

Abstract–The potential use of IP networks for real-time
high performance robots and automation is enormous and
appealing. A widely attractive objective for an IP-based
mobile robot is to control a mobile robot over the IP network
to track a predefined path. This paper proposes a model
predictive path tracking control methodology over an IP
network via middleware. In addition to the normal use of
middleware, this paper utilizes middleware to schedule a
control parameter for IP network delay compensation. The
parameter is adjusted externally at the output of the path
tracking algorithm with respect to the current network traffic
conditions and a predictive performance measure computed
by a neural network. Simulation results show that the mobile
robot with neural network middleware provides significantly
better IP networked control system performance.

Index Terms–mobile robot, Internet, networks, adaptive
control, control systems, DC motors, distributed control, real
time system.

I. INTRODUCTION
RECENT and advancing trend in the networked control
area is to replace specialized industrial networks with

a general computer network such as Ethernet and wireless
Ethernet to control high performance applications in the
area of distributed control and teleoperation over the
Internet or IP (Internet Protocol) networks [1]. A general
protocol like Ethernet has advantages such as its
affordability, widespread usage, and well-developed
infrastructure for Internet connection. Nevertheless, once a
networked control system is connected through the Internet,
the network delays induced by IP can vary substantially,
depending on network traffic conditions. Several
methodologies to handle network delays have been applied
on some robotic applications. For example, gain scheduling
[2], wave variables [3, 4], and event-based approaches [5]
have been applied on robotic manipulator control.
Likewise, control of a mobile robot over an IP network is
another robotic application that gains much attention. An
widely attractive objective for an IP-based mobile robot is
to control the mobile robot over an IP network to track a
predefined path. Some techniques have been proposed to
handle network delays in this particular problem such as
gain scheduling [6] and predictive control [7].

This paper proposed a model predictive path tracking
control methodology over an IP network via middleware.
Middleware is an implementation to seamlessly link a
network and a control application together [8]. In general,

middleware is designed to monitor network traffic
conditions, and handle network transmissions between a
source and a destination. In addition to normal use of
middleware, this paper utilizes middleware to schedule a
control parameter externally for the network delay
compensation. Thus, the path tracking algorithm used
needs not to be modified. In this proposed approach, the
middleware measures network traffic conditions to predict
the current position of the robot. Then, the future
performance of the robot is calculated by a neural network.
If the performance of the robot cannot be satisfied as
required, the middleware will virtually adapt the control
parameter at the output of the path tracking controller.

II. SYSTEM DESCRIPTION

A. System Configuration
In this paper, we consider a distributed networked

mobile robot system configuration over an IP network as
shown in Fig. 1.

IP
Network

Email, FTP, Video

Control agent

Email, FTP, Video

Action agent
(Mobile robots)

Fig. 1. An overall distributed networked mobile robot system over an IP
network.

1) IP Network
The IP network under consideration links all action

agents including mobile robots. In this paper, we assume
that control and action agents use UDP (User Datagram
Protocol) as the layer-4 protocol on the IP network to avoid
additional delays from retransmissions.

2) Control Agent
Each control agent can be a high performance computing

unit to manage operations of action agents. Periodically,
the control agent converts the sensory signals in a packet
sent across the IP network from each action agent to
numerical feedback data for closed-loop control. The
control or reference signal from the control agent is then
sent back as a packet to each action agent via the IP
network as well.

3) Action Agent
Each action agent such as a mobile robot contains an

action agent controller and an action agent plant. The

 Yodyium Tipsuwan Mo-Yuen Chow
 Student Member, IEEE Senior Member, IEEE
 ytipsuw@unity.ncsu.edu chow@eos.ncsu.edu
 Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA, 27606

Model Predictive Path Tracking via Middleware for
Networked Mobile Robot over IP Network

A

action agent controller is a simple hardware unit to
periodically convert the control or reference signal in a
packet from the control agent to an actual signal to control
the action agent plant. The sensory output of the action
agent plant such as a motor speed is also monitored and
sent back to the control agent.

B. Mobile Robot Model
The robot used to illustrate the proposed approach is a

differential drive mobile robot with two driving wheels and
one caster wheel [9] as shown in Fig. 2.

x

y

ωL
v

θ ,ω
W

ωR

yM xM

ρ

Fig. 2. Differential drive mobile robot.

