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Abstract— This paper studies the problem of global
decentralized control by output feedback for large-scale
uncertain systems whose subsystems are interconnected not
only by their outputs but also by their unmeasurable states.
We show that under a linear growth condition, there is
a decentralized output feedback controller rendering the
closed-loop systems globally exponentially stable. This is
accomplished by extending the output feedback domination
design [14] that only needs little information of the nonlinear
systems. A time-varying output feedback controller is
also constructed for the large-scale systems with unknown
parameters.

Index Terms: Decentralized control, interconnected systems,
large-scale systems, global stabilization, output feedback

I. INTRODUCTION

Decentralized control of interconnected systems has been
an area of considerable research due to its obvious practical
application to current problems in the field of controls.
Large-scale systems have very complex dynamic models
due to the uncertain environment, the varying system param-
eters, and the interconnected structure of the system. Also it
is inevitable that nonlinearities are prevalent throughout the
dynamics of the interconnected systems. All these make the
stabilization of such large-scale systems a difficult control
problem. Though quite challenging, the research of large-
scale systems are relevant to such areas as communication
networks, a system of satellites, and formation flying of
autonomous vehicles, and hence are important in control
practice.

The research of large-scale nonlinear systems began in
the late 1960’s and early 1970’s. One of the earliest in-
vestigations into the nonlinear issues of large-scale systems
centered around time-varying stabilization [2]. The early
research in [7] demonstrated a method of using high-gain
state feedback to stabilize the nonlinearities of the large-
scale systems. The research in the early 1980’s focused
on the use of state feedback to globally stabilize large-
scale nonlinear systems. Adaptive control was applied in
[3] to stabilize a class of large-scale nonlinear systems with
success. Output feedback had also be applied to linear large-
scale system in such papers as [1], [16], and [12] during
the same time. The use of output feedback has certain
apparent advantages because of the fact that not all of the
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state variables of a large-scale system can be measured. An
interesting paper [18], which applied static output feedback
to nonlinear large-scale systems, used a linear quadratic
method to develop a sufficient condition for stability of
the large-scale system on a closed connected set. The use
of adaptive control and output feedback was applied in
[5] and [4]. A series of papers [6], [8] discussed output
feedback and disturbance rejection for large-scale systems
with disturbance. Robustness issue and output feedback was
studied in [11].

Note that most of the existing decentralized output feed-
back results are developed for large-scale systems inter-
connected only by the outputs. There are very few results
dealing with large-scale systems interconnected by the
unmeasurable states. One existing result is the work [8],
in which each subsystem within the large-scale system is
dominated by a system of its own states and the outputs
of other subsystems. All the unmeasurable states of other
subsystems disappear in the bounding functions. The work
[18] dealt with nonlinear functions that can depend on
unbounded unmeasurable states, however the result is not a
global one. In fact, due to the use of a quadratic method,
the static output controller proposed in [18] could only
stabilize the system on a closed connected set. Currently,
the problem ofglobal decentralized controlof large-scale
systems interconnected by unbounded unmeasurable states
is quite open. The major difficulty in implementing an
output feedback controller for those highly interconnected
large-scale systems is that for each subsystem, the presence
of unmeasurable states of other subsystems makes the
design of the decentralized output feedback controller very
complicated. In other words, it is very challenging to design
a global stabilizer for one subsystem only using its output,
while this subsystem is also driven by the unmeasurable
states of the other subsystems.

On the other hand, recently there are a number of
interesting output feedback stabilization results outside the
area of decentralized control. For example, in the work
[9], a necessary and sufficient condition was given for a
nonlinear system to be equivalent to an observable linear
system perturbed by a vector field that depends only on the
output and input of the system. As a consequence, global
stabilization by output feedback is achievable for a class
of nonlinear systems that are diffeomorphic to a system
in the nonlinear observer form [9], [10]. Other work are
based on the common assumption that the system islinear
or Lipschitz in the unmeasurable states (see [13] and its



references). When the nonlinear functions are not Lipschitz
in unmeasurable states or have uncertainties associated with
unmeasurable states, the paper [14] was able to provide a
method of constructing a linear output feedback stabilizer
using a feedback domination design method under a linear
growth condition.

