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Decentralized Output Feedback Control of Large-Scale Nonlinear
Systems Interconnected by Unmeasurable States

Michael T. Frye, Yuanlin Lu, and Chunjiang Qian

Abstract—This paper studies the problem of global state variables of a large-scale system can be measured. An
decentralized control by output feedback for large-scale interesting paper [18], which applied static output feedback
uncertain systems whose subsystems are interconnected notiy nonlinear large-scale systems, used a linear quadratic
only by their outputs but also by their unmeasurable states ;. ’ o I
We show that under a linear growth condition, there is method to develop a sufficient condition for stability of
a decentralized output feedback controller rendering the the large-scale system on a closed connected set. The use
closed-loop systems globally exponentially stable. This is of adaptive control and output feedback was applied in
accomplished by extending the output feedback domination [5] and [4]. A series of papers [6], [8] discussed output
destig“ [14] Athat; only needs "m‘ta i”tforfmagg“ Ef the ToTllinear feedback and disturbance rejection for large-scale systems
systems. ime-varying output feedback controller is o )
a)I/so constructed for t}/]eg'arge_gcale systems with unknown with _dlst_urbance. Robustness issue and output feedback was
parameters. studied in [11].

Note that most of the existing decentralized output feed-

Index Terms: Decentralized control, interconnected systems, pack results are developed for large-scale systems inter-
large-scale systems, global stabilization, output feedback connected only by the outputs. There are very few results

. INTRODUCTION dealing with large-scale systems interconnected by the

Hmeasurable states. One existing result is the work [8],

an area of considerable research due to its obvious practi& IW.h'C? :abc h subs;;stem fW'tth'n the tlatrge—sczlihsyste? Its
application to current problems in the field of controls. ominated by a system of its own states an € outputs
?§ other subsystems. All the unmeasurable states of other

Large-scale systems have very complex dynamic mode 4 ) : :
due to the uncertain environment, the varying system paraclﬁ:bSyStemS disappear in the bounding functions. The work

eters, and the interconnected structure of the system. Als 8[1 degltdwnh nonlme;r fl:n::tlonr;s that c;]n depeltn_d ont
is inevitable that nonlinearities are prevalent throughout thanbounded unmeasurable states, however the result s not a

dynamics of the interconnected systems. All these make ttg)bal ?_ne. Irt1 fatct, dl:e Itlo the use 0(; a qulasdratlc lr:eth?d'
stabilization of such large-scale systems a difficult contro € static output controller proposed In [18] could only
tabilize the system on a closed connected set. Currently,

problem. Though quite challenging, the research of Iargféﬁ problem ofglobal decentralized contraobf large-scale

scale systems are relevant to such areas as communica stems interconnected by unbounded unmeasurable states
networks, a system of satellites, and formation flying oY y

autonomous vehicles, and hence are important in contrd] quite open. The major difficulty n |mpl_ement|ng an
practice output feedback controller for those highly interconnected

The research of large-scale nonlinear systems beganl ge-scale systems is that for each subsystem, the presence

the late 1960’s and early 1970's. One of the earliest ino unmeasurable states of other subsystems makes the

vestigations into the nonlinear issues of large-scale systerﬂgs'g? 0]; tzelde(iﬁntrahzzd Q;J.tpm fee?qb T‘le c_ont;ollgr very
centered around time-varying stabilization [2]. The earlfOmp Icated. In other words, 1L1s very chaflenging fo design
research in [7] demonstrated a method of using high-gaﬁ"l global_stablhzer for one subsy_stem only using its output,
state feedback to stabilize the nonlinearities of the Iargé"-’h'tIe th:csthsubfzstembls atlso driven by the unmeasurable
scale systems. The research in the early 1980's focust?@oes% eﬂ? eLSU dsys em?{l. h b f
on the use of state feedback to globally stabilize large- n the other hand, recently there are a number o
scale nonlinear systems. Adaptive control was applied iwterestlng output _feedback stabilization results_ outside the
[3] to stabilize a class of large-scale nonlinear systems wi rea of decentralized control. For example, in the work

success. Output feedback had also be applied to linear large® I? necess?ry atndbsuﬁ|0|§nt| cotntdltlon V\(Jas glvsln flpr a
scale system in such papers as [1], [16], and [12] durin pniinear system to be equivaient fo an observable linear

the same time. The use of output feedback has certa stem perturbed by a vector field that depends only on the

apparent advantages because of the fact that not all of tﬂgtp_u_t ar_1d input of ihe system. A.‘S a consequence, global
stabilization by output feedback is achievable for a class

