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Abstract— In this paper, we extend the concepts of dissipa-
tivity and exponential dissipativity to provide new sufficient
conditions for guaranteeing asymptotic stability of a time
delay dynamical system. Specifically, representing a time delay
dynamical system as a negative feedback interconnection of
a finite-dimensional linear dynamical system and an infinite-
dimensional time delay operator, we show that the time delay
operator is dissipative. As a special case of this result we
show that the storage functional of the dissipative delay
operator involves an integral term identical to the integral
term appearing in standard Lyapunov-Krasovskii functionals.
Finally, using stability of feedback interconnection results for
dissipative systems, we develop new sufficient conditions for
asymptotic stability of time delay dynamical systems. The
overall approach provides an explicit framework for construct-
ing Lyapunov-Krasovskii functionals as well as deriving new
sufficient conditions for stability analysis of asymptotically
stable time delay dynamical systems based on the dissipativity
properties of the time delay operator.

I. I NTRODUCTION

Modern complex engineering systems involve a multi-
tude of information and communication networks. A key
physical limitation of such systems is that power transfers
between interconnecting system components are not instan-
taneous and realistic models for capturing the dynamics
of such systems should account for information in transit
[1]. To accurately describe the evolution of these complex
systems, it is necessary to include in any mathematical
model of the system dynamics some information of the
past system states. This leads to (infinite-dimensional) delay
dynamical systems. Time-delay dynamical systems have
been extensively studied in the literature (see [1–10] and
the numerous references therein). Since time delay can
severely degrade system performance and in many cases
drive the system to instability, stability analysis of time
delay dynamical systems remains a very important area of
research [8–11]. A key method for analyzing stability of
time delay dynamical systems is Lyapunov’s second method
as applied to functional differential equations. Specifically,
stability analysis of a given linear time delay dynamical
system is typically shown using a Lyapunov-Krasovskii
functional [4], [11]. Standard Lyapunov-Krasovskii func-
tionals involve a fixed quadratic function and an integral
functional explicitly dependent on the system time delay. As
in classical absolute stability theory [12], the fixed quadratic
part of the Lyapunov-Krasovskii functional is associated
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with the stability of the forward delay-independent part
of the retarded dynamical system. However, the system-
theoretic foundation of the integral part of the Lyapunov-
Krasovskii functional is less understood.

In this paper, we extend the notions of dissipativity [13]
and exponential dissipativity [14] theory to derive new
sufficient conditions for guaranteeing asymptotic stability
of time delay dynamical systems. Specifically, we intro-
duce the notion ofdynamic dissipativity; namely,(Σ, Q̂)-
dissipativity, whereΣ is a dynamical system and̂Q is a
symmetric matrix. By choosing a certain dynamical system
Σ and a symmetric matrixQ̂ it can be shown that a
systemG is (Σ, Q̂)-dissipative if and only ifG is dissipative
with respect to a quadratic supply rate. Thus,(Σ, Q̂)-
disspaitivity provides a nontrivial extension of dissipativity
theory with respect to a quadratic supply rate. Based on
(Σ, Q̂)-dissipativity theory, we then provide a result on
stability of negative feedback interconnection of(Σ, Q̂)-
dissipative systems. Next, representing a time delay dy-
namical system as a negative feedback interconnection of a
finite-dimensional linear dynamical system and an infinite-
dimensional time delay operator, we show that the time
delay operator is(Σd, Q̂d)-dissipative. Furthermore, for a
special choice ofΣd and Q̂d, we show that the storage
functional of the time-delay operator involves an integral
term which is identical to the integral term appearing in the
Lyapunov-Krasovskii functional. Thus the overall approach
provides an explicit framework for constructing Lyapunov-
Krasovskii functionals as well as deriving new sufficient
conditions for stability analysis of asymptotically stable
time delay dynamical systems based on the dissipativity
properties of the time delay operator.