In this paper, we will show that the result [14] can be
applied to m subsystems that are highly interconnected
through all theunmeasurablestates. Under a linear growth
condition imposed on the uncertain nonlinear vector fields,
we will design a linear controller for each subsystem only
using its own output. As shown in [14], this output feedback
controller needs no information of the uncertain nonlin-
earities. The new structure of the observer and controller
will enable us to overcome the difficulty in dealing with
the output feedback control problem in the presence of
unmeasurable states in each subsystem. A combination of
the observers and controllers constructed for subsystems
will globally stabilize the whole large-scale system.

This paper is organized as follows, Section 2 presents the
Problem Statement, where we will present our assumption
which utilizes a growth condition for bounding the non-
linearities ofm subsystems. In Section 3, we will present
our main results and demonstrate that a linear observer
coupled with its output feedback controller can globally
stabilize a large-scale systems comprised ofm subsystems.
Section 4,An Example, implements a high gainL output
feedback controller on a simple 2-system case. In Section
5, we extend the results to the case when the growth rate
is unknown by using a time varying gain. We summary our
results in Section 6.

II. PROBLEM STATEMENT

In this paper, we consider a class of large-scale uncertain
nonlinear systems comprised ofm subsystems.

Subsystem 1:





ẋ11 = x12 + f11(x, d(t))
ẋ12 = x13 + f12(x, d(t))

...
ẋ1n = u1 + f1n(x, d(t))

y1 = x11

...

Subsystem i:





ẋi1 = xi2 + fi1(x, d(t))
ẋi2 = xi3 + fi2(x, d(t))

...
ẋin = ui + fin(x, d(t))

yi = xi1

(2.1)

...

Subsystem m:





ẋm1 = xm2 + fm1(x, d(t))
ẋm2 = xm3 + fm2(x, d(t))

...
ẋmn = um + fmn(x, d(t))

ym = xm1

where xi = (xi1, · · · , xin), i = 1, · · · ,m, x =
(x1, · · · , xm), is the state,yi is the output,ui is the control
input, d(t) is a bounded unknown disturbance, andfij is a
function satisfying the following condition.

Assumption 2.1: For i = 1, · · · ,m and j = 1, · · · , n,
there is a constantc ≥ 0 such that

|fij(x, d(t))| ≤ c(|x11|+ · · ·+ |x1j |+ |x21|+ · · ·+ |x2j |
+ · · ·+ |xm1|+ · · ·+ |xmj |) (2.2)

The objective of this paper is to show that Assumption
2.1 guarantees the existence of dynamic compensators and
controllers of the form

ξ̇i = Mξi + Nyi, M ∈ IRn×n, N ∈ IRn

ui = Kξi, K ∈ IR1×n, i = 1, · · · ,m (2.3)

such that the closed-loop system (2.1) and (2.3) isglobally
exponentially stable(GES) at the equilibrium(x, ξ) =
(0, 0).

Remark 2.2:Apparently, system (2.1) under Assumption
2.1 represents a class of large-scale systems whose sub-
systems are interconnected through not only the outputs
but also theunmeasurable states. Moreover, those unmea-
surable states in (2.1) will not disappear in the bounding
functions in (2.2). For example, in the following system

Subsystem 1





ẋ11 = x12

ẋ12 = u1 + d(t)x12 + d(t)x22,
y1 = x11, d(t) ∈ [1, 2].

Subsystem 2





ẋ21 = x22

ẋ22 = u2 + ln(1 + x2
12) + x22 sin(x22)

y2 = x21,

Subsystem 1 and Subsystem 2 are interconnected through
the unmeasurable statex12 and x22 that cannot be elimi-
nated even in the bounding functions. Due to this reason,
the problem of global decentralized control of Subsystem
1 and Subsystem 2 by output feedback is challenging and
interesting.