The kinematics of the mobile robot in Fig. 2 is described
as:

 2 2 R

L

v

W W

ρ ρ

ω

ρ ρ ωω

 
    

=     
    −
  

, (1)

 cosx v θ=� , (2)
 siny v θ=� , (3)
 θ ω=� , (4)
where (),x y is the position in the inertial coordinate,
(),M Mx y is the position in the robot coordinate, θ is the
azimuth angle of the robot, v is the linear velocity of the
robot, W is the distance between two wheels, ρ is the
radius of wheels, ω is the angular velocity of the robot,
and Lω and Rω are the angular velocities of the left and
right wheels, respectively.

C. Path Tracking Algorithm
A generalization of the quadratic curve approach

proposed in [9] is used as the path tracking algorithm to
illustrate the proposed approach. The main concept of this
path tracking algorithm is to move the robot along a
quadratic curve to a reference point on a desired path. A
point on the path is described in the inertial coordinate as

() ()(),p px s y s , where s is the distance traveled on the
path. By assuming that the orientation of the mobile robot
comes close to the right value in the motion along the
desired path, this algorithm controls only the position of the
robot regardless to its orientation. This algorithm is suitable
for real-time usage because of its simple computation with
minimal amount of information compared to other
approaches. The algorithm is outlined as:

1) Based on the current robot position () ()i x i= x
() ()

T
y i iθ  , where i +

∈� is the iteration number,
optimize:

 () ()() () ()()
2 2

min p ps
x s x i y s y i− + − , (5)

to find 0s s= that gives the closest distance between the
robot and the path. Depending on the forms of ()px s and

()py s , this optimization could be performed in real-time
by using a closed-form solution, or a lookup table and a
numerical technique such as linear interpolation. The
iteration number i can be thought of as the sampling time
index of the path tracking controller if 1i it t

+
− is constant

2) Compute the reference point for the robot to track by:

()

()
()

()max
0 , ,

1 max
pd sss i s s
dsa

θ
κ

β κ
= + =

+

 (6)

 () () () ()
T

r r r ri x i y i iθ=   x , (7)

where maxs +

∈� and β +

∈� are positive constants, a∈
[]0 0 max,s s s+ , () ()() ,r px i x s i= () ()() ,r py i y s i= ()r iθ =

()()p s iθ , and ()sκ is the curvature of the path. A higher
value of β will result in a shorter distance of ()r ix from

() ()()0 0,p px s y s as well as a higher ()max aκ .
3) Compute the error () ()r i i−x x , and transform this

error to the error in the robot coordinate as:

() () ()()
T

cos sin 0
sin cos 0
0 0 1

x y ri e e e i i
θ

θ θ

θ θ

 
  = = − −   
  

e x x .(8)

4) Find a quadratic curve that links between ()ix and
()r ix from:

 () 2
M My A i x= , where () () 2sgn y

x
x

e
A i e

e
= . (9)

The robot will move forward if ()r ix is ahead of the
robot (0xe >). On the other hand, it moves backward when

()r ix is at the back of the robot (0xe <).
5) Compute the reference linear and angular velocities

of the robot along the quadratic curve. The original
equations of the velocities are:
 () () ()()2 2 2sgn 1 4r x M Mv i e x A i x= +� , (10)

 ()
()

3

2

2 M
r

r

Axi
v i

ω =

�
. (11)

Let Mx at 1i it t t
+

≤ < be given by:
 () ()M ix K i t t= − , (12)

where () ()
()

sgn
1xK i e

A i
α

=

+

, (13)

and α +

∈� is a positive constant used as a speed factor.
The robot will move fast, if α is set to a high value, and
vice versa. If ()it t− is very small, ()rv i can be
approximated during it t≤ < 1it +

 by:

 () () () ()()() ()
22 2 2 2 21 4r iv i K i A i K i t t K i= + − � . (14)

 Thus, (10) and (11) can be approximated by:
 () ()ˆrv i K i� , (15)

 () () ()ˆ 2r i A i K iω � . (16)
The reference speeds of both wheels are calculated by:

 ()
() ()

,

ˆ ˆ
2

r r
R r

v i W i
i

ω
ω

ρ ρ
= + , (17)

 ()
() ()

,

ˆ ˆ
2

r r
L r

v i W i
i

ω
ω

ρ ρ
= − . (18)

6) Repeat all steps by going back to 1) and set 1i i= + .

