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Abstract— In this paper, an algorithm is proposed to design in control systems was first introduced by Chammas and
a decentralized digital controller, such that a quadratic per- | eondes [5]. Kabamba examined the application of GSHFs
formance index is minimized with the property that the inter- i, -ntr0] systems, and pointed out that by using GSHF, one
sample ripple of the output signal is included in the minimiza- . - .
tion procedure. The algorithm has the property that it can be €N obtam much of the efflc[ency of state feedback, without
applied to either centralized or decentralized systems, which the requirement of state estimation [6]; he also showed that
are sampled with either a ZOH or a generalized sampled- GSHFs can significantly improve the performance of the
data hold function. Numerical examples of the algorithm are  closed-loop system. Application of GSHFs in decentralized
included to show the effectiveness of the algorithm. systems was investigated in [7], where it was shown that
a digital decentralized controller with GSHF can result
in a significant improvement compared to a simple ZOH.

Digital controllers are often used to control continuousThe application of GSHFs to decentralized control struectur
time systems. Such controllers have a simple structure apgbdification was also studied in [8] and it was shown that
can be implemented by using a computer, a digital to analQqgSHFs can be used to modify the structure of the digraph
and an analog to digital element as shown in Figure 1. Thisf the resultant discrete-time plant, by removing certain
interconnections in the equivalent discrete-time model. |

I. INTRODUCTION

Y [K Computer ulK u (t) Plant .y Istobenoted that a disadvantage of generalized sampled-
© oA data hold functions is that they are prone to robustness
ﬁ Y ap L difficulties in the continuous time domain, e.g. see [9],][10

The optimal decentralized control of a LTI system using
GSHFs, which includes ZOH functions, will be considered
in this paper. When optimal control methods are used
to design such digital controllers, often the performance
configuration is equivalent to a time-varying continuousindex chosen ignores "inter-sample ripple effects”, which
time controller. Note that the hold function corresponding can be significant, particularly if the sampling period is
the digital to analog block (D/A), which typically is a zero-large. There are several related references in measuring
order hold (ZOH), can in fact be any function defined oveinter-sample performance in the context of hold functions,
one sampling period. Digital control for such systems can be.g., see [11]. For the special case of a simple ZOH, the
either centralized or decentralized. Application of dider quadratic performance optimization problem taking into
time controllers in decentralized systems has been studiadcount the inter-sample behavior has been completely
in [1], [2], [3], [4], where it was shown that sampling cansolved in the centralized case [12]. The quantitative and
remove certain types of decentralized fixed modes in thgualitative analysis of inter-sample behavior in a frequyen
system. domain setting was given in [9], where it was shown that the

The idea of using generalized sampled-data hold fungeneralized hold approach depends upon the generation of
tions (GSHF) instead of a simple ZOH (or first-order holdhigh-frequency components in the continuous time output

which are folded when the output is sampled. In [13] a
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Fig. 1. The structure of a digital controller as a time-vagyBystem.



problem. This paper proposes an algorithm for the optimal
design of decentralized digital control using polynomial
hold functions, where ripple effects are included. As far -
as the authors are aware, the optimal control of such ba, = / AT, fi(r)dr, i€ m, (4b)
systems, taking inter-sample ripple into account, has not 0

Ay =T, (4a)

been considered before. Cd; = Ci, 1 €M, (4c)
ddij =dij, 1,5 €m, (4d)
Il. DEVELOPMENT and where for the feedback control structure of Figure 2

. . . ) (shown by the dashed linej),; k] is equal toy;[k], j € m.
.ConS|der a decentralized continuous-time LTI system Definition 1: The closed-loop system obtained by apply-
with m control agents as follows: ing the decentralized generalized sampled-data controlle
(2) to (1) is said to be stable if the equivalent LTI sam-