This paper will show how alinear output feedback
controller of the form (2.3) can be recursively constructed
to globally stabilize system (2.1) under Assumption 2.1.
An advantage of our design method is that the precise
knowledge of the nonlinearities or uncertainties of the
systems needs not to be known. What is really needed is
the growth rate of the bounding function of the uncertain
nonlinearities as shown in Assumption 2.1. This feature
makes it possible to stabilizem uncertain interconnected
subsystems using very limited information even all the sub-
systems are interconnected throughunmeasurable states.

III. GLOBAL DECENTRALIZED CONTROL BY
OUTPUT FEEDBACK

In this section, we prove that under Assumption 2.1 there
exists a globally stabilizing output feedback controller for
system (2.1). This is done by using a new output feedback
domination design which explicitly construct alinear output



feedback control law without requiring the knowledge of the
nonlinearities in system (2.1).

Theorem 3.1: Under Assumption 2.1, there exists a
linear output feedback controller (2.3) that renders the large-
scale interconnected system (2.1) globally exponentially
stable.
Proof. In order to prove Theorem 3.1, we utilize the output
feedback domination design proposed in [14] to design a
linear observer and controller for each individual subsystem.
With thesem observers and controllers, it can be shown that
the closed-loop system is globally exponentially stable after
a large enough gain has been carefully chosen.

A. LINEAR OBSERVER DESIGN:

We begin with by designing the following linear observer
for subsystemi

˙̂xi1 = x̂i2 + La1(xi1 − x̂i1)
...

˙̂xi(n−1) = x̂in + L(n−1)an−1(xi1 − x̂i1)
˙̂xn = ui + Lnan(xi1 − x̂i1) (3.1)

whereL ≥ 1 is a gain parameter to be determined later,
and aj > 0, j = 1, · · · , n, are coefficients of the Hurwitz
polynomial p(s) = sn + a1s

(n−1) + · · · + an−1s + an.
Define the following termeij = xij − x̂ij , j = 1, · · · , n.
A simple calculation yields the following error dynamics:

ėi1 = ei2 − La1ei1 + fi1(x, d(t))
...

ėi(n−1) = ein − Ln−1an−1ei1 + fi(n−1)(x, d(t))
ėin = −Lnanei1 + fin(x, d(t))

Next, we introduce the change of coordinatesεij =
eij

Lj−1 , j = 1, · · · , n to obtain a new error dynamic

ε̇i = LAεi +




fi1(x, d(t))
fi2(x,d(t))

L
...

1
Ln−1 fin(x, d(t))


 (3.2)

where

εi =




εi1

εi2

...
εin


 , A =




−a1 1 · · · 0
...

...
. ..

...
−an−1 0 · · · 1
−an 0 · · · 0


 .

Clearly,A is a Hurwitz matrix. Therefore, there is a positive
definite matrixP = PT > 0 such that

AT P + PA = −I.

Consider the Lyapunov functionVεi = εT
i Pεi. The deriva-

tive of Vεi
along (3.2) is,

V̇εi
= −L‖εi‖2 + 2εT

i P




fi1(x, d(t))
fi2(x,d(t))

L
...
fin(x,d(t))

Ln−1




≤ −L‖ε‖2 + 2‖P‖‖ε‖
×

(
|fi1|+ 1

L
|fi2|+ · · ·+ 1

Ln−1
|fin|

)
.

By Assumption 2.1,

|fi1(x, d(t))| ≤ c(|x11|+ · · ·+ |xm1|)
|fi2(x, d(t))|

L
≤ c

L
(|x11|+ · · ·+ |xm1|+ |x12|

+ · · ·+ |xm2|)
...

|fin(x, d(t))|
Ln−1

≤ c

Ln−1
(|x11|+ · · ·+ |xm1|+ |x12|

+ · · ·+ |xm2|+ · · ·+ |x1n|
+ · · ·+ |xmn|)

