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ABSTRACT 

 

The critical direction theory for analyzing the robustness of uncertain feedback systems is 
extended to include nonlinear elements in the closed loop, making the approach applicable 
to a wider class of systems.  A redefinition of the critical perturbation radius is introduced, 
preserving key properties of the original theory.  Necessary and sufficient conditions for 
robust stability are developed, and the case of real affine parametric uncertainties is 
treated in detail.  An example is presented to illustrate the theory. 

 

 
1.0 INTRODUCTION 

Much attention has been given to the problem of 
computing a robust stability margin for systems with 
frequency-domain uncertainty descriptions, including  
the structured singular value µ (Doyle, 1982) and the 
multivariable stability margin km  (Safonov, 1982).  
The critical direction theory developed by Latchman 
and Crisalle (1995) and by Latchman et al. (1997, 
2001) introduced the Nyquist robust stability margin 
k N , a scalar measure of robustness that has been 
effectively computed for single-input/single-output 
(SISO) systems with both convex (Latchman et al., 
1997) and non-convex (Baab et al., 2001) critical 
value sets.  This paper extends the critical direction 
theory to a class of closed-loop nonlinear systems 
whose stability properties can be analyzed using the 
describing function approach. 

2.0  GENERALIZATION OF THE 
CRITICAL DIRECTION THEORY 

2.1 Preliminaries 

Consider the SISO linear time-invariant system 

 g s g s so( ) ( ) ( )= +δ  (1) 
where g so ( )  is a known nominal transfer function and 

δ( )s ∈∆  is an unknown perturbation belonging to an 
unstructured uncertainty family 

 ∆: ( ) : | ( )| ( ), ( )= ≤ >δ δ ω ω ωs j r r 0l q  
characterized through a known radius function r( )ω . 

The uncertain system (1) is arranged in a negative 
feedback configuration that features  a nonlinear 
element f e( ) , as shown in Fig. 1.  For simplicity of 
exposition, the figure introduces a slight abuse of 
notation given that the map f e( ) : ℜ → ℜ  is a time-
domain operator, while g s( )  is a Laplace-domain 
operator. 

g s( )f e( )
ue

+ -
g s( )f e( )

ue

+ -
 

Figure 1.  Closed-loop configuration under 
negative feedback of a nonlinear operator 
f e( )  and an uncertain linear plant g s( ) . 

The robust stability analysis proposed here involves 
three assumptions: (i) the nominal transfer function is 
stable under unity negative feedback, (ii) the nominal 
transfer function g so ( )  and the uncertain system g s( )  
have the same number of unstable poles, and (iii) the 
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higher harmonics of the nonlinear element f e( )  can 
be neglected. 

2.2  Brief review of the critical direction theory 

The critical direction theory was initially developed 
for linear systems, namely, for the special case of Fig. 
1 with f e( ) = 1 .  Figure 2 shows a typical Nyquist 
diagram showing the nominal frequency response loci 
for g jo ( )ω .  The figure also shows the point 
representing the nominal frequency response 
g jo ( )ω1  at a specific frequency ω1 , along with its 
associated circular uncertainty value set V ( )ω1  of 
radius r( )ω1 .  For the specific case of circular value 
sets, the critical perturbation radius ρ ωc ( )  is defined 
as the distance from the nominal point g jo ( )ω  to the 
boundary of the uncertain circular value set, i.e. 

 ρ ω ωc r( ) ( )=  (2) 

The main result of the critical direction theory for 
linear systems is summarized in Theorem 1. 
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Figure 2.  Critical direction theory illustrating 
the location on the Nyquist plane of nominal 
point g jo ( )ω1  along its associated circular 
value set V ( )ω1  (shaded area) and critical 
perturbation radius ρ ωc ( )1  at a frequency 
ω1 . 

 

Theorem 1.  Let g jo ( )ω  be a nominal SISO system 
with an associated circular uncertainty set ∆ .  Then 
the closed loop system given in Fig. 1 with f e( ) = 1  is 
robustly stable with respect to uncertainties δ( )s ∈∆  
if and only if 
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The proof is omitted for brevity.  Details are given in 
Latchman et al. (1997).   

