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On the Stability of the Kuramoto Model of
Coupled Nonlinear Oscillators
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Abstract—We provide an analysis of the classic Kuramoto have recognized that nonlinear synchronization phenomena
model of coupled nonlinear oscillators that goes beyond the are mathematically related to the problem of coordination

existing results for all-to-all networks of identical oscillators. ;
X . X . and consensus among multi-agent systems [5], [11].
Our work is applicable to oscillator networks of arbitrary 9 9 y (5], [11]

interconnection topology with uncertain natural frequencies. T
Using tools from spectral graph theory and control theory, we

prove that for couplings above a critical value all the oscillators The classic Kuramoto model describes the dynamics of
synchronize, resulting in convergence of all phase differences g set of N phase oscillatorg; with natural frequencies;.

to a constant value, both in the case of identical natural The time evolution of the-th oscillator is given by:
frequencies as well as uncertain ones. We also provide a series '

of bounds for the critical values of the coupling strength.

. MODEL DESCRIPTION

K N
éi =w; + N Zsin(ej - (91'), (1)
|. BACKGROUND AND INTRODUCTION j=1
Over the past decade, considerable attention has beshere K is the coupling strength, a key parameter in the
devoted to the problem of coordinated motion of multipleproblem. One of Kuramoto’s results was to show numeri-
autonomous agents. A variety of disciplines (as diverseally that when they;'s are randomly chosen from a Cauchy
as ecology, the social sciences, statistical physics, comrobability distribution in the infinitgV limit, there is a crit-
puter graphics and, indeed, systems and control theory) &cal value of the coupling above which all phase differences
developing an understanding of how a group of movingemain constant, i.e., the oscillators synchronize [7], [8]. If
objects (such as flocks of birds, schools of fish, crowdwe think of the oscillators as points moving on a circle,
of people [9], [19], or collections of autonomous robotshey would rotate keeping the phase differences constant.
or unmanned vehicles [17], [18]) can reach a consensusKuramoto used the magnitude of the centroid of the
and move in formation without centralized coordinationpoints as a ‘natural’ measure of synchronization:
Interestingly, this has coincided with a surge of activity in N
the area of network dynamics, which focusses on the re- Ret — 1 Zej 0; )
lationship between graph structure and dynamical behavior

of large networks of diverse origin. learlv. if all the w.' h h h
A classic example of distributed coordination in physics,C early, I a t_ewis are the same thelk = 1 when
Il agents are in sync. If the natural frequencies are not

engineering and biology is the synchronization of arrayg ; . :

of coupled nonlinear oscillators [14], [15], [24]. Building Identical but the oscillators synchroniz& converges to

on long-standing experiments (dating back to Huyghe constantfi,, < 1. On the other hand, when all agents

and van der Pol), the problem of collective synchronizatioﬁlre completely O,Ut of phase with respect t.o each other the

was explored mathematically by the Russian school lue of & remains close t_@ most Of the time. Becal_use

Andronov. Norbert Wiener [23] also recognized its ubiquit))t characterizes the dynamical b_ehawor of t.h € s_ystﬁ?ms

in the natural world, and even speculated about its relevanfglerred to 6}8 therde.r parametein thg physics I|terature._

to the existence of characteristic rhythms in the brain [161. Kuramoto's ?”a'ys's_ used simple trigonomedry to rewrite
Following on key insights by Winfree [24], Kuramoto [7] he_ stqte equation (_1) in terms of the order parameter. After

proposed in the 1970s a tractable model for oscilIato?WItChIng to a rotating frame, Eq. (1) becomes:

synchronization that has become archetypal in the physics : K _ .

and dynamical systems literatures. (See [14] for an excellent Oi = wi = N Rsin(0; — ). (3)

review of the_state-of-the-art on this _model.) More recentlyin other words, each phase is modulated by the magnitude
researchers in the control community [6], [10], [13], [21]r and phase) of the averagephasor. In physics notation,
this constitutes anean fieldor “all-to-all” model.
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that regime, the order parametBrgrows exponentially in matrix {\;(L)} captures many topological properties of

time until it saturates at a valuB.,(K) < 1. The branch the graph. Specifically, Fiedler showed that the first non-

of R with K > K, is called the fully synchronized state, zero eigenvalue\,(L) (sometimes denoted the algebraic

while K < K. corresponds to the totally unsynchronizecconnectivity) gives a measure of connectedness of the graph.

state. Kuramoto also calculated analytically the value fof we associate a positive numbéV, to each edge and

K. and R, for a few well-known distributions in the case we form the diagonal matri¥V. . := diag(1¥;), then the

of an infinite number of oscillators connected all-to-all. matrix Ly (G) = BW B is a weighted Laplacian which
Despite its success, several aspects of the well-studidlfills the above properties.