III. PROBLEM FORMULATION
In order to control a mobile robot to track a predefined

path over a network, the control agent computes and sends
the reference speed (),L r iω and (),R r iω in a packet across
the network at every iteration i to the robot as shown in Fig.
3.

IP Network

Action
agent

(Robot)
()CR iτ

()RC iτ

()T iτ ()txControl
agent

()()i RCt iτ−x (),R r iω

(),L r iω

(), 1L r iω −

(), 1R r iω −

Fig. 3. Data flow of networked mobile robot.

The path tracking computation at iteration i starts when
the control agent receives the feedback data in a packet
from the mobile robot at time it t= . Compared with the
network delays, the computation time at the control agent is
usually relatively insignificant. Thus, the computation
could be assumed to finish at it t= as well. The basic
arrival feedback data in this case is the robot position

()()i RCt iτ−x , where ()RC iτ is the network delay from the
robot to the control agent at i. The control agent then sends

(),L r iω and (),R r iω to the robot once the computation is
finished. Likewise, (),L r iω and (),R r iω are also delayed
by the network. The network delay to send these reference
speeds to the mobile robot is defined as ()CR iτ . The robot
then periodically monitors and updates the reference speeds
by the arrival data of (),L r iω and (),R r iω at every
sampling time period T. The waiting time to update the
reference speeds is defined as ()T iτ .

There are two concerns in the use of the original path
tracking algorithm due to ()CR iτ and ()RC iτ :

1) Due to ()RC iτ , the control agent does not have the
current robot position ()itx , but ()()i RCt iτ−x .

2) The reference speeds (),L r iω and (),R r iω are
computed at it t= , but will be applied at ()i CRt t iτ= + +

()T iτ .
If the control agent directly uses ()()i RCt iτ−x as ()ix

to compute (),L r iω and (),R r iω , and if ()()i RCt iτ−x and
()itx are very different, then the result may be far away

from what it actually should be. In addition, even if the
control agent uses ()itx to compute (),L r iω and (),R r iω ,
the robot might have already moved to another position at

() ()i CR Tt t i iτ τ= + + when (),L r iω and (),R r iω are
applied. Thus, the robot response can be undesirable.

IV. MODEL PREDICTIVE PATH TRACKING
To handle these two delay concerns, position prediction

and performance prediction are applied as follows.

A. Position Prediction
A model predictive approach is utilized to compute the

future position of the mobile robot at () ()i CR Tt t i iτ τ= + +
for using in the original path tracking algorithm. A future
position at () ()i CR Tt t i iτ τ= + + defined as ()(i CRt iτ+ +x

())T iτ is predicted from ()()i RCt iτ−x . The predictive
position defined as () ()()ˆ i CR Tt i iτ τ+ +x is then used as
()ix in the path tracking algorithm so that (),L r iω and

(),R r iω should be actually applied on time. The
formulation is based on the difference between

() ()()i CR Tt i iτ τ+ +x and ()()i RCt iτ−x defined as:
 ()i

τ
∆ x () () ()

T
x i y i i

τ τ τ
θ= ∆ ∆ ∆  

 () ()() ()()i CR T i RCt i i t iτ τ τ= + + − −x x (19)
Before the mobile robot receives (),L r iω and (),R r iω ,

both left and right wheels have been controlled by using
(), 1L r iω − and (), 1R r iω − as the reference speeds. Thus,

the robot can be assumed to move with a constant linear
velocity v and a constant angular velocity ω if the
controllers of both wheels work perfectly and the weight of
the robot is light. From this assumption and (2)-(4),

()i
τ

∆ x can be approximated as follows.
()i

τ
θ∆ () () () () ()()2 1 1 CR T RCA i K i i i iτ τ τ− − + +� , (20)

 ()x i
τ

∆
()