The Nyquist robust-stability margin is then defined as 

 k
g jN
c

o

( ): ( )
| ( )|

ω ρ ω
ω

=
+1

 (3) 

Let k kN N: max ( )= ω , where the maximization is 
carried out over all frequencies ω.  From Theorem 1 it 
is then obvious that a necessary and sufficient 
condition for robust stability is given by the inequality 

 k N < 1  (4) 

The calculation of the critical perturbation radius is 
often the most challenging problem to address when 
applying the critical direction theory to extract 
numerical values for the Nyquist robust stability 
margin (3); however, for the case of circular value 
sets, the task is trivial given the relationship (2). 

2.3  Brief review of the describing function method 

Consider now the nonlinear feedback loop shown in 
Fig. 1 with f e( ) ≠ 1 .  The analysis of closed loop 
stability via the describing-function method hinges on 
determining whether the limiting-stability condition of 
sustained signal oscillation can occur (Khalil, 1992).  
In that limiting case, the feedback error e t( ) is 
sinusoidal, and it can be written as e t a t( ) sin= ω , 
where a > 0  is the signal amplitude.  Using a Fourier 
series expansion, the output from the nonlinear 
function f e( )  can be written in the form 

 f a t a a k t b k to k k
k

( sin ) ( cos sin )' ' 'ω ω ω= + +
∞

=
∑

1
 

which features a mean level ao
' , a set of fundamental 

components of amplitudes a1
'  and b1

' , and higher 
harmonic components of amplitudes ak

'  and bk
'  at 

frequencies kω , k = ∞2 3, , ,L  (Khalil, 1992). 

Assuming that all the higher harmonics can be 
neglected, the nonlinear function f e( )  can be 
approximated by its describing function 

 n a a j b
a

( ):= +1 1  (5) 

also referred to as the equivalent gain ,where 

 a f x x dx1
0

21( ) ( ) cosω
π

π
= z  

and 

 b f x x dx1
0

21( ) ( ) sinω
π

π
= z  

Hence, the describing function is a complex number 
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that depends on the amplitude of the sinusoid, and it 
can be represented as a loci of points on the complex 
plane.  It is useful to note that | ( )|n a ≠ 0  for all 
amplitudes a > 0 , which implies that the complex 
number 1/ ( )n a  is well defined at those amplitudes. 

The validity of the method relies on the assumption 
that the higher harmonics produced by the nonlinear 
function f e( )  can be discarded (Leigh, 1983).  This is 
ensured in all cases where the transfer function g s( )  
behaves as a low-pass filter.  

  

3.0  CRITICAL DIRECTION THEORY FOR 
NONLINEAR SYSTEMS 

In this section the critical direction theory is extended 
to nonlinear systems.  The concepts of critical 
direction, critical perturbation radius, and critical point 
are appropriately redefined to take into account the 
nonlinearity of the system. 

We restrict the analysis to cases where the higher 
harmonics are negligible, so that the describing 
function method is valid.  After substituting the 
nonlinear element f e( )  by its describing function 
n a( ) , the characteristic equation for the control 
configuration of Fig. 1 is 1 0+ =n a g s( ) ( ) .  
Rearranging terms yields the equivalent equality 

 g s
n a

( )
( )

= − 1  (6) 

In the suite we refer to the Nyquist map of −1/ ( )n a  
for a > 0  as the critical loci.  From the above equation 
it can be concluded that the robust stability of the 
closed loop is ensured if the value sets of g j( )ω  
exclude all points belonging to the critical loci.  Under 
the assumptions established earlier, this critical loci 
exclusion principle is in fact a necessary and sufficient 
condition for robust closed loop stability.  The 
following definitions introduce key concepts that are 
useful for formulating a nonlinear critical direction 
theory for systems with a circular uncertainty 
description (cf. Fig. 3 for a graphical interpretation): 

(1)  The critical directions 

 d j a
g j
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g j
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c

o

o

( , )
( )

( )

| ( )
( )

|
ω

ω

ω
= −

+

+

1

1  (7) 

are interpreted as a set of unit vectors originating 
at g jo ( )ω  and pointing towards the critical loci 
for all scalars a > 0 . 