II. M ATHEMATICAL PRELIMINARIES

In this section we introduce notation, several definitions,
and some key results concerning dynamical systems that
are necessary for developing the main results of this paper.
Specifically,R denotes the reals andRn is ann-dimensional
linear vector space over the reals with Euclidean norm‖ ·‖.
Let C([a, b],Rn) denote a Banach space of continuous func-
tions mapping the interval[a, b] into Rn with the topology
of uniform convergence. For a given real numberτ ≥ 0 if
[a, b] = [−τ, 0] we letC = C([−τ, 0],Rn) and designate the
norm of an elementφ in C by |||φ||| = supθ∈[−τ,0] ‖φ(θ)‖.
If α, β ∈ R andx ∈ C([α − τ, α + β],Rn), then for every
t ∈ [α, α+β], we letxt ∈ C be defined byxt(θ) = x(t+θ),
θ ∈ [−τ, 0]. Furthermore, forM ∈ Rm×n, we writeMT to
denote the transpose ofM andM ≥ 0 (resp.,M > 0) to
denote the fact that the symmetric matrixM is nonnegative



(resp., positive) definite. LetG(s) ∼
[
A B
C D

]
denote a

state space realization of a transfer functionG(s); that is,
G(s) = C(sI − A)−1B + D. The notation “

min∼ ” is used
to denote a minimal realization. Finally, we writeIn to
denote then×n identity matrix andC0 to denote continuous
functions.

In this paper we represent dynamical systemsG defined
on the semi-infinite interval[0,∞) as a mapping between
function spaces satisfying an appropriate set of axioms. For
the following definitionU is an input space and consists
of bounded continuousU -valued functions on[0,∞). The
set U ⊆ Rm contains the set of input values; that is, at
any time t, u(t) ∈ U . The spaceU is assumed to be
closed under the shift operator; that is, ifu ∈ U , then the
function uT defined byuT (t) = u(t + T ) is contained in
U for all T ≥ 0. Furthermore,Y is an output space and
consists of continuousY -valued functions on[0,∞). The
setY ⊆ Rl contains the set of output values; that is, each
value of y(t) ∈ Y , t ≥ 0. The spaceY is assumed to be
closed under the shift operator; that is, ify ∈ Y, then the
function yT defined byyT (t) = y(t+T ) is contained inY
for all T ≥ 0. Finally, D is a metric space with topology
of uniform convergence and metricρ : D × D → [0,∞).
Hence, the notions of openness, convergence, continuity,
and compactness that we use in the paper refer to the
topology generated onD by the metricρ(·, ·).

Definition 2.1 ( [13]): A stationary dynamical systemon
D is the octuple(D,U , U,Y, Y, [0,∞), s, q), where s :
[0,∞) × D × U → D and q : D × U → Y are such
that the following axioms hold:

i) (Continuity):s(·, ·, u) is jointly continuous for allu ∈
U .

ii) (Consistency):s(0, x0, u) = x0 for all x0 ∈ D and
u ∈ U .

iii) (Determinism):s(t, x0, u1) = s(t, x0, u2) for all t ∈
[0,∞), x0 ∈ D, andu1, u2 ∈ U satisfyingu1(τ) =
u2(τ), τ ≤ t.

iv) (Semi-group property):s(τ, s(t, x0, u), u) = s(t +
τ, x0, u) for all x0 ∈ D, u ∈ U , andτ, t ∈ [0,∞).

v) (Read-out map): There existsy ∈ Y such thaty(t) =
q(s(t, x0, u), u(t)) for all x0 ∈ D, u ∈ U , andt ≥ 0.

Henceforth, we denote the dynamical system
(D,U , U,Y, Y, [0,∞), s, q) by G. Furthermore, we
refer to s(t, x0, u), t ≥ 0, as the trajectory or state
transition operatorof G corresponding tox0 ∈ D and
u ∈ U . For a given trajectorys(t, x0, u), t ≥ 0, we
refer to x0 ∈ D as the initial condition of G. For the
dynamical systemG given by Definition 2.1, a function
r : U × Y → R is called asupply rate[13] if it is locally
integrable; that is, for all input-output pairsu ∈ U and
y ∈ Y satisfying the dynamical systemG, r(·, ·) satisfies∫ t2

t1
|r(u(s), y(s))|ds <∞, t1, t2 ≥ 0.

Definition 2.2 ( [13], [14]): A dynamical systemG is
exponentially dissipative with respect to the supply rate
r(u, y) if there exists aC0 nonnegative-definite function
Vs : D → R, called astorage function, and a scalarε > 0
such that thedissipation inequality

eεtVs(x(t)) ≤ eεt1Vs(x(t1)) +
∫ t

t1

eεsr(u(s), y(s))ds (1)

is satisfied for allt1, t ≥ 0 and wherex(t) = s(t, x0, u(t)),
t ≥ t1, with x0 ∈ D andu(t) ∈ U . A dynamical systemG
is dissipative with respect to the supply rater(u, y) if there

exists a C0 nonnegative-definite functionVs : D → R such
that (1) is satisfied withε = 0.