Therefore,

V̇εi ≤ −L‖ε‖2 + c1‖ε‖[(1 +
1
L

+ · · ·+ 1
Ln−1

)|x11|

+(
1
L

+ · · ·+ 1
Ln−1

)|x12|+ · · ·+ 1
Ln−1

|x1n|

+(1 +
1
L

+ · · ·+ 1
Ln−1

)|x21|

+(
1
L

+ · · ·+ 1
Ln−1

)|x22|

+ · · ·+ 1
Ln−1

|x2n|

+ · · ·+ (1 +
1
L

+ · · ·+ 1
Ln−1

)|xm1|

+ · · ·+ 1
Ln−1

|xmn|]

≤ −L‖ε‖2 + c1‖ε‖[n|x11|+ 1
L

(n− 1)|x12|

+ · · ·+ 1
Ln−1

|x1n|+ n|x21|+ n− 1
L

|x22|

+ · · ·+ 1
Ln−1

|x2n|+ · · ·+ n|xm1|

+ · · ·+ 1
Ln−1

|xmn|]
≤ −L‖ε‖2 + c2‖ε‖[(|x11|+ · · ·+ |xm1|)

+
1
L

(|x12|+ · · ·+ |xm2|) + · · ·+
1

Ln−1
(|x1n|+ · · ·+ |xmn|)],

for a constantc2 > 0.



Definezij = x̂ij

Lj−1 , j = 1, · · · , n. This, together with the
fact thatxij = x̂ij + Ln−1εij , implies
∣∣∣∣

1
Lj−1

xij

∣∣∣∣ ≤
∣∣∣∣

1
Lj−1

x̂ij

∣∣∣∣+|εij | = |zij |+|εij |, j = 1, · · · , n.

With this in mind, it is not difficult to deduce that

V̇εi ≤ −L‖εi‖2 +
√

nc2‖εi‖
× (‖z1‖+ · · ·+ ‖zm‖+ ‖ε1‖+ · · ·+ ‖εm‖)

≤ −L‖εi‖2 + c3‖z1‖2 + c3‖z2‖2 + · · ·+ c3‖zm‖2
+c3‖ε1‖2 + c3‖ε2‖2 + · · ·+ c3‖εm‖2 (3.3)

for a constantc3 > 0.

B. CONTROLLER DESIGN:

Under the new coordinateszij = x̂ij

Lj−1 , j = 1, · · · , n,
system (3.1) becomes

żi1 = Lzi2 + La1εi1

...

żi(n−1) = Lzin + Lan−1εi1

żin =
1

Ln−1
ui + Lanεi1 (3.4)

Constructui = −Ln[k1zi1 + k2zi2 + · · · + knzin], where
k1, · · · , kn are the coefficients of the Hurwitz polynomial
sn + knsn−1 + · · · + k2s + k1 = 0. Under this controller,
system (3.4) can be written as the following compact form.

żi = LBzi + LDεi1 (3.5)

where

zi =




zi1

zi2

...
zin


 , D =




a1

a2

...
an


 , B =




0 1 · · · 0
...

...
. . .

...
0 0 · · · 1
k1 k2 · · · kn


 .

For Hurwitz matrix B, there is a positive definite matrix
Q = QT > 0 such that

BT Q + QB = −I.

Consider the following Lyapunov functionVzi = zT
i Qzi.

By the necessary substitution we are arrive at the following
equations,

V̇zi = −L‖zi‖2 + 2zT
i LQDεi1

≤ −L‖zi‖2 + Lc4‖zi‖‖εi‖
≤ −1

2
L‖zi‖2 + Lc5‖εi‖2, c5 =

c2
4

2
(3.6)

Choice of gain L: Construct the following Lyapunov
function

Wi = (1/2 + c5)Vεi + Vzi .