() ()()
1 sin

2 1 i CR Tt i i
A i

θ τ τ + + −−
�

 ()()sin i RCt iθ τ −  , (21)

 ()y i
τ

∆
()

()()
1 cos

2 1 i RCt i
A i

θ τ − −−
�

 () ()()cos i CR Tt i iθ τ τ + +  , (22)
where ()1A i − and ()1K i − are the quadratic and speed
factors in (9) and (13) computed at 1i − , respectively.
These factors can be easily found from (17) and (18) by
using (), 1L r iω − and (), 1R r iω − . Therefore, the mobile
robot has to send (), 1L r iω − and (), 1R r iω − back to the
control agent as the feedback data along with

()()i RCt iτ−x for prediction. In addition, the delays
()CR iτ and ()RC iτ can be combined for simplicity.

B. Performance Measure
In addition to position prediction, the model predictive

approach is also utilized to measure the robot performance.
The performance of robot path tracking using model
predictive position with respect to the network delays is
directly dependent on ()i

τ
∆ x , which can be measured by:

 () ()J i i
τ

= ∆ x , (23)
where ⋅ is a vector norm. This measure indicates how
much the robot moves away from ()()i RCt iτ−x when the
reference speeds have not been updated because of the

network delays. Large position and orientation difference
could result in the high errors of (),L r iω and (),R r iω ,
which lead the robot to a wrong position.

Actual ()J i can be measured directly from the actual
robot platform, or can be approximated from (20)-(22). For
example, if 2-norm is used, (23) can be expressed as:

 () () () ()2 2 2J i x i y i i
τ τ τ

θ∆ + ∆ + ∆� , (24)
Using trigonometry rules, we can arrange:

 () ()
()

()
2 2

2

1 cos
2 1

i
x i y i

A i
τ

τ τ

θ− ∆
∆ + ∆ =

−
. (25)

Therefore, the performance measure J becomes:

 ()
()

()
()2

2

1 cos
2 1

i
J i i

A i
τ

τ

θ
θ

− ∆
+ ∆

−
� (26)

C. Performance Prediction
From (20) and (26), ()J i can be viewed as a function of

three variables: () () ()CR T RCi i iτ τ τ+ + defined as ()iτ ,
()1A i − , and ()1K i − . Since ()J i depends on ()1A i − ,
()1K i − , and ()iτ , the control agent can also predict the

future performance measure at 1i + defined as ()ˆ 1J i + by
using ()A i , ()K i , and the predictive delay at 1i +
defined as ()ˆ 1iτ + . If ()ˆ 1J i ε+ > , where ε +

∈� is the
maximal tolerance of the performance measure, the control
agent will select the optimal K to replace ()K i to ensure
()ˆ 1J i ε+ ≤ . The control agent can then compute (),L r iω

and (),R r iω from the optimal K and ()A i . The prediction
can be easily done if ()ˆ 1iτ + is constant. However, for a
random delay network such as an IP network, a more
sophisticated algorithm is required to determine ()ˆ 1J i +
from ()ˆ 1iτ + based on delay characteristics, which will be
described in a later section.

V. IP NETWORK DELAY CHARACTERIZATION
In order to determine ()ˆ 1J i + from ()ˆ 1iτ + on an IP

network, ()iτ is characterized and determined based on
RTT (roundtrip time) delays as follows.

A. IP Network Delay Characteristics
To illustrate actual IP network delay characteristics,

RTT delays are measured from an Ethernet network in
ADAC (Advanced Diagnosis And Control) Lab at North
Carolina State University (NCSU) to the destinations listed
in Table 1 for 24 hours (00:00-24:00). Statistical measures
of the RTT delays are also shown in Table 1. The
corresponding histograms of the RTT delays to
approximate probability densities are shown in Fig. 4.

B. Determine ()ˆ 1iτ +

The shapes of the histograms in Fig. 4 indicate the higher
probability to have RTT delays that are closer to the
median than the mean. The median of RTT delays can be
treated as ()ˆ 1iτ + for position prediction since the median

TABLE 1. STATISTICAL MEASURES (MINIMUM, MEDIAN, MEAN, AND
MAXIMUM) OF RTT DELAYS MEASURED FROM ADAC LAB AT NCSU TO

WWW.LIB.NCSU.EDU, WWW.VISITNC.COM, WWW.UTEXAS.EDU, AND
WWW.KU.AC.TH.