Next, consider a dynamical systemΣ given by the
octuple (D̂,W, U × Y,Z, Z, [0,∞), ŝ, q̂), where Z ⊆
Rp, Z is an output space which consists of continu-
ous Z-valued functions on[0,∞), and consider the cas-
cade interconnection ofG and Σ as shown in Figure 1.
We denote this interconnected dynamical system(D ×
D̂,U , U,Z, Z, [0,∞), [sT, ŝT]T, q̂) by G̃. For the following
definition, letQ̂ ∈ Rp×p and Q̂ = Q̂T.
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Fig. 1. Interconnection ofG andΣ

Definition 2.3: A dynamical system G is (Σ, Q̂)-
exponentially dissipativeif there exists aC0 nonnegative-
definite functionV̂s : D × D̂ → R, called a(Σ, Q̂)-storage
functionand a scalarε > 0, such that the(Σ, Q̂)-dissipation
inequality

eεtV̂s(x(t), x̂(t)) ≤ eεtV̂s(x(t1), x̂(t1))+
∫ t

t1

eεszT(s)Q̂z(s)ds

(2)
is satisfied for allt, t1 ≥ 0 and wherex(t) = s(t, x0, u(t)),
x̂(t) = ŝ(t, x̂0, u(t), y(t)), t ≥ t1, with x0 ∈ D, x̂0 ∈
D̂, x̂0 = 0, u(t) ∈ U , and y(t) = q(x(t), u(t)). A
dynamical systemG is (Σ, Q̂)-dissipativeif there exists a
C0 nonnegative-definite function̂Vs : D×D̂ → R such that
(2) is satisfied withε = 0.

Remark 2.1:If G is (Σ, Q̂)-dissipative, whereΣ is a
linear dynamical system given by the transfer functionĜ(s),
then∫ ∞

−∞

[
U(jω)
Y (jω)

]?

Ĝ?(jω)Q̂Ĝ(jω)
[
U(jω)
Y (jω)

]
dω ≥ 0,

(3)
whereU(s) andY (s), s ∈ C, are the Laplace transforms
of u(t) and y(t), respectively. Hence,(Σ, Q̂)-dissipativity
is a time-domain analog to Integral Quadratic Constraints
(IQCs) [15].

Remark 2.2:Let p = l+m and let the dynamical system
Σ be such thatz = q(x̂, u, y) = [uT yT]T. Furthermore,

let Q̂ =
[
R ST

S Q

]
, where Q = QT ∈ Rl×l, S ∈

Rl×m, andR = RT ∈ Rm×m. In this case,G is (Σ, Q̂)-
dissipative if and only ifG is dissipative with respect to the
quadratic supply rater(u, y) = yTQy + 2yTSu + uTRu.
Hence,(Σ, Q̂)-dissipativity provides a dynamic extension
of dissipativity notions with respect to a quadratic supply
rate.

The following result provides a sufficient condition for
(Σ, Q̂)-dissipativity of G in the case whereG and Σ are
linear dynamical systems. Specifically, letG andΣ be given

by transfer functionsG(s) ∼
[
A B
C D

]
and Ĝ(s) ∼



[
Â B̂

Ĉ D̂

]
, respectively, whereA ∈ Rn×n, B ∈ Rn×m,

C ∈ Rl×n, D ∈ Rl×m, Â ∈ Rn̂×n̂, B̂ ∈ Rn̂×(l+m), Ĉ ∈
Rp×n̂ andD̂ ∈ Rp×(l+m). In this case, the interconnection
of G and Σ as shown in Figure 1 is given by the transfer

function G̃(s) ∼
[
Ã B̃

C̃ D̃

]
, where

Ã =
[

A 0
B̂yC Â

]
, B̃ =

[
B

B̂yD + B̂u

]
, (4)

C̃ = [D̂yC Ĉ], D̃ = D̂u + D̂yD, (5)

whereB̂u ∈ Rn̂×m, B̂y ∈ Rn̂×l, D̂u ∈ Rp×m, and D̂y ∈
Rp×l are such that̂B = [B̂u B̂y] and D̂ = [D̂u D̂y].