(2)  The critical perturbation radii 

 ρ ω
α

α ωc oa z g j( , ) max { : ( )=
∈ℜ

=
+

  

 + ∈α ω ωd a Vc ( , ) ( ) }  (8) 

Equation (8) states that the critical perturbation radius 
for a convex value set V ( )ω is the distance from the 
nominal point go ( )ω  to the value-set boundary 
∂V ( )ω  along the critical direction d ac ( , )ω .  At each 
finite amplitude a let the critical value-set V ac ( , )ω  be 
defined as the subset of  points in V ( )ω that lie along 
the ray z g jo= ( )ω +α ωd ac ( , ) , α > 0 . Equation (8), 
however, is not suitable for non-convex critical value 
sets V ac ( , )ω .  Define the set of critical boundary 
intersections β ωc a( , ):=  { ( , ) ( )}V a Vc ω ω∩ ∂  
−{ ( )}g jo ω as the subset of points in V ac ( , )ω  that are 
also elements of the value-set boundary ∂V ( )ω , 
excluding the nominal point g jo ( )ω .  The following 
generalized definition of the critical perturbation 
radius, applicable to both the convex and non-convex 
cases, is proposed in a fashion analogous to that 
presented in Baab et al. (2001): 

ρ ω
ω ξ ω ω

ω ξ ω
c

o

o

a
n a

g j
n a

V

n a
g j

( , ):
|

( )
( )| ( )

( )
( )

|
( )

( )| ( )
=

+ − − ∉

+ +

R
S
||

T
||

1 1

1

if 

otherwise

  (9) 
where 

 ξ ω
β ω

( ) min
( , )

|
( )

|=
∈

+
z a n a

z
c

1  (10) 
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Figure 3.  A circular value set at a frequency 
ω1  (shaded region), the critical perturbation 
radius ρ ωc ( )1 , and the critical loci (dashed 
line). 

 

Equation (10) represents the closest distance from the 
critical loci −1/ ( )n a  to a point in β ωc a( , ) .  The 
upper statement in Eq. (9) states that when the critical 
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loci is not an element of the uncertainty value set 
V ( )ω , the critical perturbation radius ρ ωc a( , )  is 
defined as the difference between two distances, 
namely, the distance from the critical loci to the 
nominal point (represented by | / ( ) ( )|1 n a g job g+ ω ) 
and the distance from the critical loci to the closest 
critical-boundary intersection (represented by ξ ω( ) ).  
Alternatively, when the critical loci is an element of 
the uncertainty value set, the lower statement in Eq. 
(9) states that the critical perturbation is the sum of the 
two respective distances.  Note that when the critical 
value set is convex, Eq. (9) reduces to Eq. (8) because 
in that case there is only one critical boundary 
intersection.  To calculate the critical perturbation 
radius (9) it is necessary to have full knowledge of the 
critical boundary intersections β ωc a( , )  and to 
evaluate whether the set membership condition 
− ∈1/ ( ) ( )n a V ω  holds.  It should be noted that 
ρ ωc a( , ) ≥ 0  for all frequencies. 

At a given frequencyω1 , the set of critical-lines is 
defined as the set of oriented lines with origin at the 
nominal point g jo ( )ω1 , and  that pass through any 
point in the critical loci −1/ ( )n a .  The critical 
perturbation radius ρ ωc a( , )1  is interpreted as the 
distance from the nominal point to the point where the 
critical line defined for an amplitude a  intersects the 
uncertain value set.  Finally, the Nyquist robust 
stability margin for nonlinear systems is defined as 

 k
a

a

n a
g j

N
c

o

( ): max
( , )

|
( )

( ) |
ω ρ ω

ω
=

> +0 1  (11) 

The ensuing robust-stability theorems for nonlinear 
systems use the assumptions (i)-(iii) invoked 
previously. 

Theorem 2.  Let g so ( )  be a nominal system with an 
associated uncertainty set ∆ .  Then the closed loop 
system given in Figure 1 is robustly stable with respect 
to all uncertainties δ( )s ∈∆  if and only if 

 k N ( ) .ω ω< ∀ ≥1 0   (12) 

A complete proof is found in Latchman and Crisalle 
(1997) for the case where Vc ( )ω  is convex.  The proof 
given here is for the non-convex case, and it takes 
advantage of the general definition (9).  From the 
critical-loci exclusion principle it follows that the 
uncertain closed loop is stable if and only if 
− ∉ ∀1/ ( ) ( )n a V ω ω .  Therefore, to prove that (12) 
is sufficient for robust stability, it must be shown that 
k N ( )ω ω< ∀1  implies that − ∉ ∀1/ ( ) ( )n a V ω ω .  
To prove this by contradiction first assume that 

k N ( )ω ω< ∀1  and that ∃ ω  such that 
− ∈1/ ( ) ( )n a V ω .  Applying definitions (9) and (11) 
for a frequency at which − ∈1/ ( ) ( )n a V ω  yields 

 k

n a
g j

n a
g j

N
c

o o

( )
( )

|
( )