This work was supported in part by the U.S. NSF under grant ECS3f nonlinear systems that are diffeomorphic to a system

0239105 and UTSA Faculty Research Award. , ___in the nonlinear observer form [9], [10]. Other work are
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mtfrye@lonestar.utsa.edu and cgian@utsa.edu or Lipschitzin the unmeasurable states (see [13] and its
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references). When the nonlinear functions are not Lipschiwhere ©; = (a1, - ,2m), ¢ = L1,---,m, x =
in unmeasurable states or have uncertainties associated with, - - -, z,, ), is the statey; is the outputu; is the control
unmeasurable states, the paper [14] was able to providémput, d(¢) is a bounded unknown disturbance, afigis a
method of constructing a linear output feedback stabilizéunction satisfying the following condition.
using a feedback domination design method under a linearAssumption 2.1: Fori = 1,---,m andj = 1,---,n,
growth condition. there is a constant > 0 such that

In this paper, we will show that the result [14] can be
applied tom subsystems that are highly interconnected/is (- ()| < cllzn| + - 4 |21 + |or| 4 - - 4 [
through all theunmeasurablestates. Under a linear growth +oo | e |Tmg]) (2.2)
condition imposed on the uncertain nonlinear vector fielddhe objective of this paper is to show that Assumption
we will design a linear controller for each subsystem only.1 guarantees the existence of dynamic compensators and
using its own output. As shown in [14], this output feedbackontrollers of the form
controller needs no information of the uncertain nonlin-
earities. The new structure of the observer and controller i M¢ + Nyi, M eR™™, NeR"
will enable us to overcome the difficulty in dealing with u, = K¢, KeR"i=1,---,m (23)
the output feedback .CoerI problem in the presence %f ch that the closed-loop system (2.1) and (2.3)labally
unmeasurable states in each subsystem. A combination e&ponentially stable(GES) at the equilibrium(z, &) —
the observers and controllers constructed for subsyste 0) ’
will globally stabilize the whole large-scale system. Ny . .

This paper is organized as follows, Section 2 presents tf&e Remark 2.2:Apparently, system (2.1) under Assumption

. . 1 represents a class of large-scale systems whose sub-
Problem Statementvhere we will present our assumption ;
! . s . systems are interconnected through not only the outputs
which utilizes a growth condition for bounding the non-
: . . . but also theunmeasurable statedMoreover, those unmea-
linearities of m subsystems. In Section 3, we will present : X . . .
. : surable states in (2.1) will not disappear in the bounding
our main results and demonstrate that a linear observer " : ! .
Unctions in (2.2). For example, in the following system

coupled with its output feedback controller can globally

stabilize a large-scale systems comprisedno$ubsystems. 11 = T12
Section 4,An Example implements a high gai. output Subsystem 1 Z12 = u1 + d(t)z12 + d(t)za0,
feedback controller on a simple 2-system case. In Section y1 =211, d(t)€][1,2].
5, we extend the results to the case when the growth rate Eo1 = Zgo
is unkngwn by.usmg a time varying gain. We summary ougpsystem 2 dop = us + In(1 + 22,) + 20 sin(z20)
results in Section 6. Yo =
2 21,
[I. PROBLEM STATEMENT Subsystem 1 and Subsystem 2 are interconnected through

In this paper, we consider a class of large-scale uncertaﬁ:rlnet L:jnn:/eisﬁﬁzle staﬁr?dginan(fi fztitr;]at %ann(:t tt)r?i elr|m;— 0
nonlinear systems comprised of subsystems. ated eve e bou g tunctions. Due 1o this reason,

the problem of global decentralized control of Subsystem

%11 = z12 + fri(x,d(t)) 1 and Subsystem 2 by output feedback is challenging and
E12 = 213 + fi2(z,d(t)) interesting.
Subsystem 1: : This paper will show how dinear output feedback

controller of the form (2.3) can be recursively constructed

T1n = 1+ fin (2, d(1)) to globally stabilize system (2.1) under Assumption 2.1.

hi=72u An advantage of our design method is that the precise

: knowledge of the nonlinearities or uncertainties of the
i1 _ io + fi(z, d(t)) systems needs not to be knqwn. Wh:?\t is really needed_ is

dio = Ti3 + fio(, d(t)) the growth rate of the bo.undlng fungtlon of the .uncertaln

) i nonlinearities as shown in Assumption 2.1. This feature

Subsystem i : (2.1) makes it possible to stabilize: uncertain interconnected
Tin = u; + fin(z,d(t)) subsystems using very limited information even all the sub-
Yi = Ti1 systems are interconnected througimmeasurable states