N — oo, all-to-all Kuramoto model are still a puzzle, In this framework, the Kuramoto model (1) can be

as summarized beautifully in the review by Steve Strogeneralized to any general interconnection topology as:

gatz [14]. For instance, what does it mean tRagtays close ) K

to zero in the unsynchronized staké < K.? This cannot 0=w-— i Bsin(B"9), 4)

be true at all times: whe& = 0 and thew;’s are irrational . L . .

with respect to each other, the trajectories are dense on twgereB is the incidence matrix of the_ unweighted graph,

N-torus resulting in arR which will almost surely visit any a1d ¢ and w are N x 1 vectors. (It is also heIpruI to

number between 0 and 1. However, simulations indicate thdgfine thee x 1 vector of phase differences := B70.)

it is true most of the time. On the other extreme, the case or generalization of the order_parameter defined in (2) for

few oscillators has been tackled in the dynamical systenlige general Kuramoto model is:

literature with rigorous bifurcation analysis. However, even o  N?—2¢+217 cos(BT0)

basic results are not available for the large but finitease, "= N2 : ®)

which is of utmost interest in systems engineering. It is easy to show that when the graph is complete, this is
Our goal here is to perform a system theoretic analysige square of the magnitude of the average phasor, i.e., for
of the finite N case with arbitrary connectivity. To proceed, B = B,, we haver? = R2. While the average phasor
. . . . . - c c .
we rewrite the model in terms of the incidence matriXyie hretation does not generalize to general connected

of the undirected graph that describes the mterconnectl(ﬂ?aphsl the above notion generalizes to arbitrary connected

topology— the standard all-to-all case is then the specifl&aphs_

case of the complete graph. We then provide several nec€Sgamark 1:1n the limit of small angles, the general Ku-

sary as well as sufficient lower bounds for the critical COU;4 1 0t0 model (4) gives the continuous-time Vicsek flocking

pling K;,. These include a bound fdt below which there boid model [20] which was analyzed in [5} = w —
is no fixed-point, and a value df above which there is a K/N)Bsin(B"0) ~ w — (K/N)L6. Convérsely the

unique .f|xed-p.omt. We also ghow that f:ontrary to the CaS8assic Kuramoto model (1) can be thought of as a nonlinear
of infinite oscillators, th_e_re is no partial synchronization,,iansion of the Vicsek model for a complete graph.
phenomena, and the cnpcal value O,f the order parameterpemark 2:1t is straightforward to show that the analyt-
Roo is not close 1o 0 as in Kuramoto'sy — co analysis. jea) simpiification (Eq. 3) in the (standard) all-to-all model

In lother words, the genenc; brar)cr;!n_g Bfaﬁ the critical  5nhear as a result of the special symmetry of the Laplacian
value K. does not occur whetV is finite. This extends a of the complete graph:

similar result in [4] for the case of 2 oscillators with a finite .
i Ix1
set of values for the natural frequencies. L.=B.BT = NI - -N_N (6)

Ill. GRAPH THEORETICAL FORMULATION OF

. IV. SYNCHRONIZATION OF IDENTICAL COUPLED
KURAMOTO'S MODEL

OSCILLATORS
A good source for the necessary graph theory terminol-

. . . We start by considering the general Kuramoto model (4)
ogy is [3]. We formalize our results thrqugh two r'nat_rlceﬁn its unperturbed version, i.e., when all the natural frequen-
that encode the topology of the connections. The |nC|den%¢?eSw_ are identical-
matrix B of an oriented graptg® with N vertices and ! '

e edges is theN x e matrix such that:B;; = 1 if the 6 — —EBsin(BTH). @
edgej is incoming to vertexi, B;; = —1 if edge j is

outcoming from vertex, and0 otherwise. The symmetric (By switching to a rotating frame, it is easily shown that
N x N matrix defined asL = BB is called the Laplacian we can assume that the natural frequencigare all zero,

of G and is independent of the choice of orientatien without loss of generality.)