Using equations (3.6) and (3.3), one has

Ẇi = (1/2 + c5) ˙Vεi
+ ˙Vzi

≤ −L(1/2 + c5)‖εi‖2 + c6‖z1‖2 + c6‖z2‖2
+ · · ·+ c6‖zm‖2 + c6‖ε1‖2 + c6‖ε2‖2

+ · · ·+ c6‖εm‖2 − 1
2
L‖zi‖2 + Lc5‖εi‖2

= −1
2
L‖εi‖2 − 1

2
L‖zi‖2 + c6‖z1‖2

+ · · ·+ c6‖zm‖2 + c6‖ε1‖2
+ · · ·+ c6‖εm‖2,
c6 = (1/2 + c5)c3. (3.7)

Consequently, form subsystems we have

m∑

i=1

Ẇi ≤ −
(

1
2
L−mc6

) m∑

i=1

‖εi‖2

−
(

1
2
L−mc6

) m∑

i=1

‖zi‖2. (3.8)

If the gain L is made large enough, the right hand side (3.8)
will be negative definite. Hence, the closed-loop system will
be globally exponentially stable (GES).

Remark 3.2: In contrast to the common observer design
that typically uses a copy of the nonlinear system, we
design only alinear observer for each subsystem in the
large-scale system (2.1). Such a construction, has enabled
us to deal with difficult issues caused by the uncertainties
or nonlinearities of the systems in the simple system case
[14]. In this paper, this new construction of the observer
and controller also lets us avoid dealing with the nonlinear
functions of the interconnected unmeasurable states. Conse-
quently, this feedback domination design leads to a solution
to the problem of decentralized output feedback control of
system (2.1).

Remark 3.3: It is worthwhile pointing out that the
observer and controller for each system have the same
structure. Hence, after we construct one output feedback
controller for one subsystem, we can duplicate the controller
for the otherm−1 subsystems. This property will reduce the
design time and implementation cost for the control design
of system (2.1).

Remark 3.4: Note that in system (2.1) all the subsys-
tems have the same dimension (i.e.n). However, if the
dimensions ofm subsystems are different, we are still able
to achieve similar stabilization result under Assumption 2.1
with different dimensional variables. The only difference is
that the dimension of the observer will be consistent with
the dimension of the corresponding subsystem.

IV. AN EXAMPLE

In this section, a two-system model will be simulated
based on the design procedures in Section 3.
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Fig. 1. System Diagram Overview

Example 4.1:Consider the following interconnected
nonlinear system.

ẋ1 = x2

ẋ2 = u + y2 sin x2

xoutput = x1

ẏ1 = y2

ẏ2 = v + d(t) ln(1 + y2
2) + d(t)x2

youtput = y1 (4.1)

whered(t) is a disturbance bounded by a known constant.
As Equation (4.1) shows, thex-system andy-system are
coupled through the unmeasurable states (x2, y2). More-
over, the unmeasurable states are associated with unknown
disturbances. Therefore, most of the existing output feed-
back control design procedures will fail to be applicable
to the system (4.1). On the other hand, it is easy to verify
that Assumption 2.1 holds for system (4.1). By Theorem
3.1, we are able to design an output feedback controller for
(4.1). Figure 1 illustrates in block diagram form the control
strategy that will be implemented for the 2-system example.

Specifically, we construct the observer as follows,

˙̂x1 = x̂2 + 0.42L(x1 − x̂1)
˙̂x2 = u + 4.2L2(x1 − x̂1)
˙̂y1 = ŷ2 + 0.42L(y1 − ŷ1)
˙̂y2 = v + 4.2L2(y1 − ŷ1) (4.2)

The control laws to be implemented are

u = −28.6L2x̂1 − 25.7Lx̂2

v = −28.6L2ŷ1 − 25.7Lŷ2, (4.3)

where the gain L was calculated to be20. Figure 2 below
illustrates the response of the closed-loop system (4.1)-
(4.2)-(4.3).

Remark 4.2: As shown in [14], the output feedback
domination design has the universal property that enables us
to use a single output feedback controller to stabilize a fam-
ily of nonlinear systems satisfying same growth condition.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0

5
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x2

hat
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0

0.2

y1

y1
y1

hat

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−5
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5

y2

y2
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Fig. 2. (x1(0), x2(0)) = (.2, 3) (x̂1(0), x̂2(0)) = (0, 0)
(y1(0), y2(0)) = (−.2,−3) (ŷ1(0), ŷ2(0)) = (0, 0)

This nice property is also valid in the decentralized case.
For example, the exactly same output feedback controller
(4.2)-(4.3) for (4.1) will also stabilize the following system.