B(t) = Az(t) + ) bius(t), (1a) pled system (3) obtained when the decentralized controller
= @;[k] = y;[k], j € m is applied, is stable.
yi(t) = ciz(t) + Y diju;(t), (1b) Remark 1:In the sampled system discussed above, it is
j=1 assumed that the system does not posses any processing
iem={1,..,m}, delay, i.e., samples of input and output signals are taken at

_ the same time instants.
wherez € R" is the state vectory, < R™ andy; € |n the next section, an algorithm is proposed which can
R™ are the input and output of th¢" control station, pe ysed to design an optimal discrete-time controller for

respectively andj € m. A, b;, ¢;, and dij, 3,7 € m zystem (1), using generalized sampled-data hold functions
are matrices of appropriate dimensions. For simplicity an

without loss of generality [14] assume that = r;, j € m. 1. MAIN RESULT
The configuration of the discrete-time equivalent system Consider then!® order system (1) and assume that it
using GSHFs is shown in Figure 2 and can be formulateid desired to design a discrete-time decentralized output
as follows: feedback controller to stabilize the system such that the
following performance index is minimized:
u;(t) = f;(t)a; k], (2a) o
[+ 1) = 10, (20) s=e{ [Twoue o uoal. @
te kT, (k+1)T), k=0,1,2,.. 0
where& denotes the expectation operator [15]. Without loss
where;[k] and f;(t), j € m, are the input sequence andof generality, it can be assumed that = 1, Vj € m [16]
([16] gives a procedure by which the decentralized control

T s | problem for (1) can be converted to the decentralized cbntro
‘ f,(0 § problem for a new system in which the control agents of
A A\ulm P § 1 the system have a scalar input and scalar output). Suppose
! o8 Y ) 7 R that (3) corresponds to the closed-loop sampled system,
0 ﬂ(s‘,A).lm %]{"“ i obtained by using the decentralized generalized sampled-
A” " Lon G " data controller as follows:
‘ u;(t) = f;()y;[k], (6a)
fit+T) = f;(t), (6b)

wherej € m, t € [kT,(k+ 1)T), k = 0,1,2,.... In
Fig. 2. Generalized sampled-data hold configuration for arobsystem. particular, assume thayfj(t), j € m, are polynomials of
the following form:

the periodic hold function for control ageipt respectively. fi(t) t°
The equivalent discrete-time model, corresponding to (1), : =Ty : , (7
is represented by: Fn(8) pa-1

m whereI',_; is am x ¢ matrix whose rows are the coef-
ek +1] = Agz[k] + Z ba, uilk], (3a)  ficients of the corresponding polynomials. The state-space
ol representation of the corresponding closed-loop system wi
yilk] = ca,x[k] + > dag;u;lk], i€m, (3b) the weighting matrix’,_ is given by:
= alk+1] = (A4 + Ba(Tg-1)(I — Da)"'Ca)alk],  (8a)
where the model parameters can be obtained as follows: y[k] = Caz[k] + Dgulk], (8b)
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where A, is given by (4a),

NT N-1
Ba(Tq—1) := [ by (Tg-1) - ban(Ta-1) ], / pd (u(t)dt =T " py (KT)Fy(kT),  (11)

T
ba; (Uq—1) 1:/ 7,85 (r)dr, h=0
0 where F' = diag(F1, ..., Fi, ), and:

and: T
007 F; = ; fi(t)ydt, jem
Si(t):=eTqmr | 1 |, e € R, Let:
!
] i Lo
) 0 j . NT) := = 2, (NT),
w0={ 1 {23 ijem TNT) = 303 Jei(NT)
Cd, [ dayy, oo day,, and consider the following parameter optimization problem
Ca=| i |, Da=]| SN
Cdy, ddpy oo+ ddp Parameter Optimization Problem
wi [k] ne . _
ail=| | wm=| | i J(NT)
U [k] Ym [k] given by (6), (7)

. ) . subject to the constraint that (8) is stable, using as the
Assumption 1:Consider system (1) and assume that thetarting poIntT, . — Ty for a ZOH and T, ; —

discrete-time equivalent model obtained by using a ZO To Omgor ] In this case, for sufficiently larg&/T,

with a sampling period; > 0 can be stabilized by applying : L .
a static decentralized LTI output feedback. This means thg{e optimal valu_e_ of the performance md@_(NT) wil
approach the minimum of the performance index (5).