The Laplacian has several important propertiess always Theorem 1:Consider the unperturbed Kuramoto
positive semidefinite with a zero eigenvalue; the algebraimodel (7) defined over an arbitrary connected graph with
multiplicity of its zero eigenvalue is equal to the numbeiincidence matrixB. For any value of the couplingl > 0

of connected components in the graph; fiedimensional and for almost all initial conditions starting -7, m)",
eigenvector associated with the zero eigenvalue is the vectbe phase differences will go to an even multiple of
of ones,1y. It is known that the spectrum of the Laplacian2x, i.e., the oscillators will synchronize. Moreover, the
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rate of approach to synchronization is no worse than Remark 3:Similar results hold even if the topology of
(2K/mN) X2(L), where \o(L) is the Fiedler eigenvalue the graph changes in time [5]. The result can be extended to
or the algebraic connectivity of the graph. general notions of connectivity, i.e., when the interconnec-
Proof: Consider the functiod/ () = 1—r2, wherer?  tion graph is not connected at all times but there is a path
has been defined in (5). A simple calculation reveals thdtetween any two nodes over contiguous, non-overlapping,

VoU = (2/N?)Bsin(BT6) which leads to and uniformly bounded time intervals. It is also possible
. . 2 o to generalize to the case of directed graphs by introducing
U(0) =VoU 0 = _7KN0 0 <0. notions of weak connectivity [10].

Remark 4:The synchronization argument can be read-
ily extended to the case of more complicated coupling
unctions f(-) (other than thesin(-) function) so long as

Therefore, the positive functiof < U(0) < 1 is a non-
increasing function along the trajectories of the system. B
using LaSalle’s invariance principle we conclude thats g
a Lyapunov function for the system, and that all trajectorie@ f(#) > 0. — T
converge to the set whetkis zero, i.e., the fixed points. Remark 5:The functionl, cos(B0) is an energy func-
Define now thee x e diagonal matrix W(¢) := tion for the XY—modeI.m statlst_lcal physics. It was consid-
diag(sinc(¢;)), wheresinc(¢;) = sin(¢;)/¢; is positive ered as a Lyapunov-like funf:uor} for the Kuramqto model
for ¢; € (—m,7)°. Note also that the angles move onPY Van Hemmen and Wreszinski [4]_, as well as in [6].
a torus, which implies thaé € (—,7)~. The diagonal Remark 6: The global resu_lts obtained by Wata_ngbe and
weight matrix W(¢) > 0 can be thought of as phase-StrOga,tZ [22] and [13] require all-to-all cpnnectlwty. A_n
dependent weight functions on the graph. The trajectc?—Xte”S'O” of the methodology in [22] to arbitrary topologies

ries converge to fixed-points, which are the solutions cfo€S not appear to be trivial.
Lw 6 := (BW(¢)B")6 = 0. The fact that(fy1y) is V. THE CASE OF NONIDENTICAL OSCILLATORS

the only stable equilibrium solution foIIows_easin: for any |n the rest of the paper we treat the more complicated
connected graph the nullspace of the weighted Laplaciaiyse of oscillators with non-identical natural frequencies.
contains only the vectoly. The only other equilibrium - Athough there is an extensive literature for the — oo
solutions correspond t@; = (2/; + 1), i.e., when the case with all-to-all connectivity, we will focus here on the
phase differences are all odd multiples of However, 456 of finiteN and arbitrary topology given by Eg. (4).
for such values of phase differences the Jacobian matfjje consider the frequencies to be random perturbations
Bdiag(cos(¢)) BT which is also a weighted Laplacian, yhich, albeit drawn from a probability distribution, remain
would be negative semidefinite (indeed, negative definitgonstant in time, i.e., the dynamics (4) is deterministic
when weground the system by projecting the equationsyet uncertain. This problem is distinct to some treatments
to the space orthogonal t). This means that the set of iy the physics literature, which transform the problem

points where all the phase differences are an odd multipgiy 5 Fokker-Planck equation, effectively connected to a
of = form an unstable equilibrium. Clearly the set has zergiychasticdifferential equation.

measure, so almost all trajectories will converge to the stable synchronization is best defined in grounded system,

equilibrium set. where the phases are defined with respect to a reference

Alternatively, one could use the approach in [12] andriaple (or 'ground’). This can be achieved by any projec-
consider the quadratic Lyapunov function candidate= o Vix(n—1) Such that

%HTG. A simple calculation reveals that

1n1}
K K Tv=r T=1-—X
U=——0"Bsin(BT0) = ——0"BW(¢)BT0 < 0. viv=1, Vv N
N N . .