Proposition 2.1:Consider the dynamical systemG given

by the transfer functionG(s) ∼
[
A B
C D

]
, let Q̂ ∈ Rp×p,

Q̂ = Q̂T, and letΣ be a linear dynamical system given

by the transfer functionĜ(s) ∼
[
Â B̂

Ĉ D̂

]
. Then,G is

(Σ, Q̂)-exponentially dissipative if and only if there exists a
nonnegative-definite matrix̃P ∈ R(n+n̂)×(n+n̂) and a scalar
ε > 0 such that[

ÃTP̃ + P̃ Ã+ εP̃ P̃ B̃

B̃TP̃ 0

]
≤

[
C̃T

D̃T

]
Q̂

[
C̃ D̃

]
.

(6)
Furthermore,G is (Σ, Q̂)-dissipative if and only if there
exists a nonnegative-definite matrix̃P ∈ R(n+n̂)×(n+n̂)

such that (6) holds withε = 0.
Proof. The proof is a direct consequence of the general-

ized Kalman-Yakubovich-Popov lemma [14].
Remark 2.3:Note that it follows from Propositon 2.1

that if G̃(s) min∼
[
Ã B̃

C̃ D̃

]
, thenG is (Σ, Q̂)-exponentially

dissipative if and only if there exists a positive-definite
matrix P̃ such that (6) holds.
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Fig. 2. Feedback interconnection ofG andGd

Next, we present a result on stability of feedback in-
terconnection of dissipative dynamical systems. Specifi-
cally, consider the negative feedback interconnection of
dynamical systemG with a feedback systemGd given
by the octuple (Dd,Ud, Ud,Yd, Yd, [0,∞), sd, qd). Note
that with the feedback interconnection given in Fig-
ure 2, u = −yd and ud = y. Hence, U = Yd
and Y = Ud. Furthermore, consider a dynamical sys-
tem Σd given by the octuple(D̂,Wd, Ud × Yd, Zd, Z,
[0,∞), ŝd, q̂d), where ŝd(t, x̂, ud, yd) = ŝ(t, x̂0,−yd, ud)
andq̂d(x̂, ud, yd) = q̂(x̂,−yd, ud). In addition, consider the
interconnected dynamical system̃Gd given by the octuple
(Dd × D̂,Ud, Ud,Zd, Z, [0,∞), [sTd ŝTd ], q̂d) (see Figure
3). The following definition is needed for the statement of
the next result.
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Fig. 3. Interconnection ofGd andΣd

Definition 2.4: A dynamical systemG with input-output
pair (u, y) is zero-state observableif u(t) ≡ 0 andy(t) ≡ 0
implies s(t, x0, u) ≡ 0.

For the statement of the next result let||| · |||σ and ||| · |||µ
denote operator norms onD and Dd, respectively, and
let γ+(x0, xd0) = ∪t≥0{(s(t, x0, u), sd(t, xd0, ud))}, with
u = −yd and ud = y, denote the positive orbit of
the feedback systemG and Gd. Furthermore, recall that
γ+(x0, xd0) is precompactif γ+(x0, xd0) can be enclosed
in the union of a finite number ofε-balls around elements
of γ+(x0, xd0).

Theorem 2.1:Let Q̂, Q̂d ∈ Rp×p be such thatQ̂ = Q̂T

and Q̂d = Q̂T
d . Consider the feedback system consisting

of the stationary dynamical systemsG andGd with input-
output pairs (u, y) and (ud, yd), respectively, and with
ud = y and u = −yd. Assume thatG and Gd are
(Σ, Q̂)-dissipative and(Σd, Q̂d)-dissipative with C0 storage
functions Vs : D × D̂ → R and Vsd : Dd × D̂d → R,
respectively, such thatVs(0, 0) = 0, Vsd(0, 0) = 0, and

α(|||x|||σ) ≤ Vs(x, x̂), (x, x̂) ∈ D × D̂, (7)

αd(|||xd|||µ) ≤ Vsd(xd, x̂d), (xd, x̂d) ∈ Dd × D̂d, (8)

where α, αd : [0,∞) → [0,∞) are classK∞ func-
tions. Furthermore, assume that for each initial condition
(x0, xd0) ∈ D × Dd, the positive orbitγ+(x0, xd0) of the
feedback systemG andGd is precompact. Finally, assume
there exists a scalarσ > 0 such thatQ̂ + σQ̂d ≤ 0. Then
the following statements hold:

i) The negative feedback interconnection ofG and Gd
is Lyapunov stable.

ii) If G is (Σ, Q̂)-exponentially dissipative, then the
negative feedback interconnection ofG and Gd is
Lyapunov stable and for everyx(0) ∈ D, |||x(t)|||σ →
0 as t→∞.

