 max,s s s+ , ( ) ( )( ) ,r px i x s i= ( ) ( )( ) ,r py i y s i= ( )r iθ =  

( )( )p s iθ , and ( )sκ  is the curvature of the path. A higher 
value of β  will result in a shorter distance of ( )r ix  from 

( ) ( )( )0 0,p px s y s  as well as a higher ( )max aκ . 
3)  Compute the error ( ) ( )r i i−x x , and transform this 

error to the error in the robot coordinate as: 
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T
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x y ri e e e i i
θ
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4)  Find a quadratic curve that links between ( )ix  and 
( )r ix  from: 

 ( ) 2
M My A i x= , where ( ) ( ) 2sgn y

x
x

e
A i e

e
= . (9) 

The robot will move forward if ( )r ix  is ahead of the 
robot ( 0xe > ). On the other hand, it moves backward when 

( )r ix  is at the back of the robot ( 0xe < ). 
5) Compute the reference linear and angular velocities 

of the robot along the quadratic curve. The original 
equations of the velocities are: 
 ( ) ( ) ( )( )2 2 2sgn 1 4r x M Mv i e x A i x= +� , (10) 
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Let Mx  at 1i it t t
+

≤ <  be given by: 
 ( ) ( )M ix K i t t= − ,  (12) 

where  ( ) ( )
( )

sgn
1xK i e

A i
α

=

+

,  (13) 

and α +

∈�  is a positive constant used as a speed factor. 
The robot will move fast, if α  is set to a high value, and 
vice versa. If ( )it t−  is very small, ( )rv i  can be 
approximated during it t≤ <  1it +

 by: 

 ( ) ( ) ( ) ( )( )( ) ( )
22 2 2 2 21 4r iv i K i A i K i t t K i= + − � . (14) 

 Thus, (10) and (11) can be approximated by: 
 ( ) ( )ˆrv i K i� , (15) 



 

 ( ) ( ) ( )ˆ 2r i A i K iω � . (16) 
The reference speeds of both wheels are calculated by: 
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6) Repeat all steps by going back to 1) and set 1i i= + . 

III. PROBLEM FORMULATION 
In order to control a mobile robot to track a predefined 

path over a network, the control agent computes and sends 
the reference speed ( ),L r iω  and ( ),R r iω  in a packet across 
the network at every iteration i to the robot as shown in Fig. 
3.  
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Fig. 3. Data flow of networked mobile robot. 

The path tracking computation at iteration i starts when 
the control agent receives the feedback data in a packet 
from the mobile robot at time it t= . Compared with the 
network delays, the computation time at the control agent is 
usually relatively insignificant. Thus, the computation 
could be assumed to finish at it t=  as well. The basic 
arrival feedback data in this case is the robot position 

( )( )i RCt iτ−x , where ( )RC iτ  is the network delay from the 
robot to the control agent at i. The control agent then sends 

( ),L r iω  and ( ),R r iω  to the robot once the computation is 
finished. Likewise, ( ),L r iω  and ( ),R r iω  are also delayed 
by the network. The network delay to send these reference 
speeds to the mobile robot is defined as ( )CR iτ . The robot 
then periodically monitors and updates the reference speeds 
by the arrival data of ( ),L r iω  and ( ),R r iω  at every 
sampling time period T. The waiting time to update the 
reference speeds is defined as ( )T iτ . 

There are two concerns in the use of the original path 
tracking algorithm due to ( )CR iτ  and ( )RC iτ : 

1) Due to ( )RC iτ , the control agent does not have the 
current robot position ( )itx , but ( )( )i RCt iτ−x . 

2) The reference speeds ( ),L r iω  and ( ),R r iω  are 
computed at it t= , but will be applied at ( )i CRt t iτ= + +  

( )T iτ .  
If the control agent directly uses ( )( )i RCt iτ−x  as ( )ix  

to compute ( ),L r iω  and ( ),R r iω , and if ( )( )i RCt iτ−x  and 
( )itx  are very different, then the result may be far away 

from what it actually should be. In addition, even if the 
control agent uses ( )itx  to compute ( ),L r iω  and ( ),R r iω , 
the robot might have already moved to another position at 

( ) ( )i CR Tt t i iτ τ= + +  when ( ),L r iω  and ( ),R r iω  are 
applied. Thus, the robot response can be undesirable. 

