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ABSTRACT

A decentralized formulation is presented for model pre-
dictive control of systems with coupled constraints. The
single large planning optimization is divided into small
subproblems, each planning only for the states of a partic-
ular subsystem. Relevant plan data is exchanged between
susbsystems to ensure that all decisions are consistent with
satisfaction of the coupled constraints. A typical application
would be autonomous guidance of a fleet of UAVs, in which
the systems are coupled by the need to avoid collisions,
but each vehicle plans only its own path. The key property
of the algorithm in this paper is that if an initial feasible
plan can be found, then all subsequent optimizations are
guaranteed to be feasible, and hence the constraints will
be satisfied, despite the action of unknown but bounded
disturbances. This is demonstrated in simulated examples,
also showing the associated benefit in computation time.
Keywords Model Predictive Control, Decentralized Control

I. I NTRODUCTION

This paper presents adecentralizedform of Model Pre-
dictive Control (DMPC) for systems comprised of multiple
subsystems, each with independent dynamics and distur-
bances but with coupled constraints. By embedding the
performance goals into the constraints, the DMPC algorithm
can be used to design cooperative maneuvers for teams of
vehicles, such as for formation-flight, collision avoidance
and UAV arrival phasing.

MPC is a feedback control scheme in which a trajectory
optimization is solved at each time step. The first control in-
put of the optimal sequence is applied and the optimization
is repeated at each subsequent step. Because the on-line
optimization explicitly includes the operating constraints,
MPC can operate closer to hard constraint boundaries than
traditional control schemes. Centralized MPC has been
widely developed for constrained systems [3], with many
results concerning stability [4], [1] and robustness [10], [5],
[11], and has been applied to the co-operative control of
multiple vehicles [11], [13], [7], [8]. However, solving a
single optimization problem for the entire team typically
requires significant computation, which scales poorly with
the size of the system (e.g. the number of vehicles in the
team). To address this computational issue, attention has

recently focused on decentralized MPC [17], [12] using
a wide variety of approaches, including robustness to the
actions of others [12], [16], penalty functions [9], [21], and
partial grouping of computations [22]. The key point is that,
when decisions are made in a decentralized fashion, the
actions of each subsystem must be consistent with those of
the other subsystems, so that decisions taken independently
do not lead to a violation of the coupling constraints. The
decentralization of the control is further complicated when
disturbances act on the subsystems making the prediction
of future behavior uncertain.

This paper presents a new approach to DMPC that
addresses both of these difficulties. The key features of this
algorithm are that each subsystem only solves a subprob-
lem for its own plan, and each of these subproblems is
solved only once per time step, without iteration. Under
the assumption of a bounded disturbance, each of these
subproblems is guaranteed to be feasible, thus ensuring
robust constraint satisfaction across the group. The dis-
turbance is accommodated by including “margin” in the
constraints [11], tightening them in a monotonic sequence.
The decentralized method employs at each time step a
sequential solution procedure, outlined in Fig. 1(a), in
which the subsystems solve their planning problems one
after the other. The plan data relevant to the coupled
constraints is then communicated to the other subsystems.
The information requirements for a typical subproblemp are
shown in Fig. 1(b). Each subproblem accommodates (a) the
latest plans of those subsystems earlier in the sequence
and (b) predicted plans of those later in the sequence. At
initialization, it is necessary to find a feasible solution to
the centralized problem, although this need not be optimal.

The paper begins by defining the problem for a general
case, followed by the centralized MPC formulation. The
division of this problem into decentralized subproblems is
then developed. Finally, numerical simulations are included
to compare the new decentralized approach with two other
methods.