. Thus,V is a matrix of N —1 orthonormal vectors orthogonal
Using the same argument as above, we conclude t %t the vector1y which generate the set of grounded
almost all trajectories converge to the synchronized state SN T 9 S T 9

. . . coordinatesd := V* 6 and frequencieso := V*'w. The
where all phase differences are zero. While the first Lya_rounded Kuramoto model is:
punov functionU(6) provides a stronger decrease, it isJ '

hard to get an estimate on the rate of convergence. Wigh_  _ EVTB sin(BTVE) = @ — EVTBW(Q*)BTV@*)
the quadratic functiod/ () however, we can show that for N N )
almost all points in(—m, 7), the convergence is exponentialWhere againJV(6) := diag(sinc(¢:)) and ¢ — BTV

with the rate determined by the second smallest eigenvallﬂgthiS grounded system, the synchronized state fixed
of the weighted Laplacian: '

VIiiy =0. (8)

point
. K 2K . it
U< f—/\g(BW(qﬁ)BT)HHH\F < 77}\2(L)||91l||2, Remar_k 7:From Eq. (9) it is easy to see Why the natural
N TN frequencies can be centered around zero without loss of
since\o(BW (¢)BT) < (2/m)\o( BBT). m generality. Multiply Eq. (9) from the left by’ and use (8)

Corollary 1: For the complete graph\(L.) = N and and BT1y = 0 to recover the original Eq. (4) with new
the synchronization rate for the mean-field model is neariables® = 6 — [(w)t]1y and frequencies) = w —
worse thar2 K /. (w) 1y, Where< w > is the average frequency.
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VI. BOUND FOR THE ASYMPTOTIC VALUE OF THE V/No, which results in a bound for < /1 — (0/K)? that
ORDER PARAMETER is independent ofV.
Consider a Lyapunov function candidate based on the Remark 9:1n [4], th_e authorg added a linear terf .
square of the order parametef defined in (5). The to the Lyapunov function candidate to guarantee negativity

derivative of this function along the trajectories is of the derivative everywhere except at the fixed-points, re-
ducing the perturbed model to a gradient system. The linear

2 — 1 E(Sin BT9)T BT B(sin BT6) — wT Bsin B4 , term, hqwever,. makes the Lya}punov fun_ction indefinite.
N2 | N We will see in the next section that i is large enough

to guarantee the existence of a unique fixed point (via

a contraction argument), condition (10) will be trivially

satisfied. This means thatkf is large enough the derivative

which is an ellipsoid in thein(B76) coordinate centered
at % Outside of a neighborhood of the origin given by

T N of the order parameter will be positive, resulting in the
1B sin(B~0)[|2 > EHMH? (10)  asymptotic stability of the synchronized state.
the derivative is positive, resulting in growth of the order pa- VIl. BOUNDS FOR THE CRITICAL COUPLING

rameter. The boundary of this region contains the equilibria. As the couplingK is decreased, there is a critical value
By using an ultimate boundedness argument, the trajecton%sL below which no fixed point exists, resulting in a running

are coqf|ned to the smallest sublevel-set @bntaining the solution for the grounded system (9). This means that the
set defined by (10). , i system cannot be fully synchronized far < K.

We now use (10) to obtain an estimate of the asymptotic An easysufficientcondition for the fixed point* to be
value of the order parameter. The vectoi(B76) can be stable is for¢* = BTV@* to be contained in any closed
decomposed into two orthogonal componepig?), in the subset of(—Z, T)¢, which implies that|*| < Z. This is

null space ofB, andy, () in the range space dB”. The o oncrated t?y taking the Jacobianlof B sin BT, and

first component is annihilated when it is multiplied B noting that it is equal t&’” Bdiagcos(BT¢*)] BTV, which
on the left. As a result, the region over whi¢his positive is positive definite over that set.

can be characterized as

N A. Critical value of coupling for complete graphs
0|2 > ———=||w||2- .
[1y2(0)]l2 K /7/\2@) [lw]]2 Our results generalize those of Van Hemnetnal. [4]

in the case of a complete graph. Specifically, it can be

where); (L) is the algebraic connectivity of the unweightedshown that the critical value of the coupling is determined
graph. We now bound the value &fover the region where p the value of K for which the fixed point disappears.