Proof. The proof follows from standard Lyapunov the-
ory and invariant set arguments as applied to infinite-
dimensional dynamical systems [11], [16].
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Fig. 4. Interconnection ofG, Gd, andΣ

Remark 2.4:Note that (7) and (8) are only sufficient
conditions needed to prove Lyapunov stability for the neg-
ative feedback interconnection ofG andGd. In the case of



stability analysis of time-delay systems, (7) and (8) may be
replaced by a weaker condition. See Remark 3.2 below.

Remark 2.5:In the case whereΣ and Σd are such that
z = [uT yT]T and zd = [−yT

d uT
d ]T, Theorem 2.1

specializes to Theorem 5.2 of [14].

III. STABILITY THEORY FORTIME-DELAY DYNAMICAL

SYSTEMS USINGDISSIPATIVITY THEORY

In this section we consider linear time delay dynamical
systemsG of the form

ẋ(t) = Ax(t) +Adx(t− τ), x(θ) = φ(θ),
−τ ≤ θ ≤ 0, t ≥ 0, (9)

wherex(t) ∈ Rn, t ≥ 0, A ∈ Rn×n, Ad ∈ Rn×n, τ ≥
0, and φ(·) ∈ C = C([−τ, 0],Rn) is a continuous vector
valued function specifying the initial state of the system.
Note that the state of (9) at timet is thepiece of trajectories
x betweent−τ andt, or, equivalently, theelementxt in the
space of continuous functions defined on the interval[−τ, 0]
and taking values inRn; that is,xt ∈ C([−τ, 0],Rn). Hence,
xt(θ) = x(t+θ), θ ∈ [−τ, 0]. Furthermore, since for a given
time t the piece of the trajectoriesxt is defined on[−τ, 0],
the uniform norm|||xt||| = supθ∈[−τ,0] ‖x(t+θ)‖ is used for
the definitions of Lyapunov and asymptotic stability of (9).
For further details see [4], [11].

Next, we rewrite (9) as a feedback system so that

ẋ(t) = Ax(t)−Adu(t), x(0) = φ(0), t ≥ 0, (10)
y(t) = x(t), (11)
yd(t) = Gd(ud(t)), (12)

where u(t) = yd(t), ud(t) = y(t), and Gd :
C([−τ,∞),Rn) → C([0,∞),Rn) denotes a delay opera-
tor defined byGd(ud(t)) 4= ud(t − τ). Note that (10)–
(12) is a negative feedback interconnection of a linear
finite-dimensional systemG with transfer functionG(s) ∼[
A −Ad

In 0

]
and the infinite-dimensional delay operator

Gd. Hence, stability of (9) is equivalent to stability of the
negative feedback interconnection ofG(s) andGd. Next, we
present a key result that shows that the delay operatorGd
is dissipative with respect to a quadratic supply rate. First,
however, we show that theinput-outputoperatorGd can be
characterized as a stationary dynamical system onC. Specif-
ically, let Ud = C([−τ,∞),Rn), Yd = C([0,∞),Rn),
and Ud = Yd = Rn. Now, for every φ ∈ C, define
sθ : [0,∞)× C × Ud → C by

sθ(t, φ, ud) = ud(t+ θ), θ ∈ [−τ, 0], t ≥ 0, (13)

whereud(θ) = φ(θ), θ ∈ [−τ, 0]. Finally, defineqd : C ×
Ud → Yd by

qd(sθ(t, φ, ud), ud(t)) = s−τ (t, φ, ud) = ud(t− τ)
= Gd(ud(t)). (14)

Note that the octuple(C,Ud, Ud,Yd, Yd, [0,∞), sθ, qd) sat-
isfies Axioms i)–v) of Definition 2.1 which implies that
the octuple(C,Ud, Ud,Yd, Yd, [0,∞), sθ, qd) is a stationary
dynamical system onC. For notational convenience we refer
to this dynamical system asGd.