II. PROBLEM STATEMENT

Consider the problem of controllingNp subsystems. Each
subsystem, denoted by subscriptp ∈ {1, . . . , Np}, has
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Fig.1: Overview of Decentralized Algorithm

linear, time-invariant, discretized dynamics

xp(k + 1) = Apxp(k) + Bpup(k) + wp(k) (1)

yp(k) = Cpxp(k) + Dpup(k) (2)

where xp(k) ∈ <Nx
p is the state vector of subsystemp

at time k, up(k) ∈ <Nu
p is the control input to subsys-

tem p and wp(k) ∈ <Nx
p is the disturbance acting upon

subsystemp. Finally, yp(k) ∈ <Ny is the output. Assume
all subsystems(Ap,Bp) are controllable and the complete
statesxp are available.

The disturbances are unknowna priori but lie in inde-
pendent bounded sets

∀k, p wp(k) ∈ Wp ⊂ <Nx
p (3)

The whole system is subjected to the following constraint
upon the summed outputs, which may include both de-
coupled constraints, such as individual control magnitude
limits and state constraints, and coupled constraints, such

as relative collision avoidance

∀k
Np∑
p=1

yp(k) ∈ Y ⊂ <Ny (4)

The objective function is assumed to be decoupled between
subsystems and therefore written as the following summa-
tion

J =
Np∑
p=1

∑
k

`p(xp(k),up(k)) (5)

A decoupled objective is typical of many problems of
interest, such as fuel minimization for multiple spacecraft.
This assumption is not strictly necessary for the robust
feasibility result, which depends only on the constraints.
However, decoupling the objectives is consistent with the
approach taken here of using constraints to capture coupled
behavior between subsystems. The requirement is to control
the subsystems (1) and (2) such that the constraints (4) are
satisfied for all disturbance sequences satisfying (3).

III. C ENTRALIZED ROBUST MPC PROBLEM

The online optimization approximates the complete prob-
lem in Section II by solving it over a finite horizon
of T steps. A control-invariant terminal set constraint is
applied to ensure stability [4]. Predictions are made using
the nominal system model,i.e. (1) and (2) without the
disturbance term. The output constraints are tightened in
a monotonic sequence [11] to ensure robust feasibility,
retaining a margin based on a particular nilpotent candidate
policy.

Define the centralized optimization problem

PC

(
x1(k), . . . ,xNp(k)

)
:

J∗ = min
u1...uNp ,
x1...xNp ,
y1...yNp

Np∑
p=1

T∑
j=0

`p(xp(k + j|k),up(k + j|k))

subject to

∀j ∈ {0 . . . T} ∀p ∈ {1 . . . Np}
xp(k + j + 1|k) = Apxp(k + j|k) + Bpup(k + j|k)

yp(k + j|k) = Cpxp(k + j|k) + Dpup(k + j|k)
xp(k|k) = xp(k)

xp(k + T + 1|k) ∈ Qp
Np∑
p=1

yp(k + j|k) ∈ YNp
(j)

where the constraint sets are found using the following
recursions

YNp
(0) = Y (6a)

∀j ∈ {0 . . . T} ∀p ∈ {2 . . . Np}
Y(p−1)(j) = Yp(j) ∼ (Cp + DpKp(j))Lp(j)Wp

(6b)

∀j ∈ {0 . . . T − 1}
YNp

(j + 1) = Y1(j) ∼ (C1 + D1K1(j))L1(j)W1
(6c)



The operator “∼” represents the Pontryagin difference [14],
defined by

A ∼ B = {a | (a + b) ∈ A ∀b ∈ B}

andKp(j) j ∈ {0 . . . T −1} are nilpotent candidate control
laws for each subsystem, with associated state transition
matricesLp(j) obeying

Lp(0) = I
∀j ∈ {0 . . . T − 1}

Lp(j + 1) = (Ap + BpKp(j))Lp(j)

The recursions (6) tighten the constraints at future plan
steps, ensuring the existence of a “margin” to allow for
future feedback action in response to disturbance. The
tightening procedure is divided into separate steps for each
subsystem. The reason for this will become apparent when
the decentralized algorithm is presented in the next section.
The centralized problem uses only the constraint sets for
the last subsystemNp. The choice of the candidate policies
Kp(j) is left to the designer, subject to the nilpotency
requirement. The constraint tightening can be performed
offline and, for polyhedral sets, the Pontryagin difference
is implemented in the Matlab Invariant Set Toolbox [19].