: IIl. GLOBAL DECENTRALIZED CONTROL BY
Tl = Tmz + fmi(x, d(t)) OUTPUT FEEDBACK
)

Fm2 = T3 + fma (2, d(?) In this section, we prove that under Assumption 2.1 there

Subsystem m: : exists a globally stabilizing output feedback controller for
Tmn = Um, + frn(x,d(t)) system (2.1). This is done by using a new output feedback
Ym = Tm1 domination design which explicitly constructiaear output
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feedback control law without requiring the knowledge of theConsider the Lyapunov functioli., = I Pe;. The deriva-

nonlinearities in system (2.1). tive of V., along (3.2) is,

Theorem 3.1: Under Assumption 2.1, there exists a
linear output feedback controller (2.3) that renders the large- fir(z, d(t))
scale interconnected system (2.1) globally exponentially Jiz(z,d(t))
stable. Ve, = —Ll|&l|?®+2fP

Proof. In order to prove Theorem 3.1, we utilize the output
feedback domination design proposed in [14] to design a
linear observer and controller for each individual subsystem.
With thesem observers and controllers, it can be shown that 1 1

the closed-loop system is globally exponentially stable after X <|fi1| +lfial ot Ln1|fm> :
a large enough gain has been carefully chosen.

JFin(2,d(1))
In—1

—Llle]* + 2] Pllle]l

IN

A. LINEAR OBSERVER DESIGN: By Assumption 2.1,
We begin Wi.th by designing the following linear observer Ifir(z,d®)] < c(lzia] + -+ |zm1))
for subsystem | ooz, d())] c
_ 71 < Z(|I11|+"'+|17m1|+|$12|
Ty = T+ Lay(zia — &41) o |zmel)
Zi-1) = Fin+ L Van_a(@a — 2a) |fin(2,d(t))] © (wual+ -+ [@m1] + |712]
b= ws e LM A 3.1 In—1 S e ml 12
Tn = U + an(le (Ezl) ( . ) + + |{L‘ | + + |l‘ |
R n
where L > 1 is a gain parameter to be determined later, + A+ | Zmn)
anda; >0, j =1,---,n, are coefficients of the Hurwitz
polynomial p(s) = s" + a15"™Y + -+ + a,_15 + an.  Therefore,
Define the following terme;; = z;; — 25, j=1,---,n.
A simple calculation yields the following error dynamics: . ) 1 1
Ve € —Llel® +ellell(1+ 7+ + mmp)laul
éi1 = e — Laje + fin(z,d(t)) 1 1 1
+(L RIS Ln71)‘x12|+ + Lnil‘x1n|
S . L] 1
ei(nfl) = €in — L Ap—1€41 + fz(nfl)(mvd(t)) +( + Z oot n—1 )|$21|
éin = _Lnaneil + fzn (1'7 d(t)) 1 1
+HF + o+ ) eee
Next, we introduce the change of coordinates = N |
eij i1 ... ' i ot par el
74r, J=1,---,n to obtain a new error dynamic L
1 1
. 14+ - 4o gp ——
Falad(®) +- 1+ ( 1+ 7+t g leml
fiz(z,d(t))
g=LAei+ | . ° (3.2) e g [l
: 1
’ < —Llell? + cillelln|zii] + =(n — 1|z
L (e d(0) A
n—
where Tt |Z1n| + njza| + —7—la2|
1
€i1 -ap 1 -~ 0 +~~+m|$2n\+-~+n|$m1|
€2 A : oo 1
E’i = . s e . . . . . + . + - mn
. —Qp_1 o --- 1 Ln71|x H
Ein —ap 0 -+ 0 < —Llel? + eallel (2] + -+ + zmal)
1
Clearly, A is a Hurwitz matrix. Therefore, there is a positive +f(|x12‘ Fo A [me]) o 4
definite matrix? = P > 0 such that 1
qulﬂ + ot [T l)],
ATP+ PA=—1I. for a constants > 0.
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Define z;; = %, j=1,---,n. This, together with the Using equations (3.6) and (3.3), one has
fact thatz;; = &;; + L™ 'g;;, implies . ' '

W, = (1/2 + 65)‘/61' + V21
+leij| = lzigl+leil, G=1,---.n. < —L(1/2+ cs)llell® + collza |1 + col 22

R CG||Zm||2 + C6H51||2 + 06”52“2

1
Li-1

With this in mind, it is not difficult to deduce that

1 .
Tij

i1

S ‘

1
. +otcglleml? - §L||Zi||2 + Les|lel|®
Ve, < —L|all® + Vel

1 1
= _ZJ ; 2—*L ; 2 . 2
< (lzall + - + llzmll + lleal 4 -+ leml]) g Llleill™ = 5 Ll2ill” + collzall

< —Lllgl? + esllzl® + esllz2l® + - + esllzml? + -+ cgllzml|* + coller ||
teslal? + eslleal? + - +eslleml? (3.3) + oot cgllemll?,
Ceg — (1/2 + 05)63. (37)

for a constants > 0.