To show thatGd is (Σd, Q̂d)-dissipative, letΣ denote a
linear dynamical system given by the octuple(D̂,W,Rn×

Rn,Z,R2p̂, [0,∞), ŝ, q̂), whereD̂ ⊂ R2n̂ and with transfer

function Ĝ(s) ∼
[
Â B̂

Ĉ D̂

]
, where

Â = block−diag[A1, A1], B̂ = block−diag[B1, B1],
Ĉ = block−diag[C1, C1], D̂ = I2n (15)

and whereA1 ∈ Rn̂×n̂ is Hurwitz,B1 ∈ Rn̂×n, andC1 ∈
Rp̂×n̂. In this case, the dynamical systemΣd is given by

the transfer function̂Gd(s) ∼
[
Âd B̂d

Ĉd D̂d

]
, where

Âd = Â, B̂d =
[

0 −B1

B1 0

]
,

Ĉd = Ĉ, D̂d =
[

0 −In
In 0

]
. (16)

Hence, the state space representation of the interconnec-
tion shown in Figure 3 is given by

yd(t) = Gd(ud(t)), sθ(0, φ, ud) = φ(θ),
θ ∈ [−τ, 0], t ≥ 0, (17)

ẋd1(t) = A1xd1(t)−B1yd(t), xd1(0) = 0, (18)
ẋd2(t) = A1xd2(t) +B1ud(t), xd2(0) = 0, (19)
ẑd1(t) = C1xd1(t)−D1yd(t), (20)
ẑd2(t) = C1xd2(t) +D1ud(t). (21)

Lemma 3.1:Let Q̂d = block-diag[−Q,Q], whereQ ∈
Rp̂×p̂. If φ(θ) = 0, θ ∈ [−τ, 0], then for everyud(·) ∈ Ud,∫ T

0

ẑT
d (t)Q̂dẑd(t)dt =

∫ T

θ

ẑT
d2

(t)Q̂dẑd2(t)dt ≥ 0, T > 0,

(22)
whereθ = 0, T ∈ [0, τ ], andθ = T − τ , T > τ .

Proof. Note that

xd1(t) = −
∫ t

0

eA1(t−s)B1yd(s)ds, t ≥ 0,

and xd2(t) =
∫ t

0

eA1(t−s)B1ud(s)ds, t ≥ 0.

Since yd(t) = ud(t − τ), t ≥ 0 and ud(θ) = φ(θ) = 0,
θ ∈ [−τ, 0], it follows that xd1(t) = 0, t ∈ [0, τ ], and for
all t ≥ τ ,

xd1(t) = −
∫ t

τ

eA1(t−s)B1ud(s− τ)ds = −xd2(t− τ).

Hence,ẑd1(t) = 0, t ∈ [0, τ ], and ẑd1(t) = −ẑd2(t − τ),
t > τ , which implies that∫ T

0

ẑT
d (t)Q̂dẑd(t)dt =

∫ T

0

[ẑT
d2

(t)Qẑd2(t)− ẑT
d1

(t)Qẑd1(t)]dt

=
∫ T

T−τ

ẑT
d2

(t)Qẑd2(t)dt ≥ 0, T ≥ τ.

The case whereT ∈ [0, τ ] follows in a similar manner.
Theorem 3.1:Consider the dynamical systemGd defined

by the octuple(C,Ud, Ud,Yd, Yd, [0,∞), sθ, qd), wheresθ
and qd are given by (13) and (14), respectively. Next, let
Σd be a linear dynamical system with transfer function



Ĝd(s) ∼
[
Âd B̂d

Ĉd D̂d

]
, where Âd, B̂d, Ĉd and D̂d are

given by (16), and letQ̂d = block-diag[−Q,Q], where
Q ∈ Rp̂×p̂, Q > 0. Then, Gd is (Σd, Q̂d)-dissipative.
Furthermore,

Vsd(ψ, x̂d1 , x̂d2) = − inf
ud(·)∈Ud,T≥0

∫ T

0

ẑT
d (t)Q̂dẑd(t)dt

(23)
is a (Σd, Q̂d)-storage function forGd where the infimum
in (23) is performed over all trajectories of̃Gd with initial
conditionsφ(·) = ψ(·), xd1(0) = x̂d1 , andxd2(0) = x̂d2 .

Proof. It follows from (23) that

Vsd(ψ, x̂d1 , x̂d2) = − inf
ud(·)∈Ud,T≥0

∫ T

0

ẑT
d (t)Q̂dẑd(t)dt

= sup
ud(·)∈Ud,T≥0

∫ T

0

[ẑT
d1

(t)Q̂dẑd1(t)− ẑT
d2

(t)Q̂dẑd2(t)]dt.