Destination host minτ
(sec)

medianτ
(sec)

meanτ
(sec)

maxτ
(sec)

www.lib.ncsu.edu 0.000435 0.000471 0.000580 0.0862
www.visitnc.com 0.0166 0.0232 0.0326 0.7562
www.utexas.edu 0.0622 0.0627 0.0629 0.1187
www.ku.ac.th 0.0045 0.3150 0.3730 227.7095

4 5 6 7 8 9

x 10-4

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

x 104 Histogram: NCSU

Delay (s)

Nu
m

be
r o

f p
ac

ke
ts

0.022 0.024 0.026 0.028 0.03 0.032 0.034
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Histogram: NC

Delay (s)

Nu
m

be
r o

f p
ac

ke
ts

(a) (b)

0.062 0.0625 0.063 0.0635 0.064 0.0645
0

1000

2000

3000

4000

5000

6000

7000

8000

Histogram: TX

Delay (s)

N
um

be
r o

f p
ac

ke
ts

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000
Histogram: TH

Delay (s)

N
um

be
r o

f p
ac

ke
ts

(c) (d)

Fig. 4. Histograms of RTT delays measured from ADAC lab at NCSU to:
(a) www.lib.ncsu.edu. (b) www.visitnc.com. (c) www.utexas.edu.

(d) www.ku.ac.th.
is a good representation of the majority of RTT delays in
this case. On the other hand, the mean of RTT delays is
used for performance prediction for worse approximation
of ()ˆ 1J i + .

C. Real-Time IP Network Traffic Condition Monitoring
The median and mean of RTT delays can be identified in

real-time for position and performance prediction during a
short time period by transmitting probing packets to the
robot and by measuring their RTT delays. Probing packets
are sent with a packet index j, 0,1,2, ,j = … and the current
time defined as the sending time ()st j to the mobile robot
at every sampling time PT . The robot will return a
corresponding acknowledge packet including j and ()st j
after it receives a probing packet. The acknowledge packet
arrives at the control agent at ()At t i= , where ()At i is the
arrival time of the acknowledge packet. Thus, the RTT
delay of the roundtrip j can be computed by

() () ()RTT A Sj t j t j= − . All RTT delays are sorted and
stored in a link-list data structure for convenience to
compute the median and mean of RTT delays after N
packets are acknowledged. The index j is reset to zero
when j N> . In addition, both median and mean are also
used to represent network traffic conditions.

VI. NEURAL NETWORK MIDDLEWARE
Position prediction and performance prediction can be

implemented in middleware separately from the tracking
algorithm implementation. With middleware, the path
tracking controller has more flexibility to be upgraded and
used on different traffic conditions. The mobile robot
system can be ported to other types of network protocols
and environments by simply changing the controller
parameters with respect to a suitable network traffic model.
The overall process is depicted in Fig. 5.

Tracking
algorithm

()()

() (), ,

,

1 , 1
i RC

L r R r

t i

i i

τ

ω ω

−

− −

x

Position
predictor

() ()()ˆ i CR Tt i iτ τ+ +x

Neural
network gain

scheduler

() (), ,,L r R ri iω ω

Network
traffic

estimator

()At j
()St i

+
-

mean, median

() (), ,,L r R ri iω ω

Fig. 5. Gain scheduler middleware for predictive path tracking.

The middleware is composed of three parts:
1) Traffic estimator

The traffic estimator is used to measure the median and
mean of RTT delays of probing packets. The traffic delay
median and mean are then used for position and
performance prediction, respectively.