The terminal constraint setsQp are control invariant
admissible sets, with associated control lawsκp satisfying

∀xp ∈ Qp ∀p ∈ {1 . . . Np}
Apxp + Bpκp(xp) ∈ Qp

(7a)

∀(xT
1 . . .xT

Np
)T ∈ {Q1 × . . .×QNp}

Np∑
p=1

{Cpxp + Dpκp(xp)} ∈ YNp
(T )

(7b)

It can be shown that solving this optimization in an
MPC scheme guarantees robust feasibility [11].

IV. D ECENTRALIZED MPC ALGORITHM

This section describes a decentralized algorithm for solv-
ing the problem in Section II. The centralized optimization
from Section III is divided intoNp subproblems, each
involving the trajectory of only one subsystem. Fig. 1 shows
an outline of the resulting algorithm. The subproblems are
solved one after the other, but the overall scheme is not
iterative: each subproblem is solved once per time step
and is guaranteed to be feasible. An outline of the proof
of robust feasibility is given at the end of this section.
The constraint sets in (6) included tightening from one
subproblem to another. This is exploited here to incorporate
a margin for uncertainty in the predicted behaviour of other
subsystems, as illustrated in Fig. 1(b).

Define thepth subproblem, in which the sequence of
output vectors̃yp(k, . . . , k + T |k), encoding the intentions
of the other subsystems, and the current state of subsystemp

are parameters

Pp (xp(k), ỹp(k . . . k + T |k)) :

J∗
p = min

up,xp,yp

T∑
j=0

`p(xp(k + j|k),up(k + j|k))

subject to

∀j ∈ {0 . . . T}
xp(k + j + 1|k) = Apxp(k + j|k) + Bpup(k + j|k)

yp(k + j|k) = Cpxp(k + j|k) + Dpup(k + j|k)
xp(k|k) = xp(k)

xp(k + T + 1|k) ∈ Qp

yp(k + j|k) + ỹp(k + j|k) ∈ Yp(j)

The output sequencẽyp(k . . . k+T |k) has two components,
as shown in Fig. 1(b): (a) the most recent plans of those
subsystems earlier thanp in the planning sequence and
(b) predicted plans for subsystems later in the sequence

ỹp(k + j|k) =

 ∑
q∈{1...Np|q<p}

y∗q(k + j|k)

+ ∑
q∈{1...Np|q>p}

ȳq(k + j|k)

 (8)

where y∗q(k + j|k) denotes the outputs from the optimal
solution to subproblemq at time k and whereȳq(·) de-
notes an predicted sequence for those later in the planning
sequence, constructed from the remainder of the previous
plan and a single step of the control lawκq, defined in (7)
to keep the subsystem state in its terminal set

∀j ∈ {0 . . . T − 1}
ȳq(k + j|k) = y∗q(k + j|k − 1) (9a)

ȳq(k + T |k) = Cqx∗q(k + T |k − 1)+
Dqκq(x∗q(k + T |k − 1)) (9b)

The output constraints here use the intermediate sets from
the recursions in (6), whereas the centralized problem only
used those for the final subproblemNp. These recursions
involve constraint tightening from one subproblem to the
next and one time step to the next, consistent with the
need to retain margin for both future disturbances and
the intentions of those subsystems yet to plan. Tightening
from one subproblem to the next is necessary because of
the inclusion of predicted intentions̄y from (9) for those
subsystems later in the sequence, as shown in Fig. 1(b).
These are nominal predictions only and the actual plans of
those subsystems will differ due to the disturbance, hence
margin must be retained for those modifications.

The subproblemPp is employed in the following algo-
rithm, also outlined in Fig. 1.
Algorithm 1 Decentralized MPC

1) Find a solution to the initial centralized problem
PC(x1(0), . . . ,xNp

(0)). If solution cannot be found,
stop (problem is infeasible).