( )|

( )

|
( )

( )|
ω ρ ω

ω

ξ ω

ω
=

+
= +

+1 1 1  

where from Eq. (10) the real scalar ξ ω( )  is  non-
negative.  Therefore k N ( )ω ≥ 1  for at least one 
frequency, which contradicts the assumption.   Thus, if 
k N ( )ω ω< ∀1  it must follow that 
− ∉ ∀1/ ( ) ( )n a V ω ω .  To prove that (12) is 
necessary for robust stability it must be shown that  
− ∉ ∀1/ ( ) ( )n a V ω ω  implies that k N ( )ω ω< ∀1 .  
Applying definitions (9) and (11) when 
− ∉1/ ( ) ( )n a V ω  yields 

k

n a
g j

n a
g j

N
c

o o

( )
( )

|
( )

( )|

( )

|
( )

( )|
ω ρ ω

ω

ξ ω

ω
ω=

+
= −

+
∀1 1 1  

where ξ ω( )  is given by (10).  Because 
− ∉1/ ( ) ( )n a V ω  by assumption,  it follows that 
− ∉1/ ( ) ( , )n a acβ ω , and thus ξ ω( )  must be strictly 
positive.  This fact is now used in the above equation 
to lead to the conclusion that k N ( )ω ω< ∀1 and that 
Eq. (12) is a necessary and sufficient condition for 
robust stability.  Q.E.D. 

It should be noted that the Nyquist robust stability 
margin must be less than unity at all nonnegative 
frequencies and positive amplitudes to guarantee 
stability; therefore, k N ( )ω  must be maximized over 
all frequencies in order to assess robust stability.  Let 

 k kN N: max ( )=
≥ω

ω
0

 (13) 

Then, from Theorem 2 it follows that a necessary and 
sufficient condition for the robust stability of the 
uncertain nonlinear closed loop is that k N < 1 . 

Note that the computation of k N ( )ω  requires 
knowledge of the critical perturbation radius (9).  The 
challenging task in this problem is to calculate the 
critical perturbation radius. 

Also note that when V ac ( , )ω  is convex, Eq. (8) 
indicates that ρ ωc a( , ) is associated with the unique 
point where the critical line intersects the boundary of 
the uncertain value set V ( )ω .  However, when 
V ac ( , )ω  is non-convex, there are multiple points 
where the critical line intersects V ( )ω .  Then Eq. (9) 
states that ρ ωc ( )  is a function of the distance 
between g jo ( )ω  and the boundary-intersection point 
that is closest to the critical loci. 
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4.0  REAL AFFINE PARAMETRIC 
UNCERTAINTY 

The generalized critical direction theory developed in 
Section 3 is specialized to systems with real affine 
parametric uncertainties of the form 

 g s
n s q n s

d s q d s

Q
i i

i

p

i i
i

p( , )
( ) ( )

( ) ( )

,q q=
+

+

∈=

=

∑

∑

0
1

0
1

 (14) 

where n s n sk
k

k0 00( ):= =∑l  and d s d sk
k

k

m

0 0
0

( ):=
=
∑  

are known nominal polynomials; 

 n s n si ik
k

k
( ) =

=
∑

0

l

 

and 

 d s d si ik
k

k

m
( ) =

=
∑

0
 

are known perturbation polynomials; and 
q = ∈[ ... ]q q q Rp

p
1 2

T  is a vector of real 
perturbation parameters belonging to the bounded 
rectangular polytope 

 Q R q q q i pp
i i i= ∈ ≤ ≤ =− +q : , , , ... ,1 2{ }  (15) 

where qi
−  and qi

+ , i  = 1, 2, ... , p, are finite real 
bounds.  Equations (14) and (15) define a class of 
finite dimensional, linear, time-invariant, real plants 
with affine uncertainties. 