2) Position predictor
The position predictor is activated when the feedback

data arrives at the control agent. The predictor computes
() ()()ˆ i CR Tt i iτ τ+ +x using (20)-(22) and the median of

RTT delays as ()ˆ 1iτ + , and then forwards ()(ˆ i CRt iτ+ +x
())T iτ as ()ix to the path tracking algorithm in section I.
3) Gain scheduler

The gain scheduler is used to adjust the speed factor
()K i . If ()K i computed from (),L r iω and (),R r iω of the

original path tracking algorithm results in ()ˆ 1J i ε+ > , the
gain scheduler will replace ()K i by the optimal K. Then,
the gain scheduler computes (),L r iω and (),R r iω for
sending out by using the optimal K, ()A i , and the mean of
RTT delays as ()ˆ 1iτ + . Otherwise, (),L r iω and (),R r iω
from the original path tracking algorithm will be sent
instead. The maximal tolerance ε is based on the user’s
requirement. If ε is small, the robot will track a path with
the small difference between () ()()i CR Tt i iτ τ+ +x and

()()i RCt iτ−x , which implies the less effects of network
delays. However, the robot may move slower, which may
be undesirable in some cases.
 The optimal K can be obtained by pre-computing
()1J i + with respect to certain ranges of K, A, and τ from

(26), and then searching for the set of optimal K that gives
()1J i ε+ ≤ . However, using a lookup to store the optimal

K may not be convenience since the table size may be very
large, and the searching time for the optimal K can be long.
 Computational intelligence techniques such as artificial
neural networks (ANN) can be used to approximate the
relationship between the optimal K with respect to ε , A,

and τ . ANN is composed of simple mathematical elements
called neurons, which operate in parallel. ANN can be
trained so that they can provide target output values with a
specific set of input values. Both input and output sets are
together called as training sets. In this paper, the optimal K
is the output of ANN, and the inputs are A and τ as shown
in Fig. 6, where ε can be fixed as desired.

Feedforward
network

A

τ

K ∗

Fig. 6. Feedforward network configuration.

Different type of ANN can be used. This paper uses a
feedforward network [10, 11] for illustration.

VII. SIMULATION RESULTS
A robot simulation program is setup in a

Mablab/Simulink environment to investigate the
performance of the proposed scheme in the following
environment
• The optimal K is prepared by computing ()1J i + from

[]300,300A∈ − , []0.1,0.8τ ∈ , []0,5K ∈ with
0.25.ε = A 3-layer feedforward network is trained by

using Levenberg-Marquardt algorithm represent the
optimal K. The number of hidden neurons used is 20.
The network training reaches the error tolerance

61 10−

× at 135 epochs.
• RTT delays used for investigation are measured from

ADAC Lab to Vienna University of Technology,
Austria.

• The sampling time to send a probing packet
0.005PT = s.

• The packet index to evaluate the median and mean of
RTT delays 10N = .

• The sampling time of the robot to process the
reference speeds 0.01T = s.

• The elapsed time for simulation is 15 s.
• The initial position of the robot is ()0.1,1− .
• The simulation assumes that there is no packet loss.

In this simulation, the robot is assigned to track the
reference path (Ref) as illustrated as the solid line in Fig. 7
from point A to point C. The robot will stop if the distance
from the robot to point C is less than 0.05. Three cases are
investigated:
� The robot tracks the path with neural network

middleware under IP network delays (Md).
� The robot tracks the path without neural network

middleware under IP network delays (No Md).
� The robot tracks the path without neural network

middleware and IP network delays (No D).
Fig. 7 shows that the tracking algorithm performs very

well without network delays. On the other hand, with
network delays, the robot without neural network

middleware fails to track the path closely, and cannot reach
the final position in 15 s. The robot can only move to point
B at 15 s. On the other hand, the robot with neural network
middleware can reach the destination in 15 s. Even though
the robot shows small deviation from the path, it still tracks
the path much closer than without middleware.

-0.5 0 0.5 1 1.5 2 2.5 3
-0.5

0

0.5

1

1.5

2

2.5

x

y

-0.5 0 0.5 1 1.5 2 2.5 3
-0.5

0

0.5

1

1.5

2

2.5

x

y

(a) (b)

-0.5 0 0.5 1 1.5 2 2.5 3
-0.5

0

0.5

1

1.5

2

2.5

x

y

-0.5 0 0.5 1 1.5 2 2.5 3
-0.5

0

0.5

1

1.5

2

2.5

x

y

(c) (d)
Fig. 7. Reference path and robot tracks:

(a) Reference path, (b) Md, (c) No Md, and (d) No D.
In addition, Fig. 8 shows the closest distance measure d

from the robot to the point () ()0 0,p px s y s on the path of
all three cases when the robot is traveling along the path.
The distance d provides a measure of how good the robot is
tracking the path. The robot with neural network
middleware tracks the path much closer than the one
without neural network middleware. These results indicate
that position and performance prediction by the neural
network middleware can significantly improve the path
tracking with network delay concerns. Because the effects
of network delays still remain, the robot cannot track the
path perfectly compared to the case without network delay
despite of the middleware use. Nevertheless, closer
tracking could be improved by reducing ε , but the robot
would be slowed down. This is a trade-off design between
accuracy and speed.