255 . - :
7" Is negative. A simple bounding reveals that This can be explained by looking at the fixed point equation
217 cos(BT0) < ||11]]*+]| cos(BT0)||? = 2||1|]*—||sin(BT9)||?, Bsin(BT0*) = %

from which Let wyee = \.|w.||oo and ngte that the induced infini_ty
- norm of a matrix is the maximum absolute row sum, i.e.,
» N2 —|[|sin BTO|> _ N2 —||lya(0)|> _ N*— masls  [IBlloc = dmag, Whered,,,, is the maximum degree of the
res N2 = N2 < N2 - graph. In the case of a complete graph,,, = N — 1.
Then,
Nw'rna:c

We can immediately observe that the asymptotic behavior K < dmax
of the order parameter is inversely proportional to the alge- lting in the following | bound fokr  th i
braic connectivity of the graph. Of course, because of thgSu'ing In the foflowing lower boun L, (N€ coupling

over-bounding, the bound is conservative—its asymptoti%bove which a fixed point exists:

value is 1 as opposed to the actual less-than-one value. K > Nwmagz
Nevertheless, this gives us a bound on the growth rate of L dmaz
r2,1and, as a result, the growth rate enis bounded by  This bound can be tightened by using the generalized
o) inverse of VI'B and bounding the component of the
This means that asymptotically sin(BT9) in the range of BT. The generalized inverse,
denoted by(VT B)#, is equal toBTVA~!, whereA is the
v fp o i N —1 diagonal matrix of the eigenvalues of the unweighted
- K2Xy(L) Laplacian. We therefore have the following expression
which would result in an increase rate@(ﬁ) when the (sin(BT0)) g pry = BTVA—lvT%.

graph iscomplete

Remark 8:Consider a complete graph where the naturdNoting thatL# = VA~'VT, we have
frequencies are independent random variables chosen from Nw
a normal distributions; ~ A’(0, ). Then|[w||, scales as  (sin(B”"0))r(pr) = BT L Bsin(BT6) = BTL#7~
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The generalized inverse of the Laplacian, in the case efhere we used the fact the¢ BW (BT0) B)#||2 = 5y
a complete graph can be written & = + (I — X-). and);, is the algebraic connectivity of the (weighted) graph.
Noting that the infinity norm of thein vector is less than A lower bound on the minimum value of;, occurs for the

or equal to 1, and thaB” L#B = BTTB, we have minimum value of the weight which i%. As a result,
1B wlloc _ [IBT Bl
< VN
K - N K> 2#. (12)
which gives us the bound 2(L)
T N Remark 11:Using the upper bound provided for the
K > ||B* w||oo . X :
2(N —-1) order parameter earlier, we can derive an upper bound

This is in excellent agreement with that of Van Hemmerfor the asymptotic value of at Kp: ro(kr) < 4.

et al. [4] which they obtained for the simplest case of twoFurthermore, if the stable fixed-point is {r-m/4, 7/4)",

oscillators. then the order parameter is lower boundedyby6 — 72 /4.
Remark 10:If the graph is a treey/”B has full row This means that, contrary to some of the distributions in the

rank andsin(B¢) does not have a component in the nullN — oo case,r is not close to zero ak(y,.

space ofL. In that caseK.L > ||BT L#w|| is a tight

bound, meaning that it is necessary and sufficient fOé

synchronization. In the general case, however, this bound

is just necessary. In order to guarantee the existence of a unique fixed

point we use Banach’s contraction principle and ensure

that the right hand side is a contraction. By noting that

the Lipschitz constant for theinc(-) function is o, = 1,

Nw we provide a sufficient condition for contractivity (and

K- therefore uniqueness of the fixed-point).