IV. MODEL PREDICTIVE PATH TRACKING 
To handle these two delay concerns, position prediction 

and performance prediction are applied as follows. 

A. Position Prediction 
A model predictive approach is utilized to compute the 

future position of the mobile robot at ( ) ( )i CR Tt t i iτ τ= + +  
for using in the original path tracking algorithm. A future 
position at ( ) ( )i CR Tt t i iτ τ= + +  defined as ( )( i CRt iτ+ +x  

( ))T iτ  is predicted from ( )( )i RCt iτ−x . The predictive 
position defined as ( ) ( )( )ˆ i CR Tt i iτ τ+ +x  is then used as 
( )ix  in the path tracking algorithm so that ( ),L r iω  and 

( ),R r iω  should be actually applied on time. The 
formulation is based on the difference between 

( ) ( )( )i CR Tt i iτ τ+ +x  and ( )( )i RCt iτ−x  defined as: 
     ( )i

τ
∆ x  ( ) ( ) ( )

T
x i y i i

τ τ τ
θ= ∆ ∆ ∆    

 ( ) ( )( ) ( )( )i CR T i RCt i i t iτ τ τ= + + − −x x  (19) 
Before the mobile robot receives ( ),L r iω  and ( ),R r iω , 

both left and right wheels have been controlled by using 
( ), 1L r iω −  and ( ), 1R r iω −  as the reference speeds. Thus, 

the robot can be assumed to move with a constant linear 
velocity v and a constant angular velocity ω  if the 
controllers of both wheels work perfectly and the weight of 
the robot is light. From this assumption and (2)-(4), 

( )i
τ

∆ x  can be approximated as follows. 
( )i

τ
θ∆ ( ) ( ) ( ) ( ) ( )( )2 1 1 CR T RCA i K i i i iτ τ τ− − + +� , (20) 

 ( )x i
τ

∆  
( )

( ) ( )( )
1 sin

2 1 i CR Tt i i
A i

θ τ τ + + −−
�  

  ( )( )sin i RCt iθ τ −  , (21) 

 ( )y i
τ

∆  
( )

( )( )
1 cos

2 1 i RCt i
A i

θ τ − −−
�  

  ( ) ( )( )cos i CR Tt i iθ τ τ + +  , (22) 
where ( )1A i −  and ( )1K i −  are the quadratic and speed 
factors in (9) and (13) computed at 1i − , respectively. 
These factors can be easily found from (17) and (18) by 
using ( ), 1L r iω −  and ( ), 1R r iω − . Therefore, the mobile 
robot has to send ( ), 1L r iω −  and ( ), 1R r iω −  back to the 
control agent as the feedback data along with 

( )( )i RCt iτ−x  for prediction. In addition, the delays 
( )CR iτ  and ( )RC iτ  can be combined for simplicity. 

B. Performance Measure 
In addition to position prediction, the model predictive 

approach is also utilized to measure the robot performance. 
The performance of robot path tracking using model 
predictive position with respect to the network delays is 
directly dependent on ( )i

τ
∆ x , which can be measured by: 

 ( ) ( )J i i
τ

= ∆ x , (23) 
where ⋅  is a vector norm. This measure indicates how 
much the robot moves away from ( )( )i RCt iτ−x  when the 
reference speeds have not been updated because of the 



 

network delays.  Large position and orientation difference 
could result in the high errors of ( ),L r iω  and ( ),R r iω , 
which lead the robot to a wrong position. 