(24)
Hence,Vsd(ψ, x̂d1 , x̂d2) ≥ 0, ψ(·) ∈ C, x̂d1 , x̂d2 ∈ Rn. If
ψ(θ) ≡ 0, θ ∈ [−τ, 0], x̂d1 = 0, x̂d2 = 0, then it follows
from Lemma 3.1 that∫ T

0

ẑT
d (t)Q̂dẑd(t)dt =

∫ T

0

ẑT
d2

(t)Q̂dẑd2(t)dt, T ≥ 0,

which implies that

Vsd(0, 0, 0) = sup
ud(·)∈Ud,T≥0

−
∫ T

0

ẑT
d2

(t)Q̂dẑd2(t)dt ≤ 0.

Hence, sinceVsd(0, 0, 0) ≥ 0, Vsd(0, 0, 0) = 0. Next, note
that for everyud(t), t ∈ [t1, tf ], andT ∈ [t1, tf ],

−Vsd(sθ(t1, ψ, ud), xd1(t1), xd2(t2))

≤
∫ tf

t1

ẑT
d2

(t)Q̂dẑd2(t)dt

=
∫ T

t1

ẑT
d2

(t)Q̂dẑd2(t)dt+
∫ tf

T

ẑT
d2

(t)Q̂dẑd2(t)dt.

Hence,

−Vsd(sθ(t1, ψ, ud), xd1(t1), xd2(t1))

−
∫ T

t1

ẑT
d2

(t)Q̂dẑd2(t)dt

≤
∫ tf

T

ẑT
d2

(t)Q̂dẑd2(t)dt,

which implies that

−Vsd(sθ(t1, ψ, ud), xd1(t1), xd2(t2))

−
∫ T

t1

ẑT
d2

(t)Q̂dẑd2(t)dt

≤ inf
ud(·)∈Ud,tf≥T

∫ tf

T

ẑT
d (t)Q̂dẑd(t)dt

= −Vsd(sθ(T, ψ, ud), xd1(T ), xd2(T )),

establishing the(Σd, Q̂d)-dissipativity ofGd.

Remark 3.1:In the case whereA1 = 0, B1 = 0, and
C1 = 0, it can be shown that

Vsd(ψ, xd1, xd2) = Vsd(ψ) =
∫ 0

−τ

ψT(θ)Qψ(θ)dθ. (25)

Next, using Theorem 3.1, we present a sufficient con-
dition on G(s) that guarantees asymptotic stability of the
negative feedback interconnection of the time delay dynam-
ical system given by (9). For the following result we assume
that Vsd(·, ·, ·) given by (23) is continuously differentiable.

Theorem 3.2:Consider the linear time delay dynamical
system given by (9). Let̂Q = block-diag[Q,−Q], where
Q ∈ Rp̂×p̂, Q > 0. Assume there exists a nonnegative
definite matrixP̃ ∈ R(n+n̂)×(n+n̂) and scalarsε, η > 0 such
that (6) holds andP̃ ≥ block−diag[ηIn, 0n̂×n̂, 0n̂×n̂],
where

Ã =

 A 0 0
0 A1 0
B1 0 A1

 , B̃ =

 −Ad

B1

0

 ,
C̃ =

[
0 C1 0
In 0 C1

]
, D̃ =

[
In
0

]
. (26)

Then the linear time delay dynamical system given by (9)
is asymptotically stable for everyτ ∈ [0,∞).

Proof. It follows from Theorem 3.1 thatGd is
(Σd, Q̂d)-dissipative with (Σd, Q̂d)- storage function
Vsd(ψ, xd1 , xd2), ψ ∈ C, xd1 , xd2 ∈ Rn̂, given by
(23). Next, it follows from Proposition 2.1 thatG is
(Σ, Q̂)-exponentially dissipative with(Σ, Q̂)-storage func-
tion Vs(x̃) = x̃TP̃ x̃, where x̃ = [xT, xT

1 , x
T
2 ]T. Further-

more, note thatx = ψ(0) and as in the proof of Theorem
2.1, it can be shown that̂x1(t) = xd1(t), x̂2(t) = xd2(t),
t ≥ 0, and hence the state of the overall interconnection of
G, Gd, andΣ (see Figure 4) is given by[ψT, x̂T]T where
x̂ = [x̂T

1 , x̂T
2 ]T. Next, using the Lyapunov-Krasovskii

functional candidateV (ψ, x̂1, x̂2) = Vs(ψ(0), x̂1, x̂2) +
Vsd(ψ, x̂1, x̂2), it follows that

V̇ (xt, x̂1(t), x̂1(t)) ≤ −εx̃T(t)Px̃(t) ≤ −εηxT(t)x(t).
(27)

Now, Lyapunov stability follows from standard arguments
as applied to time delay systems (see Theorem 2.1 of
[11, p. 132] for a similar proof). The proof of asymptotic
stability is similar to that of Theorem 2.1 and hence is
omitted.