Using Brouwer’s fixed point theorem (i.e., a continuous We impose the contractivity condition on th&¥ — 1

function that maps a non-empty compact, convex’sétto  dimensional grounded system. In the grounded case, we

itself has at least one fixed-point), we can develop condhaved = V746, and

tions which guarantee the existence (but not uniqueness) of

Bounds for the existence of a unique fixed-point

B. Existence and uniqueness of stable fixed points
The fixed point equation can be written as

#Nw

0 = (BW(BT9)BT) = L% (BT0)

the fixed point. If a fixed-point exists in any compact subset Y, o1 NVIw
of 0 € (-7, %), itis stable, since this will ensure that’ ¢ 6=V BW(B0)BV) K

is between—7 and 5. We therefore have to ensure that ) )
After some algebra, the contraction requirement amounts

K> 2N max ||LE (B70)] o] ] oc. to
T lnles 72 Npnaz (L)] 0]
Simulations indicate that in the case of a complete graph, K= ZW’ (12)
the infinity norm of the matrifoV scales a)(). It is
worth mentioning that the norm CEV#V is a well studied where \,,... is the largest eigenvalue of the Laplacian of
object in the theory of Markov chains. The infinity normthe graph.
of Lf is a measure of the sensitivity of the stationary Interestingly, this value o also ensures that the deriva-
distribution of the chain associated wifh with respect to tive of r2 is increasing,i.e., inequality (10) is satisfied, which
additive perturbations [2]. means that the order parameter is increasing. Of course this
If the uncertain natural frequencies are 2-norm boundegk probably stronger than what is necessary for uniqueness,
a better strategy would be to impose the boundedness the contraction argument is only sufficient. Nevertheless,
condition with respect to the Euclidean norm. A sufficientye see that there is a large enough but finite value of the

condition for local stability of the fixed-point is fof; to  coupling which guarantees the existence and uniqueness of

belong to(—7, 7). This amounts to having the Euclideanfixed points.

norm of ¢ be less thanj/N. Again, using Brouwer's e now state the following theorem whose proof is
sufficient condition for existence of fixed-points we have: gmitted due to lack of space:

S N|wllz _ = Theorem 2:Consider the Kuramoto model for non-
||[BW(B"0)B )#HzT < Z\/N' identical coupled oscillators with different natural frequen-

Hence, a sufficient condition for synchronization of allci€Swi. For K > Ky := 2537, there exist at least

oscillators can be determined in terms of a lower boun@ne fixed-point for|6;| < & or |(B#);| < 5. Moreover,

for K: for K > = Mmex(DlIullz there is only one stable fixed-
>4 VN||wl]2 point (modulo a vector in the span afy), and the order

)

~ mming, <z A2 (Lw (0)) parameter is strictly increasing.
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VIIl. CONCLUDING REMARKS [9]

In this paper we provided a stability analysis for thélo]
Kuramoto model of coupled nonlinear oscillators for ar-
bitrary topology. We showed that when the oscillators arg1l
identical, there are at least two Lyapunov functions which
prove asymptotic stability of the synchronized state, whenz2]
all the phase differences are boundedipyWe also showed
that when the natural frequencies are not the same, thgy
is a critical value of the coupling below which a totally
synchronized state does not exist. Several bounds for this
critical value based on norm bounded uncertain naturgily
frequencies were shown to be in excellent agreement with
existing bounds in the physics literature for the case of thﬁs]
all-to-all graph.

We also point out that contrary to the infinif€ case,
there is no partially synchronized state, i.e., for values of tH&®l
coupling below the critical value, the system of differentiatm
equations has a running solution. Furthermore, we showed
that there is always a large enough but finite value of
the coupling which results in synchronization of oscillatorélg]
and convergence of the angles to a unique fixed-point.
Another result of this paper is that the value of the ordeﬁg}
parameter is not zero for the critical couplidg,. In fact,
at least when the fixed-point is in tHe-7/2, 7 /2) region,

a rough estimate indicates that the valueraf bounded [2]
betweeniv““’fr2 ~ 0.62 and @ Future research in this
direction is needed to determine the bound f6mhen the [22]

natural frequencies are not just norm bounded quantities b[%
. L B ]

uncertain numbers chosen from a probability distribution.
Finally we mention that our value for the upper bound of24]
the order parameter is actually quite close to simulations.

Our work hints at the advantageous marriage of systems
and control theory and graph theory, when studying dynam-
ical systems over or on networks [1].
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