Actual ( )J i  can be measured directly from the actual 
robot platform, or can be approximated from (20)-(22). For 
example, if 2-norm is used, (23) can be expressed as: 

 ( ) ( ) ( ) ( )2 2 2J i x i y i i
τ τ τ

θ∆ + ∆ + ∆� , (24) 
Using trigonometry rules, we can arrange: 

 ( ) ( )
( )

( )
2 2

2

1 cos
2 1

i
x i y i

A i
τ

τ τ

θ− ∆
∆ + ∆ =

−
. (25) 

Therefore, the performance measure J becomes: 

 ( )
( )

( )
( )2

2

1 cos
2 1

i
J i i

A i
τ

τ

θ
θ

− ∆
+ ∆

−
�  (26) 

C. Performance Prediction 
From (20) and (26), ( )J i  can be viewed as a function of 

three variables: ( ) ( ) ( )CR T RCi i iτ τ τ+ +  defined as ( )iτ , 
( )1A i − , and ( )1K i − . Since ( )J i  depends on ( )1A i − , 
( )1K i − , and ( )iτ , the control agent can also predict the 

future performance measure at 1i +  defined as ( )ˆ 1J i +  by 
using ( )A i , ( )K i , and the predictive delay at 1i +  
defined as ( )ˆ 1iτ + . If ( )ˆ 1J i ε+ > , where ε +

∈�  is the 
maximal tolerance of the performance measure, the control 
agent will select the optimal K to replace ( )K i  to ensure 
( )ˆ 1J i ε+ ≤ . The control agent can then compute ( ),L r iω  

and ( ),R r iω  from the optimal K and ( )A i . The prediction 
can be easily done if ( )ˆ 1iτ +  is constant. However, for a 
random delay network such as an IP network, a more 
sophisticated algorithm is required to determine ( )ˆ 1J i +  
from ( )ˆ 1iτ +  based on delay characteristics, which will be 
described in a later section.  

V. IP NETWORK DELAY CHARACTERIZATION 
In order to determine ( )ˆ 1J i +  from ( )ˆ 1iτ +  on an IP 

network, ( )iτ  is characterized and determined based on 
RTT (roundtrip time) delays as follows. 

A. IP Network Delay Characteristics 
To illustrate actual IP network delay characteristics, 

RTT delays are measured from an Ethernet network in 
ADAC (Advanced Diagnosis And Control) Lab at North 
Carolina State University (NCSU) to the destinations listed 
in Table 1 for 24 hours (00:00-24:00). Statistical measures 
of the RTT delays are also shown in Table 1. The 
corresponding histograms of the RTT delays to 
approximate probability densities are shown in Fig. 4. 

B. Determine ( )ˆ 1iτ +  

The shapes of the histograms in Fig. 4 indicate the higher 
probability to have RTT delays that are closer to the 
median than the mean.     The median of RTT delays can be 
treated as ( )ˆ 1iτ +  for  position prediction since the median 

TABLE 1. STATISTICAL MEASURES (MINIMUM, MEDIAN, MEAN, AND 
MAXIMUM) OF RTT DELAYS MEASURED FROM ADAC LAB AT NCSU TO 

WWW.LIB.NCSU.EDU, WWW.VISITNC.COM, WWW.UTEXAS.EDU, AND 
WWW.KU.AC.TH. 

Destination host minτ  
(sec) 

medianτ  
(sec) 

meanτ  
(sec) 

maxτ  
(sec) 

www.lib.ncsu.edu 0.000435 0.000471 0.000580 0.0862 
www.visitnc.com 0.0166 0.0232 0.0326 0.7562 
www.utexas.edu 0.0622 0.0627 0.0629 0.1187 
www.ku.ac.th 0.0045 0.3150 0.3730 227.7095 
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(c)                                                   (d) 

Fig. 4. Histograms of RTT delays measured from ADAC lab at NCSU to: 
(a) www.lib.ncsu.edu. (b) www.visitnc.com. (c) www.utexas.edu. 

(d) www.ku.ac.th. 
is a good representation of the majority of RTT delays in 
this case. On the other hand, the mean of RTT delays is 
used for performance prediction for worse approximation 
of ( )ˆ 1J i + . 