B. CONTROLLER DESIGN: Consequently, forn subsystems we have

Under the new coordinates; = %, j=1,---,n, AR 1 n )
system (3.1) becomes lez < — gl mes z; el
1= 1=
21 = Lz + Lajen 1 - 2
: — (2L - m06> ; lzl?.  (3.8)
Zin—1) = Lzin+ Lay_164 If the gain L is made large enough, the right hand side (3.8)
. B L _ will be negative definite. Hence, the closed-loop system will
Gin = et Lanza (3.4) be globally exponentially stable (GES). I
constructu; = —L[kyzi1 + kozia + -+ + knzin], Where Remgrk 3.2: In contrast to the common observer design
ki,--- kn, are the coefficients of the Hurwitz polynomial that typically uses a copy of the nonlinear system, we

design only alinear observer for each subsystem in the

s" + ks 4 -« + kos + k1 = 0. Under this controller, _
system (3.4) can be written as the following compact fornfarge-scale system (2.1). Such a construction, has enabled

us to deal with difficult issues caused by the uncertainties

%2; = LBz; + LDejq (3.5) or nonlinearities of the systems in the simple system case
[14]. In this paper, this new construction of the observer
where and controller also lets us avoid dealing with the nonlinear
i1 a1 0 1 ... 0 functions qf the interconne(_:ted_ unmegsurable states. Co_nse-
2 as L ] quently, this feedback domination design leads to a solution
zi=| . D=, ,B=1| * + -t |, tothe problem of decentralized output feedback control of
: 1 o 0 - 1 system (2.1).
Zin an kv Ry e kp Remark 3.3: It is worthwhile pointing out that the

observer and controller for each system have the same
For Hurwitz matrix B, there is a positive definite matrix structure. Hence, after we construct one output feedback
Q@ = Q" > 0 such that controller for one subsystem, we can duplicate the controller
BTQ+QB = -1 for the otherm—1 subsystems. This property will reduce the
- design time and implementation cost for the control design
of system (2.1).

Consider the following Lyapunov functiol,, = z7Qz;. Remark 3.4: Note that in system (2.1) all the subsys-
By the necessary substitution we are arrive at the followinffms have the same dimension (/. However, if the
equations, imensions ofn subsystems are different, we are still able
to achieve similar stabilization result under Assumption 2.1
V., = —Ll||z|®+2:TLQDe;y with different dimensional variables. The only difference is
< —L|z|? + Lea|z]l|es]] that the dimension of the observer will be consistent with
2 the dimension of the corresponding subsystem.

IN

1 c
Ll 4 Leslled®, e =5 (3.6)

. . . IV. AN EXAMPLE
Choice of gain L: Construct the following Lyapunov

function In this section, a two-system model will be simulated
W= (1/2+c5)Ve, + Vs, based on the design procedures in Section 3.
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System Diagram for 2 Interconnected Systems : : : _ Sysem

X-SyS
u

xI, x2 vly2

y-sys

21 l

yl
~ y-sys
22 observer
A~
x1 X-Sys xI
~ observer . . : ; ; : : : :
X 0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 1. System Diagram Overview
Fig. 2. (21(0),22(0)) = (2,3) (£1(0),22(0)) = (0,0)
(yl(o)zyQ(O)) = (_'2) _3) (@1(0),@2(0)) = (070)
Example 4.1:Consider the following interconnected
nonlinear system.
This nice property is also valid in the decentralized case.