The computation of the Nyquist robust stability  
margin k N ( )ω  for the affine system (14)-(15)  
requires that the critical perturbation radius ρ ωc a( , )  
be calculated first.  As illustrated by (9) and (10), this 
in turn requires determining the set β ωc a( , ) .  This 
task is easily accomplished because, for the case of 
affine-uncertain systems of the form given by (14), 
Baab et al. (2001) have developed a two-step strategy 
that effectively determines all the elements of the set 
β ωc a( , ) .  Details are omitted here for brevity   

5.0  EXAMPLE 

Consider the system with affine uncertainty structure 

 g s
n s
d s

( , )
( )
( )

q =  

where 

n s s s s s s q( ) ( . . . ) ( . . )= + + + + + +0 6 2 9 7 5 15 012 0 7 13 2 2
1  

 + + + − −( . . ) ( . )0 06 0 2 0 3 12
2 3s s q s q  

d s s s s s s s s q( ) ( . ) ( . )= + + + + + + −2 11 30 20 0 2 05 24 3 2 3 2
1  

 + − + + +( . ) ( . )05 053 2
2

3
3s s q s s q  

and where the parameter uncertainty vector belongs to 
the rectangular polytope 

 Q R q q= ∈ − ≤ ≤ − ≤ ≤{ : , . . ,q 3
1 210 10 0 3 0 3  

   − ≤ ≤0 3 0 33. . }q  
For illustrative purposes, the describing function 
considered in this example is  

 n a j
a

( ) = +7
4

π
 

The critical loci −1/ ( )n a is plotted in Fig. 4.  The 
figure also shows a value set V ( )ω  for the uncertain 
affine system at frequency ω = 16. .  The set of arcs of 
circles and straight-line segments shown belong to the 
value set, and the value-set boundary ∂V ( )ω  is 
readily determined from a subset of those segments.  It 
is straightforward to verify that the system has a non-
convex critical uncertainty value set V ac ( , )ω  at the 
frequency ω = 16.  and at an amplitude a = 0.11, as 
can be determined by inspection: the straight-line 
segment joining the nominal point with the point 
−1/ ( )n a  at a = 0.11 defines two disjoint segments as 
it intersects the  value set.   The set V ac ( , )ω  at the 
amplitude in question is the union of those two disjoint 
segments. 

The critical perturbation radius at ω = 16.  can be 
calculated from the upper statement of Eq. (9) because 
from an inspection of Figure 4 it can be readily 
determined that − ∉1/ ( ) ( )n a V ω  for all possible 
amplitudes a.  Such graphical analysis, however, is not 
practical when carrying out extensive calculations at 
all frequencies of interest..  It is possible, however, to 
avoid such graphical inspections using a procedure 
proposed by Baab et al. (2001) where the problem of 
determining whether − ∉1/ ( ) ( )n a V ω  is shown to be 
equivalent to solving a linear feasibility problem that 
can be resolved in a numerically efficient fashion.. 

The critical perturbation radius ρ ωc ( )  and Nyquist 
robust stability margin k N ( )ω  can now be calculated 
for any frequency using the method described in 
Section 4 and the techniques proposed in Baab et al. 
(2001).  Invoking Eq. (9) it is readily determined that 
at the frequency ω = 16.  the Nyquist robust stability 
margin has the value 

 k N ( . ) .16 0 7698=  

The result that k N ( . )16 1<  is consistent with the 
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graphical observation that the value set does not 
include the critical loci at this frequency. 

 
Figure 4.  Critical loci −1/ ( )n a  and value set 
for the example system at the frequency 
ω = 16. .  A straight-line segment is shown 
joining the nominal point g jo ( )ω with the 
critical loci point −1/ ( )n a  defined at the 
amplitude a = 0.11. 

 
Figure 5.  Nyquist robust stability margin versus 
the frequency for real, affine parametric 
uncertainties 

Figure 5 illustrates the values of k N ( )ω  calculated for 
a sequence of 200 frequency points equally spaced in a 
logarithmic scale in the range [0.001, 10].  From Fig. 5 
it is readily concluded that at some frequencies 
k N ( )ω > 1 , making the closed loop unstable with 
respect to the given uncertainty by virtue of Theorem 
2. 

6.0  CONCLUSIONS 

The theory presented for analyzing the robust stability 
of a certain class of nonlinear closed loops affected 
with unstructured uncertainty is complete, systematic, 

and numerically tractable.  Extensions of the approach 
to other kinds of uncertainty descriptions are possible; 
however the usefulness of the results depends on 
whether the critical perturbation radius can be 
computed precisely and efficiently. 
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