Remark 3.2:Note that if Vs(x̃) and Vsd(ψ, xd1 , xd2)
satisfy (7) and (8), then Theorem 3.2 follows from Theorem
2.1. However, in the case of time delay dynamical systems
(7) and (8) can be replaced by a weaker condition

ηψT(0)ψ(0) ≤ V (ψ, x̂1, x̂2), ψ ∈ C, x̂1, x̂2 ∈ Rn̂.
(28)

In this case, Lyapunov and asymptotic stability can be
shown using the fact that‖x(t)‖ ≤ ε, t ≥ 0, if and only if
|||xt||| ≤ ε, t ≥ 0.

Remark 3.3:Recall that the linear time delay dynamical
system given by (9) is stable for allτ ∈ [0,∞) if and only
if [17] there existsN : R → Cn×n such thatN(ω) > 0,
ω ∈ R, and

G∗(ω)N(ω)G(ω)−N(ω) < 0, ω ∈ R. (29)

Thus, if there existsP̃ ∈ R(n+n̂)×(n+n̂) such that (6)
holds, then it follows from Proposition 2.1 thatG is (Σ, Q̂)-
exponentially dissipative which implies (29) (see Remark



2.1) with N(ω) = G∗1(ω)QG1(ω), whereG1(ω) =
C1(ωIn̂−A1)−1B1 +In, ω ∈ R. Hence, (6) is a sufficient
condition for satisfying (29) andG∗1(ω)QG1(ω) is a real
rational approximation toN(ω) in (29).

Remark 3.4:In the case whereA1 = 0, B1 = 0, and
C1 = 0, it follows from Theorem 3.2 that if there exists a
positive-definite matrixP ∈ Rn×n such that[

ATP + PA+ εP +Q −PAd

−AT
dP −Q

]
≤ 0, (30)

then the negative feedback interconnection ofG and Gd
is asymptotically stable. Furthermore, it follows from Re-
mark 3.1 thatVsd(ψ) =

∫ 0

−τ
ψT(θ)Qψ(θ)dθ and hence

V (ψ) = ψT(0)Pψ(0)+
∫ 0

−τ
ψT(θ)Qψ(θ)dθ is a Lyapunov-

Krasovskii functional for the linear time delay dynamical
system (9). Thus, Theorem 3.2 provides a generalization
to the sufficient conditions for linear time delay dynamical
systems given in [9], [10].

IV. I LLUSTRATIVE NUMERICAL EXAMPLE

In this section, we provide a numerical example to
illustrate the utility of the results developed in the paper.
Consider the linear time delay dynamical system given by
(9) with

A =


0 1 0 0
0 0 1 0
0 0 0 1
−2 −3 −5 −2

 ,

Ad =


−0.0604 0.0060 0.3018 0
0.0060 0.0060 0 0

0 0 0 0
−1.2074 0 −0.6037 0

 . (31)

Now, with A1 = −I4, B1 = I4, andC1 = [04×4 I4]T,
we can show that there exist positive definite matricesP̃
andQ such that (6) holds. Hence, it follows from Theorem
3.2 that the linear time-delay dynamical system given by
(9) with A andAd given by (31) is asymptotically stable
for every τ ∈ [0,∞). However, it can be shown that there
does not exist positive-definite matricesP andQ such that
(30) holds which shows that Theorem 3.2 provides less
conservative sufficient conditions for stability analysis of
time delay systems as compared to the standard sufficient
conditions given in the literature (see, for example, [9],
[10]).

V. CONCLUSION

In this paper, we extended the concepts of dissipativity
and the exponential dissipativity to provide new sufficient
conditions for guaranteeing asymptotic stability of a time
delay dynamical system. Specifically, representing a time
delay dynamical system as a negative feedback interconnec-
tion of a finite-dimensional linear dynamical system and an
infinite-dimensional time delay operator, we showed that the
time delay operator is dissipative. Finally, using stability of
feedback interconnection results for dissipative systems, we
developed new sufficient conditions for asymptotic stability
of time delay dynamical systems. The overall approach
provides an explicit framework for constructing Lyapunov-
Krasovskii functionals as well as deriving new sufficient
conditions for stability analysis of asymptotically stable
time delay dynamical systems based on the dissipativity
properties of the time delay operator.
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