C. Real-Time IP Network Traffic Condition Monitoring 
The median and mean of RTT delays can be identified in 

real-time for position and performance prediction during a 
short time period by transmitting probing packets to the 
robot and by measuring their RTT delays. Probing packets 
are sent with a packet index j, 0,1,2, ,j = …  and the current 
time defined as the sending time ( )st j  to the mobile robot 
at every sampling time PT . The robot will return a 
corresponding acknowledge packet including j and ( )st j  
after it receives a probing packet. The acknowledge packet 
arrives at the control agent at ( )At t i= , where ( )At i  is the 
arrival time of the acknowledge packet. Thus, the RTT 
delay of the roundtrip j can be computed by 

( ) ( ) ( )RTT A Sj t j t j= − . All RTT delays are sorted and 
stored in a link-list data structure for convenience to 
compute the median and mean of RTT delays after N 
packets are acknowledged. The index j is reset to zero 
when j N> . In addition, both median and mean are also 
used to represent network traffic conditions. 

VI. NEURAL NETWORK MIDDLEWARE 
Position  prediction  and  performance  prediction  can be 



 

implemented in middleware separately from the tracking 
algorithm implementation. With middleware, the path 
tracking controller has more flexibility to be upgraded and 
used on different traffic conditions. The mobile robot 
system can be ported to other types of network protocols 
and environments by simply changing the controller 
parameters with respect to a suitable network traffic model. 
The overall process is depicted in Fig. 5. 
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Fig. 5. Gain scheduler middleware for predictive path tracking. 

The middleware is composed of three parts: 
1) Traffic estimator 

The traffic estimator is used to measure the median and 
mean of RTT delays of probing packets. The traffic delay 
median and mean are then used for position and 
performance prediction, respectively. 

2) Position predictor 
The position predictor is activated when the feedback 

data arrives at the control agent. The predictor computes 
( ) ( )( )ˆ i CR Tt i iτ τ+ +x  using (20)-(22) and the median of 

RTT delays as ( )ˆ 1iτ + , and then forwards ( )(ˆ i CRt iτ+ +x  
( ))T iτ as ( )ix  to the path tracking algorithm in section I. 
3) Gain scheduler 

The gain scheduler is used to adjust the speed factor 
( )K i . If ( )K i  computed from ( ),L r iω  and ( ),R r iω  of the 

original path tracking algorithm results in ( )ˆ 1J i ε+ > , the 
gain scheduler will replace ( )K i  by the optimal K. Then, 
the gain scheduler computes ( ),L r iω  and ( ),R r iω  for 
sending out by using the optimal K, ( )A i , and the mean of 
RTT delays as ( )ˆ 1iτ + . Otherwise, ( ),L r iω  and ( ),R r iω  
from the original path tracking algorithm will be sent 
instead. The maximal tolerance ε  is based on the user’s 
requirement. If ε  is small, the robot will track a path with 
the small difference between ( ) ( )( )i CR Tt i iτ τ+ +x  and 

( )( )i RCt iτ−x , which implies the less effects of network 
delays. However, the robot may move slower, which may 
be undesirable in some cases. 
 The optimal K can be obtained by pre-computing 
( )1J i +  with respect to certain ranges of K, A, and τ  from 

(26), and then searching for the set of optimal K that gives 
( )1J i ε+ ≤ . However, using a lookup to store the optimal 

K may not be convenience since the table size may be very 
large, and the searching time for the optimal K can be long. 
 Computational intelligence techniques such as artificial 
neural networks (ANN) can be used to approximate the 
relationship between the optimal K with respect to ε , A, 

and τ . ANN is composed of simple mathematical elements 
called neurons, which operate in parallel. ANN can be 
trained so that they can provide target output values with a 
specific set of input values. Both input and output sets are 
together called as training sets. In this paper, the optimal K 
is the output of ANN, and the inputs are A and τ  as shown 
in Fig. 6, where ε  can be fixed as desired.  

Feedforward
network

A

τ

K ∗

 
Fig. 6. Feedforward network configuration. 