ẋ1 = x2

ẋ2 = u + d(t)
√
|x2y2|

xoutput = x1

ẏ1 = y2

ẏ2 = v + d(t)(1− e−|y2|) + x2 sin x2

youtput = y1

V. EXTENSION TO LARGE-SCALE SYSTEMS
WITH UNKNOWN GROWTH RATE

For the interconnected system (2.1), there might be
circumstances when the growth ratec in Assumption 2.1
is unknown. In such situations there arises the probelm if
it is still possible to achieve global regulation for system
(2.1). In this section, we show that using the time-varying
observer developed in [15], a decentralized output feedback
controller with time-varying gainL(t) can be designed to
globally regulate system (2.1) whose nonlinear function
fi,j(x, d(t)) linearly grows at an unknown rate.

Theorem 5.1: Suppose system (2.1) satisfy Assumption
2.1 withunknowngrowth ratec. Then, there exists an output
feedback controller of the form,

ξ̇i = M(t)ξi + N(t)yi, M(t) ∈ IRn×n, N(t) ∈ IRn

ui = K(t)ξi, K(t) ∈ IR1×n, i = 1, · · · ,m, (5.1)

such that all the states of (2.1)-(5.1) are ultimately bounded.
Moreover,

lim
t→+∞

(x(t), ξ(t)) = 0.

Proof. Theorem 5.1 can be easily proved by combining the
time-varying observer and controller proposed in [15] with
the design procedure for Theorem 3.1. The linear structure
of the observer will avoid the difficulty in dealing with the
uncertain nonlinear functions while the time-varying gain
will suppress the effect of the unknown growth rate. The



proof is very parallel to the one of Theorem 3.1 and hence
is omitted here.

Next, we see how system (4.1) can be globally regulated
by output feedback whend(t) is bounded by anunknown
constant c. As a matter of fact, by Theorem 5.1, the
following observer is developed using the varying gainL,

˙̂x1 = x̂2 + L(t)(x1 − x̂1)
˙̂x2 = u + L2(t)(x1 − x̂1)
˙̂y1 = ŷ2 + L(t)(y1 − ŷ1)
˙̂y2 = v + L2(t)(y1 − ŷ1). (5.2)

The control laws to be implemented will be

u = −L2(t)x̂1 − L(t)x̂2

v = −L2(t)ŷ1 − L(t)ŷ2. (5.3)

Figure 3 illustrates the result due to a implementation of
the varying gainL(t) = t + 1.
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0

5

y1

y1
y1
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5

y2

y2
y2
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Fig. 3. (x1(0), x2(0)) = (1,−1) (x̂1(0), x̂2(0)) = (0, 2)
(y1(0), y2(0)) = (−1, 0) (ŷ1(0), ŷ2(0)) = (5,−1)

Remark 5.2: Using a similar argument proposed in [15],
we can prove that(x, y, x̂, ŷ) tend to zero exponentially. As
a consequence, the observers and controllers are ultimately
bounded even thoughL is not bounded. In fact, as shown
in figure 3 the states of the system (4.1) and observers (5.2)
tend to zero very quick. In real control practice, to avoid
the use of unboundedL, we can saturate the gain after
sufficiently long time.

VI. CONCLUSION

We have presented in this paper, a method of using
output feedback to globally stabilize a large-scale nonlinear
systems whosem subsystems are highly interconnected by
unmeasurable states. Under the linear growth condition, we
explicitly constructm sets of linear observers and con-
trollers only using the output feedback information of each
subsystem. It is shown that global output feedback stabiliza-
tion is achieved for the closed-loop system. Also, observers
and controllers using time-varying gain are developed to

control the large-scale systems with unknown parameters.
The universal feature of our feedback domination design
enables us to only design one output feedback controller
and apply it to all the different systems satisfying the same
growth condition.
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