2) Setk = 0
3) Apply controlu∗p(k|k) to each subsystemp
4) Incrementk
5) For each subsystemp in order1, . . . , Np :

a) Gather, by communication, the plan
dataỹp(k . . . k + T |k) from other subsystems,
defined by (8) and (9)

b) Solve subproblem
Pp (xp(k), ỹp(k . . . k + T |k))

6) Go to 3
Note that Step 1 does not require finding the optimal
solution of the centralized problem, although that is one
way of finding the initial plan.

Theorem: Robust Feasibility If a feasible solution to the
initial problemPC(x1(0), . . . ,xNp

(0)), solved in Step 1 of
Algorithm 1, can be found, then following Algorithm 1, all
subsequent optimizations will be feasible and the constraints
will be satisfied at every time step for all disturbance
sequences obeying (3).

Space restrictions preclude a complete proof, but the out-
line is as follows. It is necessary to consider only one time
step and show that feasibility at timek implies feasibility
at timek +1 for all disturbanceswp(k) obeying (3). Then,
by recursion, feasibility at time0 implies feasibility at all
future steps. The recursion is broken into multiple stages:

1) Assume a set of solutions is known for all subsystems
at time k satisfying the centralized problemPC(k)
(where the shortened index(k) denotes the problem
for all states at that time);

2) Show that given the assumption in Step 1, a feasible
solution can be found to the first subproblemP1(k+1)
for all disturbancesw1(k) by showing feasibility of
a candidate solution. The candidate is constructed by
shifting the previous plan, assumed known in Step 1,
by one time step and adding a perturbation sequence
using the predetermined controller

δu1(k + j + 1|k + 1) = K1(j)δx1(k + j + 1|k + 1)

3) Show that, under the assumption in Step 1, given
any solution to the subproblemPp(k + 1) for p ∈
{1, . . . , Np−1} then the next subproblemP(p+1)(k+
1) is feasible, again by showing feasibility of a
candidate sequence;

4) Show that if a feasible solution to the final subprob-
lemPNp(k+1) can be found, then the set of solutions
to all subproblemsPp(k + 1) satisfies the constraints
of the centralized problemPC(k + 1)

So the recursion sequence is: (solutions atk satisfyPC(k))
⇒ (subproblemP1(k + 1) is feasible)⇒ (subproblem
P2(k + 1) is feasible)⇒ . . . (subproblemPNp

(k + 1) is
feasible)⇒ (solutions atk + 1 satisfy PC(k + 1)). This
sequence is analogous to the procedure flow in Fig. 1:
the feasibility of each optimization problem follows from
the feasibility of the one immediately before it. The order
of constraint tightening is also related to the procedure

flow in Fig. 1(a), such that each subproblem is slightly
relaxed compared to its immediate predecessor, permitting
additional compensation for uncertainty at each step of the
algorithm.

Remark: Communication RequirementsThe formulation
presented involves a general form of team-wide output
constraints, with all constraints, coupling and individual,
represented in the same output vector. However, each
subsystem is typically only affected by a subset of these
constraints, and this structure can be exploited to reduce the
communication load. Two circumstances in particular offer
significant simplification: (a) if a constraint does not affect a
particular subsystem, it can be ignored in that subproblem,
and (b) if a constraint applies to only one subsystem, it
can be ignored by all others. These cases can be expressed
formally in terms of the output matrices. For (a), if all
entries in row i of matricesCp and Dp are zero, then
the corresponding output and constraints can be omitted
from subproblemPp and subsystemp does not need to
receive information on that output from other subsystems.
For (b), if all entries in rowi of matricesCq and Dq

for all other subsystemsq 6= p are zero, then outputi
and the corresponding constraints affectonly subsystemp.
Then subproblemPp must still include outputi and enforce
constraints upon it, but no information on that output need
be exchanged with other subsystems.