Different type of ANN can be used. This paper uses a 
feedforward network [10, 11] for illustration. 

VII. SIMULATION RESULTS 
A robot simulation program is setup in a 

Mablab/Simulink environment to investigate the 
performance of the proposed scheme in the following 
environment 
• The optimal K is prepared by computing ( )1J i +  from 

[ ]300,300A∈ − , [ ]0.1,0.8τ ∈ , [ ]0,5K ∈  with 
0.25.ε =  A 3-layer feedforward network is trained by 

using Levenberg-Marquardt algorithm represent the 
optimal K. The number of hidden neurons used is 20. 
The network training reaches the error tolerance 

61 10−

×  at 135 epochs. 
• RTT delays used for investigation are measured from 

ADAC Lab to Vienna University of Technology, 
Austria.  

• The sampling time to send a probing packet 
0.005PT =  s. 

• The packet index to evaluate the median and mean of 
RTT delays 10N = . 

• The sampling time of the robot to process the 
reference speeds 0.01T =  s. 

• The elapsed time for simulation is 15 s. 
• The initial position of the robot is ( )0.1,1− . 
• The simulation assumes that there is no packet loss. 

In this simulation, the robot is assigned to track the 
reference path (Ref) as illustrated as the solid line in Fig. 7 
from point A to point C. The robot will stop if the distance 
from the robot to point C is less than 0.05. Three cases are 
investigated:  
� The robot tracks the path with neural network 

middleware under IP network delays (Md). 
� The robot tracks the path without neural network 

middleware under IP network delays (No Md). 
� The robot tracks the path without neural network 

middleware and IP network delays (No D). 
Fig. 7 shows that the tracking algorithm performs very 

well without network delays. On the other hand, with 
network delays, the robot without neural network 



 

middleware fails to track the path closely, and cannot reach 
the final position in 15 s. The robot can only move to point 
B at 15 s. On the other hand, the robot with neural network 
middleware can reach the destination in 15 s. Even though 
the robot shows small deviation from the path, it still tracks 
the path much closer than without middleware.  
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(c)                                                      (d) 
Fig. 7. Reference path and robot tracks:  

(a) Reference path, (b) Md, (c) No Md, and (d) No D. 
In addition, Fig. 8 shows the closest distance measure d 

from the robot to the point ( ) ( )0 0,p px s y s  on the path of 
all three cases when the robot is traveling along the path. 
The distance d provides a measure of how good the robot is 
tracking the path. The robot with neural network 
middleware tracks the path much closer than the one 
without neural network middleware. These results indicate 
that position and performance prediction by the neural 
network middleware can significantly improve the path 
tracking with network delay concerns. Because the effects 
of network delays still remain, the robot cannot track the 
path perfectly compared to the case without network delay 
despite of the middleware use. Nevertheless, closer 
tracking could be improved by reducing ε , but the robot 
would be slowed down. This is a trade-off design between 
accuracy and speed. 

Furthermore, adjusting ( )K i  to compensate the network 
delay effects by neural network middleware also help to 
improve the accuracy of the approximation in (14). With 
long network delays, it t−  may be large, and the 
approximation may be no longer valid. Reducing ( )K i  can 
compensate the large it t− . 

VIII. CONCLUSION 
Model  predictive  path  tracking  scheme  for networked 

mobile robot implemented in the neural network 
middleware can significantly improve the IP network delay 
compensation    by    adjusting    the    robot   speeds.    The 
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Fig. 8. Closest distance to the path d. 

middleware structure allows convenient installation and 
improvement with an existing path tracking controller 
because it is implemented separately from the path tracking 
algorithm. An advanced delay prediction algorithm and a 
better model for prediction can be easily added or replaced 
in the middleware without modifying the path tracking 
algorithm. In addition, the proposed scheme could also take 
advantages from IP network QoS (Quality-of-Service) 
protocols since the mean and median of RTT delays, which 
are directly dependent on network QoS, are directly 
measured.  
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