
 
 

 

  
Abstract—This paper discusses the implementation of a 

structural health monitoring (SHM) technique on a numerical 
model of the Bill Emerson Memorial Bridge. The method uses 
the natural excitation technique (NExT) and the eigensystem 
realization algorithm (ERA) to identify the modal parameters 
of the structure. A least squares solution of the eigenvalue 
problem is used to detect elemental structural parameters 
from the identified modal parameters.  Damage is identified 
by comparing the elemental parameters before and after 
damage.  It is found that the singular values of the Hankel 
matrix are not a reliable approach to determine the number of 
modal parameters identified with the ERA for this type of 
structure. A variation of the method is used to differentiate 
between computational values due to noise and numerical 
errors and those representing the structural characteristics. 

I. INTRODUCTION 
URRENTLY visual inspection is the used to assess the 
condition of structures such as buildings and bridges. 

This method requires a considerable amount of manpower 
and special equipment, and is thus a slow, expensive and a 
subjective process. When several structures need to be 
inspected promptly after a severe natural event, (e.g. an 
earthquake, or hurricane) the process might take several 
days or weeks, impeding rescue efforts to affected areas 
and potentially disrupting the economy. This implies a need 
to develop faster, more reliable and less expensive 
strategies to improve the structural inspection process.  

Structural Health Monitoring (SHM) uses innovative 
technologies to determine the existence, type, extent and 
location of damage in structures. The implementation of 
such technologies optimizes the resources for structural 
inspection, giving owners vital information for decision 
making. Large structures, such as cable-stayed bridges and 
skyscrapers, are the first structures in which SHM 
methodologies would be implemented because of their 
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importance and cost. This type of structure has complex 
dynamic behavior (i.e. low frequencies, closely spaced 
modes, etc.), increasing the challenges to overcome by 
SHM methods based on the structure’s dynamics. 

This paper discusses the implementation of a SHM 
method to detect damage on a numerical model of a cable-
stayed bridge. Accelerations are used to simulate 
measurement of the structural responses. The bridge used 
for this study is the Bill Emerson Memorial Bridge, located 
in Cape Girardeau, Missouri. Construction of the bridge 
was finished in January of 2004 and instrumentation will 
be permanently installed, opening the possibilities of 
implementing the described methodology on the real 
structure. A finite element model of the bridge, developed 
based on detailed drawings of the structure [4], [5], is used 
in simulations to generate response data. A simpler second 
identification model is used for damage detection. The 
SHM method is described, the finite element model is 
discussed, and the main results are presented. The method 
has been found to be effective for the detection of damage 
in the bridge structure. Additionally it is implementable on 
substructures, or portions of the bridge [3], making this 
technique attractive for such applications.   

II. SHM METHOD 
The SHM method used in this paper employs the 

eigenvalue problem of the undamped equations of motion 
to identify stiffness values. Changes in the identified 
stiffness values will indicate the existence, location and 
extent of damage in a structure. Techniques currently 
available in the literature are used to obtain the modal 
parameters of the structure from acceleration records, 
validating their use for this type of civil structure. 

A. Modal Parameters Identification 
The first step of the SHM method is the identification of 

modal parameters. The Natural Excitation Technique 
(NExT) and the Eigensystem Realization Algorithm (ERA) 
are used herein. NExT allows one to obtain data that can be 
treated as free responses from a structure when the input is 
not measured, or is actually unmeasurable. Here the 
excitation is assumed to be stationary with frequency 
content that spans the modes of vibration of the structure, 
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and uncorrelated with prior responses of the structure. The 
technique was developed by James et al. [7], and shows 
that the matrix of correlation functions between the 
responses of the system and a response to be selected to be 
the reference response is a solution of the homogenous 
matrix equation of motion. The ERA was developed by 
Juang and Pappa in 1985 [8], and it has been shown to be 
an effective method for modal identification of flexible 
structures. This algorithm uses the principles of minimum 
realization to obtain a state space representation of the 
system using the free response data obtained from NExT. 
The natural frequencies and mode shapes of the structure 
are calculated from the state space representation.  In the 
calculations of the realization of the system a singular value 
decomposition of the Hankel matrix is performed. These 
singular values can be normally used to determine the 
number of identified modal parameters. Higher singular 
values will correspond to information from the structure 
while low singular values are numerical modes. 