there exists &y € R™*! such that all eigenvalues of the - ) . .
matrix Ay + Ba(To)(I — Da)~'C, lie inside the unit disc. Qng ca}n use any multldlmen_smnal constrained nonlmear
In the special case of an open-loop stable system, one timization method to soIve_ this problem. In the numerlcal
always choos& — 0. exgmples of the next sectllon, the l\_lelder-Mead S|mplex
(direct search) method [17] is used, with a penalty function

It is desired now to determine the optimal matiliX” . o . .
b m)g_l to impose the stability constraint. This can be accomptishe

and the optimal sampling peridt},”,, which minimize the O ! e
performance index (5) (corresponding to a continuous-timttg.'y using “fminsearch” on MATLAB 6.1. Nate that this is a

system representation). The following algorithm is pragzbs nonconvex opt|m|z§t|on problem and .there IS no guarantee
to do this. that the result obtained is a global minimum.

The optimal solution fol’,_; and7,_; can be obtained
step by step as follows:

Algorithm 1. A modified performance index for the . . : :
1) using as starting poinfy, and 7; of Assumption 1,

original system (1) with the decentralized digital feedbac : : D
controller (6) will now be defined. Since the optimal output find tg.e Opt'”?a' ?SHF Farame.tef§p fand tgt(a)ﬁorre-
feedback law (corresponding to any quadratic performance2 spon hmg optlmla sampiing pefrlcri]ﬂ) ora ' h
index) depends on the initial conditions of the plant (1), we ) use the optimal parameters of the previous step as the

will use an approach similar to [15] to design the digital :cn|t|alfpa:amdeters cl)f thls.stleg;c:_'lncli th(tahoptlma;values
controller. Consider the following set of initial states: orafirs %E, er polynomia . (2,0 er woras, use
Iy = [T§" Opxi | andT = T5” as the initial
(1) (1) 8 values in the optimization procedure to find the optimal
e1=| . |, za=1| .|, =] .|, (9) GSHIT. paramet;;gpip and the corresponding optimal

1 : 1 sampling periodly”.

0 0 ] pling p 1
which are uniformly distributed on a un_lF sphere and spanq) use the optimal parameters of step (q-1) to form
the whole space. Now lelvV be a positive integer, and the initial parameterd, ; — [ T 0, .1 ] and
define the modified performance index for the system (1) 7~ " '7op "0 fing thetzz)ptimal plé_r;me{g%p and
corresponding to the initial state vectef0) = x; given in Tor 42 a1

(9) as: L _ . .
In this case, since the starting point used corresponds to

Ju, (NT) = / N pu! (t)u(t)dt + / N y'(Hy(Hde, (10) an optimal static output controller with a ZOH, it can

70 0 be concluded that the optimal controller obtained will, in

wherei = 1,2, ..., n, and the sampling peridH is a positive general, outperform the controller obtained using a ZOH.
real number. From (6) the first right hand term of (10) It is to be noted that since Algorithm 1 minimizes the
simplifies to become: guadratic performance index (10), this implies that the
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optimization algorithm directly takes inter-sample rippl It is desired to find a decentralized digital controller to

effects into account. stabilize the unstable system (12), such that the following
From equation (11) it can be observed that the perfoperformance index is minimized:

mance index given by (10) is a combination of energy of the o ,

output in the sampling instants and the energy of the output J=£ {/O (v (D)y(t) +u (t)“(t))dt} : (13)

between samples. For large values ofthe performance The following different cases for decentralized digitaheo

index will be mainly equal to the weighted values of the )
y €9 9 ol are examined, where Example 1, 2, 3 correspond to

I f output, wh th ighti trix is gi b .
;amp es of output, where the weighting matrix is given )gase (). (i), (iii) above, respectively.