Furthermore, adjusting ()K i to compensate the network
delay effects by neural network middleware also help to
improve the accuracy of the approximation in (14). With
long network delays, it t− may be large, and the
approximation may be no longer valid. Reducing ()K i can
compensate the large it t− .

VIII. CONCLUSION
Model predictive path tracking scheme for networked

mobile robot implemented in the neural network
middleware can significantly improve the IP network delay
compensation by adjusting the robot speeds. The

0 1 2 3 4
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

d(
m

)

Time(s)
Fig. 8. Closest distance to the path d.

middleware structure allows convenient installation and
improvement with an existing path tracking controller
because it is implemented separately from the path tracking
algorithm. An advanced delay prediction algorithm and a
better model for prediction can be easily added or replaced
in the middleware without modifying the path tracking
algorithm. In addition, the proposed scheme could also take
advantages from IP network QoS (Quality-of-Service)
protocols since the mean and median of RTT delays, which
are directly dependent on network QoS, are directly
measured.

ACKNOWLEDGMENT
The authors would like to acknowledge the Royal Thai

Government for partially supporting this study.

REFERENCES
[1] G. Kaplan, “Ethernet's winning ways,” IEEE Spectrum, vol. 38, pp.

113-115, 2001.
[2] A. Sano, H. Fujimoto, and M. Tanaka, “Gain-scheduled

compensation for time delay of bilateral teleoperation systems,”
presented at IEEE International Conference on Robotics and
Automation, Leuven, Belgium, 1998.

[3] S. Munir and W. J. Book, “Internet based teleoperation using wave
variables with prediction,” IEEE/ASME Transactions on
Mechatronics, vol. 7, pp. 124-133, 2002.

[4] C. Benedetti, M. Franchini, and P. Fiorini, “Stable tracking in
variable time-delay teleoperation,” presented at IEEE/RSJ
International Conference on Intelligent Robots and Systems, Maui,
HI, 2001.

[5] K. Brady and T.-J. Tarn, “Internet-based teleoperation,” presented at
IEEE International Conference on Robotics & Automation, Seoul,
South Korea, 2001.

[6] Y. Tipsuwan and M.-Y. Chow, “Gain Adaptation of Networked
Mobile Robot to Compensate QoS Deterioration,” presented at IEEE
IECON2002, Sevilla, Spain, 2002.

[7] A. Ollero and G. Heredia, “Stability analysis of mobile robot path
tracking,” presented at IEEE/RSJ International Conference on
Intelligent Robots and Systems, Pittsburgh, PA, 1995.

[8] B. Li and K. Nahrstedt, “A control-based middleware framework for
quality-of-service adaptations,” IEEE Journal on Selected Areas in
Communications, vol. 17, pp. 1632-1650, 1999.

[9] K. Yoshizawa, H. Hashimoto, M. Wada, and S. M. Mori, “Path
tracking control of mobile robots using a quadratic curve,” presented
at IEEE Intelligent Vehicles Symposium, Tokyo, Japan, 1996.

[10]D. E. Rumelhart and J. L. McClelland, Parallel Distributed
Processing: Explorations in the Microstructure of Cognition.
Cambridge, MA: The MIT Press, 1986.

[11]M.-Y. Chow, Methodologies of Using Artificial Neural Network and
Fuzzy Logic Technologies for Motor Incipient Fault Detection.
Singapore: World Scientific, 1998.

B

A
C

xp(s),yp(s)

 Md
No Md
No D

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: FrA12.3
	Page0: 4307
	Page1: 4308
	Page2: 4309
	Page3: 4310
	Page4: 4311
	Page5: 4312