B. Elemental Structural Parameters 
Parameters of the structural elements are obtained in the 

second part of the method. For this step, a least squares 
solution of the eigenvalue problem is used [2], [3]. The 
problem is formulated using a finite element model of an 
identification model, for straightforward implementation. 
In this paper the structural parameter to be identified is 
Young’s modulus of the element, although other 
parameters such as area or moment of inertia can be 
obtained using this technique. Consider the undamped 
eigenvalue problem 

0)( =− ii φλ MK   (1) 

where K and M are the n by n stiffness and mass matrices, 
respectively, and iλ  and iφ  are the i-th eigenvalue and 

eigenvector. Equation (1) can be written as 

iii φλφ MK =  (2) 

Typically the number of identified modes is significantly 
smaller than the number of degrees of freedom in the 
identification model. Thus, from (2) it is not generally 
possible to determine K because there are n(n+1)/2 
unknowns (due to symmetry), and there are only n x m 
equations, where m is the number of identified natural 
frequencies and mode shapes. Equation (2) can be rewritten 
as 

iii r φλθ M=  (3) 

where iθ  is a matrix formed using the elements of the i-th 
eigenvector iφ  and r is a vector of the unknown 
parameters. The vector of unknown parameters r can be 
obtained using 

ΓΘ= −Pr  (4) 

where ( )-P denotes the pseudoinverse and 
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If more equations are available than unknowns, the 
solution is equivalent to a least squares solution for the 
unknown parameters.  

As shown by Caicedo [2] [3], the procedure to obtain the 
matrix iθ  in (3) can be automated in a way similar to the 
development of the finite element method. First, 
identification matrices for each element of the finite 
element identification model are obtained. Then, a 
coordinate transformation is performed to transform local 
coordinates to global coordinates. The next step is to 
assemble a global identification matrix with all the 
elemental matrices. Finally, constraint equations and 
boundary conditions are applied. One of the advantages of 
this methodology is the ability to include known 
information of structural parameters to reduce the number 
of unknowns and the possibility to apply the methodology 
to a portion of the structure reducing the number of sensors 
needed for implementation. 

III. BRIDGE DESCRIPTION 
The cable-stayed bridge considered in this paper is the Bill 
Emerson Memorial Bridge. The bridge is located in Cape 
Girardeau, Missouri spanning the Mississippi River on 
Missouri 74–Illinois 146. The bridge was designed by the 

Figure 1. Construction of the Bill Emerson Memorial Bridge 
Source: http://www.modot.state.mo.us/local/d10/emersonbridge 



 
 

 

HNTB Corporation [6] and construction was completed in 
January of 2004. Instrumentation will be installed on the 
Emerson Bridge and surrounding soil to evaluate the 
structural behavior and seismic risk. 

The bridge is composed of two towers, 128 cables, and 
12 additional piers in the approach bridge from the Illinois 
side. It has a total length of 1205.8 m (3956 ft.) with a main 
span of 350.6 m (1150 ft.) and side spans of 142.7 m (468 
ft.) in length. The approach on the Illinois side is 570 m 
(1870 ft.). The bridge has four lanes plus two narrower 
bicycle lanes, for a total width of 29.3 m (96 ft.). The deck 
is composed of steel beams and prestressed concrete slabs. 
Steel, ASTM A709 grade 50W, is used, with an fy of 344 
MPa (50 ksi). The concrete slabs are made of prestressed 
concrete with a f’c of 41.36 MPa (6 ksi). Additionally, a 
concrete barrier is located in the center of the bridge, and a 
railing is located along the edges of the deck. 

A. Finite Element Model 
Based on detailed drawings of the Emerson Bridge, a 

three-dimensional finite element model was developed in 
Matlab [10]. The model was originally developed for the 
benchmark problem in structural control of cable-stayed 
bridges under seismic excitation [4], [5] and has been 
modified to study the advantages and disadvantages of 
different SHM techniques. A linear model is used in this 
paper. However, the stiffness matrices used in this linear 
model are those of the structure determined through a 
nonlinear static analysis corresponding to the deformed 
state of the bridge with dead loads [13]. Cable-stayed 
bridges behave nonlinearly under dead loads even when the 
material is in the linear range. These nonlinearities are due 
to three major factors: i) nonlinear behavior in the cables; 
ii) beam-column effects due to large compression forces; 
and iii) large displacements producing changes in geometry 
[11]-[13]. All these factors were considered in the 
development of this finite element model of the Emerson 
Bridge. Additionally, the bridge is assumed to be attached 
to bedrock, and the effects of soil–structure interaction are 
neglected.  