Remark 2:One can also use the method given in [7] to Example 1. GSHFs in the form of zero-order polynomi-

find a stabilizing starting point far,_, in the optimization als. Consider applying the digital controller:
problem. It is to be noted that each starting point may lead w1 (t) = fi.y1[k], 14
to a local optimal value fof',_; which is not necessarily ug(t) = fa.y2lk], t€ kT, (k+1)T), k=0,1,2,.. (15)

the global optimal sqluuon. to (12), with a sampling period of’ > 0 and zero-
Remark 3:A special case of GSHF occurs when the, e nolynomials for the hold functionfs, f». Then on
GSHF is assumed to be a constan.t. Af(t), j € m minimizing the performance index (13) using Algorithm 1
are all constants (zero-order polynomials), then the autpyith respecttd’ = [f, fo]' andT’, the optimal performance
feedback law for each control agent will be equivalenf . of 7o — 4896 is obtained. The corresponding opti-

to a digital controller with a simple ZOH and a constant .| GSHFEs are given by the following weighting matrix:
feedback gain given by the corresponding constant value.

This is illustrated in the next section. e — { 9.996 } (16)
. ) . . —0.7069 |’

Remark 4:Since a centralized control system is a special
case of a decentralized control system, then the proposadd the optimal sampling period 8, = 3.085 sec.
algorithm can also be directly applied to centralized sysFhe eigenvalues of the resultant closed-loop system for the
tems. equivalent discrete-time system (8) are given by:

Remark 5:From an implementation point of view, it
may be simpler to have a piecewise constant hold. The
authors are currently investigating the pro's and con’s avhich shows that the unstable system (12) has been stabi-
this approach versus that of a polynomial with the samkzed. The corresponding performance index:
number of degrees of freedom. 0
The following example compares the decentralized control Je(0) = /D (' )y () + o' (t)u(t))dt 7
of a system under the following conditions:

sp(Aa 4 Ba(T0)Ca) = {0.7704 + 0.2336i, —0.8942}

o _ - forz(0)=[1 1 1] is 2.116 x 10* and Figure 3 gives the
(i) using a ZOH with the proposed performance indeXegitant input and output signals for this initial valudeT

_given by Algorithm 1 _ _ controller obtained in this case is in fact a combination of
(i) using aflrst—or.der polynomlal GSHI_: with the proposeda ZOH and a constant gain for each control agent.

__ performance index given by Algorithm 1 Example 2: GSHFs in the form of first-order polynomi-
(iii) using a first-order p_olynomal GSHF with a conven- s consider now applying sampled-data hold functions
tional performance index f1(t) = a1t + by and fo(t) = ast + by to each control
It will be shown that the controller for case (i) is superior agent. On minimizing the performance index (13)using
the controller for case (i), and that the controller for cége Algorithm 1, the following results are obtained for the

is superior to the controller for case (iii). optimal sampled-data hold functions and optimal sampling
period:
IV. NUMERICAL EXAMPLES 2.923 —4.907
op __ . .
=1 _1980 1779 | (183)

Consider a controllable, observable, non-minimum phase,

unstable system described by the following state space Ti" = 1151 sec. (18b)
matrices: The resultant minimum performance index obtained in this
o0 3 case is/°? = 14.92. Note that although only one parameter
A=10 o1 o } 7 (12a) has been added to the control design of the decentralized
0 0 -3 controller, as compared to Example 1, a significant improve-
1 0 ment in performance is achieved. The corresponding input
by = { 0 } ba = { 1 } ; (12b) and output signals of control agentand control agen2
1 1 for 2(0) = [1 1 1]’ are depicted in Figure 4 where (a)
e1=[0 1 0],ce=[—11 0005 0.1 ], (12¢)  and (b) give the output and input signals of control agent
dir = di2 = d21 = d22 = 0. (12d)  and (c) and (d) give the corresponding signals of control
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Fig. 3. Closed-loop simulation results for Example 1, usinginogl Fig. 4. Closed-loop simulation results for Example 2, usinginogl

decentralized digital controller with zero-order GSHFsegi by (16).