Remark: Set Approximation In some cases, the Pontrya-
gin differences in the set recursions (6) can lead to an
increase in the total number of constraints in the prob-
lem [20]. In these circumstances, it may be desirable to
use inner approximations of the constraint sets, leading to
a simpler but conservative controller. The robust feasibility
depends on the following consequence of the definition of
the Pontryagin difference

a ∈ A,b ∈ C ∼ A ⇒ (a + b) ∈ C (10)

Therefore, in place of the sets defined in (6), the designer
may substitute any sets obeying the following conditions

YNp
(0) ⊆ Y

∀j ∈ {0 . . . T} ∀p ∈ {2 . . . Np}
Y(p−1)(j) ⊆ Yp(j) ∼ (Cp + DpKp(j))Lp(j)Wp

∀j ∈ {0 . . . T − 1}
YNp

(j + 1) ⊆ Y1(j) ∼ (C1 + D1K1(j))L1(j)W1

It is often possible to use techniques such as norm bounding
and induced norms to find suitable sets, using the property
in (10) to test inclusion within the Pontryagin difference.

V. EXAMPLES

The first example involves a simple problem in which
the positions of two 1-D double integrator systems are
to remain within 0.3 m of each other at all times in the
presence of a disturbance of up to 10% of the control
authority. For comparison, the problem is solved by three



Table I: Performance Comparison of Algorithms: total
control energy cost averaged over four randomly-disturbed
simulations.

Algorithm Control Cost

Centralized 1.94

Decentralized 2.51

Decoupled 3.71

different methods, centralized MPC, decentralized MPC and
a decoupled approach, in which each position is individually
constrained to remain within 0.15 m of the origin, ensuring
satisfaction of the coupled constraints without solving a
coupled problem. The cost function is the control energy.

Fig. 2(a) is a graph of the position states of the follower
plotted against those of the leader, both under the control of
centralized MPC. The coupling constraint requires that the
states remain between the dashed lines. The figure shows
that the constraints are satisfied at all times. Fig. 2(b) shows
the results from the decentralized algorithm, also obeying
the constraints at all times and giving a similar result
to centralized MPC. Fig. 2(c) shows the results from the
decoupled method. The dashed box shows the decoupled
constraints used to enforce satisfaction of the coupling
constraints. The results satisfy the coupling constraints but
it is clear that the problem is far more constrained than
either of the other two methods. Note that the results from
the decentralized method in Fig. 2(b) do not remain within
any possible decoupling constraints. Table I compares the
total control energy used by the three algorithms, averaged
over four different simulations, each with randomly-chosen
disturbances. The centralized algorithm has the lowest cost,
as it finds the system-wide optimal solution to the coupled
problem. The decoupled method has the highest cost, since
it involves artificially tight constraints. As might be ex-
pected, the cost of the decentralized method lies in between
that of the other two methods.

Fig. 3 shows the position time histories under decen-
tralized MPC for a similar problem with six subsystems,
each the same double-integrator as before and each pair
constrained to remain within 0.3 m. The lower plot in
Fig. 3 shows that the maximum separation is always less
than 0.3 m, hence the coupling constaints are satisfied.
Note that in the upper plot, the positions move beyond
the±0.15 m range of the decoupled solution, showing that
the decentralized method is again making use of its greater
constraint space. Fig. 4 compares averaged solution times
using the centralized and decentralized MPC schemes. The
decentralized MPC subproblem times are shown stacked as
they are solved sequentially. These results show that the
decentralized MPC has faster computation and is also more
scalable.
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Fig.2: Follower Positions vs. Leader Position using Three
Forms of MPC. The dashed lines mark the constraints.
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ration History (bottom) under DMPC.
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VI. CONCLUSIONS

A decentralized formulation of model predictive control
has been presented. It solves the problem of control of
multiple subsystems subjected to coupled constraints but
otherwise independent. Each subsystem solves a subprob-
lem involving only its own state predictions. The scheme is
proven to guarantee robust constraint satisfaction under the
assumption of bounded disturbance action. Each subprob-
lem is guaranteed to be feasible and no iteration between
subsystems is required.
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