& = g For example, the exactly same output feedback controller
To = u-+yssinxg (4.2)-(4.3) for (4.1) will also stabilize the following system.
LToutput = L1 1 = o
yl = Y2 ) Ztg = u-+ d(t)\/ ‘$2y2|
g2 = v+dt)In(1 +y3) + d(t)xs Coutput = 1
Youtput = Y1 (41) y'l = Yo
whered(t) is a disturbance bounded by a known constant. g2 = v4dt)(1 —e1%2l) 4 2y sina,

As Equation (4.1) shows, the-system andy-system are
coupled through the unmeasurable states (y2). More-
over, the unmeasurable states are associated with unknowd: EXTENSION TO LARGE-SCALE SYSTEMS
disturbances. Therefore, most of the existing output feed- WITH UNKNOWN GROWTH RATE
back control design procedures will fail to be applicable For the interconnected system (2.1), there might be
to the system (4.1). On the other hand, it is easy to verifgircumstances when the growth ratén Assumption 2.1
that Assumption 2.1 holds for system (4.1). By Theorens unknown. In such situations there arises the probelm if
3.1, we are able to design an output feedback controller faris still possible to achieve global regulation for system
(4.1). Figure 1 illustrates in block diagram form the contro(2.1). In this section, we show that using the time-varying
strategy that will be implemented for the 2-system exampl@bserver developed in [15], a decentralized output feedback
Specifically, we construct the observer as follows, controller with time-varying gairL(t) can be designed to
globally regulate system (2.1) whose nonlinear function

Youtput = Y1

”?1 = &2+ 042L(z1 — 1) fij(z,d(t)) linearly grows at an unknown rate.
Ty = u+442L%(x; — ) Theorem 5.1: Suppose system (2.1) satisfy Assumption
gjl = o+ 0.42L(y1 — 1) 2.1 withunknowngrowth ratec. Then, there exists an output
Gy = v+420%y — i) 4.2) feedback controller of the form,
.. — . . nxn n
The control laws to be implemented are § = M@®)&G+ Ny, M) €R™, N(t) € R
u = K(t)&, Kt) e R™"i=1,---,m, (5.1)
e h that all the states of (2.1)-(5.1) are ultimately bounded
9. . such that all the states of (2.1)-(5.1) are ultimately bounded.
—28.6L%); — 25.7Lijs, (43)  Moreover,
where the gain L was calculated to B8. Figure 2 below Aim (2(t),€(2)) = 0.
illustrates the response of the closed-loop system (4.1proof. Theorem 5.1 can be easily proved by combining the
(4.2)-(4.3). time-varying observer and controller proposed in [15] with

Remark 4.2: As shown in [14], the output feedback the design procedure for Theorem 3.1. The linear structure
domination design has the universal property that enables okthe observer will avoid the difficulty in dealing with the
to use a single output feedback controller to stabilize a fanuncertain nonlinear functions while the time-varying gain
ily of nonlinear systems satisfying same growth conditionwill suppress the effect of the unknown growth rate. The

4271



proof is very parallel to the one of Theorem 3.1 and henceontrol the large-scale systems with unknown parameters.
is omitted here. g1 The universal feature of our feedback domination design
enables us to only design one output feedback controller

Next, we see how system (4.1) can be globally regulateahd apply it to all the different systems satisfying the same
by output feedback whed(t) is bounded by amnknown growth condition.

constantc. As a matter of fact, by Theorem 5.1, the
following observer is developed using the varying gain

: . . 1]

T = &9+ L(t)(x1 — 1)

iy = u+ L2(t)(x1 — 31) 2]

0= G+ LO) —h)

g = v+ LAy — ). 5.2) B
The control laws to be implemented will be [4]

u = —L*(t)&; — L(t)iy

v o= LAt L(t)je. 63

Figure 3 illustrates the result due to a implementation ofjg
the varying gainL(t) = ¢t + 1.

System
T

(7]

(8]

(9]

[20]

[11]

[12]

(23]

(1, —1) (21(0),22(0))

Fig. 3. (xl(o),zz(t)J)) (0,2)  [14]
1

(yl(o)ny(O)) = (_ ,0 (gl( )7@2(0)) = (5’_1)

Remark 5.2: Using a similar argument proposed in [15],[15]
we can prove thafz, y, Z, ¢) tend to zero exponentially. As

a consequence, the observers and controllers are ultimat&l§l
bounded even though is not bounded. In fact, as shown

in figure 3 the states of the system (4.1) and observers (52}
tend to zero very quick. In real control practice, to avoid
the use of unbounded, we can saturate the gain after!
sufficiently long time.

VI. CONCLUSION

We have presented in this paper, a method of using
output feedback to globally stabilize a large-scale nonlinear
systems whose: subsystems are highly interconnected by
unmeasurable states. Under the linear growth condition, we
explicitly constructm sets of linear observers and con-
trollers only using the output feedback information of each
subsystem. It is shown that global output feedback stabiliza-
tion is achieved for the closed-loop system. Also, observers
and controllers using time-varying gain are developed to
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