The finite element model employs beam elements, cable 
elements, rigid links and lumped masses. The nonlinear 

static analysis is performed in Matlab using a finite element 
toolbox developed at Washington University. The finite 
element model, shown in Fig. 2, has a total of 572 nodes, 
418 rigid links, 156 beam elements, 198 nodal masses and 
128 cable elements. The towers are modeled using 224 
nodes, 80 beam elements and 144 rigid links. Constraint 
equations are applied to restrict the deck from moving in 
the lateral and vertical directions and rotate with respect to 
the x axis at all supports. Because the attachment points of 
the cables to the deck are above the neutral axis of the 
deck, and the attachment points of the cables to the tower 
are outside the neutral axis of the tower, rigid links are used 
to connect the cables to the tower and to the deck. The use 
of the rigid links ensures that the length and inclination 
angles of the cables in the model agree with the drawings. 
Additionally, the moment induced in the towers by the 
movement of the cables is taken into consideration in this 
approach. In the case of variable sections, the average of 
the section is used for the finite element.  

The deck was modeled using the method described by 
Wilson and Gravelle [13]. In this approach the deck is 
modeled as a central beam (the spine) which has no 
translational mass. Lumped masses are employed to model 
the mass of the deck, and are connected to the spine using 
rigid links. The masses are included to more realistically 
model the torsional response of the deck to lateral loads, 
and have been shown to be important in the modeling of 
this structure [1]. 

This paper focuses on damage of the deck, although the 
applied methodology could readily be applied to other 
locations. Damage in the structure is simulated by reducing 
Young’s modulus of certain structural elements. Two case 
scenarios are studied herein. In the first case Young’s 
modulus of element 5 (see Fig 2) is reduced by 30% and in 
the second case Young’s modulus of element 20 is reduced 
by 20%. 

B. Identification Model 
To develop the most effective identification model 

several candidates were constructed for testing. Each 
candidate was tested using the theoretical natural 
frequencies and mode shapes and the least square solution 
of the eigenvalue problem. The first identification model 
was constructed using the same degrees of freedom as are 
in the finite element model. Subsequently, degrees of 
freedom in the identification model were restrained to 
determine detect the effects of modeling errors in the 
structural parameter identification process.  

The results of this comparative study indicated that when 
either rotational degrees of freedom with respect to the z 
axis, or displacement with respect to the y axis are 
restrained, the modeling errors in the structure are large and 
damage can not be identified. 

The identification model selected was also modified to Figure 2. Finite Element Model 
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study the possibility of dividing the deck into several 
substructures. This model representing a substructure, or 
portion of the deck, considers only the degrees of freedom 
of the deck between Bent 1 and Pier 2. Damage between 
elements 1 and 16 may be identified by this model, and 
damage outside these elements should not affect the 
identified change in stiffness between Bent 1 and Pier 2. 
The successful development of techniques that are 
applicable to substructures would allow for methods that 
can focus on critical parts of the structure or locations 
which are difficult access. This identification model has a 
total of 62 DOF. 

IV. NUMERICAL RESULTS 

A. Modal Identification 
NExT and ERA are applied using 30 minutes of 

acceleration records for the identification of natural 
frequencies, mode shapes and damping ratios. A sampling 
rate of 3Hz was used for these records, which is capable of 

measuring the first 11 vertical modes of the structure. 
When calculating the cross spectral density function, a 
boxcar window of 512 points and 75% overlapping 
between frames is used. In the ERA, 77 points of the cross 
spectral density functions are used to form a 40 by 1200 
Hankel matrix. In selecting the size of the Hankel matrix, 
special care was taken to select only the part of the cross 
correlation function that clearly shows a decay, avoiding 
the “noisy” data at the end of the cross-correlation function 
as shown in Figure 3.  

Figure 4 provides a typical plot of the singular values of 
the Hankel matrix for the ERA calculations. Note that the 
singular values decrease gradually in contrast to the sharp 
decreases observed in other structures. Theoretically, 11 
vertical modes would be identified in this exercise 
producing a jump after the 22nd singular value. This effect 
is not observed in this example. By examining the 
distribution of the singular values alone, it is not possible to 
determine the number of frequencies to be identified. 