(a) Output signal of control agerit (b) input signal of control agent;
(c) output signal of control ager®; (d) input signal of control ageri.

decentralized digital controller with first-order GSHFs3)Y1(a) Output
signal of control agent; (b) input signal of control agent; (c) output
signal of control agen?; (d) input signal of control agerit.

5000

agent2, respectively. The resultant performance index (17 s
for (0) = [1 1 1} in this case is 49.63. Intermediate
results obtained in the optimization procedure which sta
at J = 4896 (corresponding td'; = [ 7%"97%%9 8 } and e
T, = 3.085 sec) and converge td = 14.92 (corresponding
o = [0 g = 131 sco) are
shown in Figure 5.

In the previous two examples, the controller design wa s
based on using the continuous-time system performan
index (13). For completeness, the case of decentraliz
digital control for(12) using the same class of sampled dal
hold functions as used in Example 2 with a conventione o 0 20 w0 a0 s e 7w 8 w10
discrete performance index, will now be examined foi reratens

comparison purposes. Fig. 5. Intermediate results obtained in the optimizationcpeture for

Example 3: Decentralized digital controller design usingexample 2.

conventional performance inde€onsider now applying a

decentralized digital controller of the form (6) to (12) to
minimize the conventional performance index given by:

4000 -
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=)

Performance Index J
N
&
o
o

1000 -

500 -

index of 49.68 obtained in Example 2. This is due to the
fact that the controller obtained in this example does not
(19 take inter-sample effects into account. Figure 6 gives the
resultant input and output signals obtained for this case.
Then on using first order polynomials for the GSHF of eac%oﬁt?olfl?arr's \;]&:;'zuzegﬁcgg;?gﬁg q q'ng':ﬁ.ls ZUtgrLT']t |Lee|?pzctl;
agent with the sampling period = 1.151 sec obtained be noted for \t/hi roblem Ith i thl milnimxm P Hi vIbI
in Example 2, the following optimal hold functions are € noted for this problem, hat the um achievable
o performance index for (13) using any type of controller
obtained: : : : . . )
is obtained by using the centralized continuous-time state
feedback law:

Ja=¢& {Z(y'[k]y[k] + u’[k]u[k])dt} .

k=0

Optimal f1(t) : fi(f) = —9.064¢ + 0.1531,
Optimal fa(¢t) : f2(t) = —0.4279¢ — 0.1467.

(20a)
(20b) ~0.1237
0.1997

0.06193 0.001431

u(t) = 1134 —o0a1363 | =)

(21)
The resultant performance index for the original contirsou
time system given by (17) far(0) =[1 1 1]’ is J, = and the corresponding performance index fof0) =

107.6, which is significantly greater than the performancgl 1 1]’ in this case is given by, = 1.448.
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Fig. 6. Closed-loop simulation results for Example 3, usinginogl
decentralized digital controller with first-order GSHFD#2 and (20b). [14]
(a) Output signal of control agerit (b) input signal of control agent;

(c) output signal of control ager®; (d) input signal of control ageri.
[15]
V. CONCLUSIONS
[16]

In this paper, a class of LTV decentralized controllers
has been introduced for continuous LTI plants, using ge i
eralized sampled-data hold functions (GSHF), and an opti-
mization algorithm (Algorithm 1) is proposed to design the
corresponding discrete-time controllers, which accoant f
inter-sample ripple. In this case, the generalized sampled
data hold functions chosen consist of linear combinations
of polynomials of various degrees; clearly other basis
functions could also have been used. Since zero-order hold
functions (ZOH) are special cases of GSHF, this implies
that the proposed optimization algorithm can also be used
to design conventional discrete centralized or decengdli
controllers, taking inter-sample ripple into account, and
this was demonstrated in some of the numerical examples
studied. The examples in the paper show the effectiveness
of the proposed algorithm.
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