NExT is applied by selecting a single reference channel. 
This reference channel should be selected at a point on the 
structure that is far from a node of vibration. In buildings 
the obvious solution would be a sensor located on the roof 
of the structure, but for this implementation the selection of 
the reference channel is not obvious. Only one column of 
the full cross correlation function matrix will be used for 
one reference channel, but the same method can be applied 
to all the columns of the cross correlation function matrix 
by selecting each channel as the reference. This approach 
will result in l sets of identified natural frequencies and 
mode shapes, where l is the number of reference channels.  

Figure 5.a shows the identified natural frequencies using 
each channel of data as a reference channel. Correct natural 
frequencies appear at the same frequency for several 
reference channels while numerical errors appear as 
isolated frequencies in few reference channels. The natural 
frequencies of the structure can be obtained using the 
histogram of the identified natural frequencies shown in 
Fig. 5.b 

Table 1 shows the natural frequencies identified using 
NExT and ERA. Different sets of natural frequencies are 
identified for the different damage cases. The 6th, 9th, 10th 
and 11th modes are not identified for the healthy structure; 
the 4th, 6th, 10th, and 11th modes are not identified for the 
first damage case; and for the second damage case the 1st, 
8th, and 11th modes are not identified. Note that the least 
squares solution of the eigenvalue problem can be applied, 
even though the same modes are not obtained in each case. 

 
 
 
 
 Figure 4. Singular values of the Hankel matrix 
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Figure 3. Typical cross correlation function 
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TABLE I 
IDENTIFIED NATURAL FREQUENCIES FOR DAMAGE SCENARIOS 

Freq. No Undamage
d 

(Hz) 

30% at 5 
(Hz) 

20% at 20 
(Hz) 

1 0.2922 0.2937 - 
2 0.3892 0.3882 0.3936 
3 0.6024 0.5967 0.6064 
4 0.6639 - 0.6594 
5 0.7353 0.7300 0.7242 
6 - - 0.8925 
7 1.0326 1.0378 1.0255 
8 1.0762 1.0737 - 
9 - 1.0899 1.0969 

10 - - 1.2703 
 
Similarly, the identified mode shapes are slightly 

different for various reference channels. This variation can 
be used as a measure of the accuracy of the identified mode 
shape. Figure 6 shows the average, upper bound, and lower 

bound of the 1st and 6th identified modes for the 
undamaged case. To compute the average, the identified 
modes were each normalized to have a maximum value 
equal to one. After the average is computer, each mode is 
then scaled with respect to the maximum point of the 
average mode to compute the deviation. The maximum 
difference between the upper bound and the lower bound 
for the 1st mode shape is 0.028, and for the 6th mode shape 
is 0.254 indicating that the 1st mode shape is more 
precisely identified. This error between the upper and 
lower bounds can be used as a measure to accept or reject 
an identified mode. It was found that closely spaced modes 
present higher errors in the estimation of the mode shapes 
than modes that are separate  

B. Structural Parameters 
Figure 7 shows the identified loss in stiffness in the damage 
scenarios. Damage can be clearly located and quantified 
through the loss in the stiffness of element number five for 
the first damage case, as shown in Fig. 7.a. The second 
damage case did not significantly affect the identified 

(a) Frequencies by Reference Channel 

(b) Histrogram 

Figure 5. Identified natural frequencies with different reference 
channels 
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Figure 6. Identified mode shapes 

(a) 1st mode shape 
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change in stiffness between Bent 1 and Pier 2, indicating 
that the methodology can be applied to a substructure (see 
Fig. 7.b). 

V. CONCLUSIONS 
This study demonstrates the efficacy for structural health 

monitoring techniques as applied to cable-stayed bridges. 
The results demonstrate that this technique can be applied 
to detect damage in the bridge when an appropriate 
identification model is employed. The NExT and ERA 
correctly identified natural frequencies and mode shapes of 
the structure using 30 minute records with a sampling 
frequency of 3Hz. Long records are needed in this type of 
structure because of their low frequency behavior, although 
a high sampling rate is not necessary. Seven of the eleven 
existing modes in the frequency range considered were 
identified for the undamaged structure. Even though not all 
of the available modes were identified, the identification of 
damage was accurate. The identified mode shapes using 
two different reference channels vary somewhat. A set of 
natural frequencies and mode shapes for a particular mode 
can be obtained by applying the methodology using 

different reference channels. A lower bound and upper 
bound for the estimated mode shapes can be obtained from 
this set, indicating the variability in the identification 
process.  
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Figure 7. Stiffness Change 
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