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Abstract—In this paper, we extend the concepts of dissipa- with the stability of the forward delay-independent part
tivity and exponential dissipativity to provide new sufficient of the retarded dynamical system. However, the system-
conditions for guaranteeing asymptotic stability of a time theoretic foundation of the integral part of the Lyapunov-
delay dynamical system. Specifically, representing a time delay Krasovskii functional is less understood.

dynamical system as a negative feedback interconnection of |n this paper, we extend the notions of dissipativity [13]
a finite-dimensional linear dynamical system and an infinite- and exponential dissipativity [14] theory to derive new
dimensional time delay operator, we show that the time delay sufficient conditions for guaranteeing asymptotic stability
operator is dissipative. As a special case of this result we of time delay dynamical systems. Specifically, we intro-

show that the storage functional of the dissipative delay duce the notion oflynamic dissipativitynamely, (;’Q)_

operator involves an integral term identical to the integral dissipativity, whereX. is a dynamical system an@ is a
term appearing in standard Lyapunov-Krasovskii functionals. symmetric fnatrix. By choosing a certain dynamical system

Finally, using stability of feedback interconnection results for 5 and a symmetric matrix) it can be shown that a

dissipative systems, we develop new sufficient conditions for . AV e e
asymptotic stability of time delay dynamical systems. The SYStemg is (X, ()-dissipative if and only ity is dissipative

overall approach provides an explicit framework for construct- ~ With respect to a quadratic supply rate. Thygj, @)-
ing Lyapunov-Krasovskii functionals as well as deriving new disspaitivity provides a nontrivial extension of dissipativity
sufficient conditions for stability analysis of asymptotically —theory with respect to a quadratic supply rate. Based on
stable time delay dynamical systems based on the dissipativity (X, Q)-dissipativity theory, we then provide a result on

properties of the time delay operator. stability of negative feedback interconnection (cit,())-
dissipative systems. Next, representing a time delay dy-
namical system as a negative feedback interconnection of a
I. INTRODUCTION finite-dimensional linear dynamical system and an infinite-
. _ . dimensional time delay operator, we show that the time
Modern complex engineering systems involve a multidelay operator igX4, Qq)-dissipative. Furthermore, for a
tude of information and communication networks. A KeYspacial choice ofy and Q4, we show that the storage
Bhysmal limitation of such systems is that power transferg,tional of the time-delay operator involves an integral
: etween mtgrconFet(_:tmg s(;j/s}errf\ comp?nents t%re SOI INSt4Brm which is identical to the integral term appearing in the
afneour;s a”t rea |sh|c lrgo els q[rfcap ‘f-”'”g i e .yrt1am| Yapunov-Krasovskii functional. Thus the overall approach
Ol such systems should account for information in transwyqyides an explicit framework for constructing Lyapunov-
[1]. To accurately describe the evolution of these compley asoyskii functionals as well as deriving new sufficient
systems, it is necessary to include in any mathematicahjitions for stability analysis of asymptotically stable

model of the system dynamics some information of th : ecinativi
past system states. This leads to (infinite-dimensional) del%%%ﬁﬁé%%ﬁﬁ??ﬁ%l ds&ggegserbaagﬁd on the dissipativity
e

dynamical systems. Time-delay dynamical systems hav
been extensively studied in the literature (see [1-10] and
the numerous references therein). Since time delay can
severely degrade system performance and in many cases Il. MATHEMATICAL PRELIMINARIES

drive the system to instability, stability analysis of time |n this section we introduce notation, several definitions,
delay dynamical systems remains a very important area ghd some key results concerning dynamical systems that
research [8-11]. A key method for analyzing stability ofare necessary for developing the main results of this paper.
time delay dynamical systems is Lyapunov's second methaghecifically,R denotes the reals afi* is ann-dimensional
as applied to functional differential equations. Spec'f'ca”)‘[inear vector space over the reals with Euclidean nfrin
stability analysis of a given linear time delay dynamicaj et ¢ ([q, 5], R") denote a Banach space of continuous func-
system is typically shown using a Lyapunov-Krasovskitions mapping the intervdk, b] into R™ with the topology
functional [4], [11]. Standard Lyapunov-Krasovskii func-qf niform convergence. For a given real number 0 if
tionals involve a fixed quadratic function and an integraf, b] = [—7,0] we letC = ([, 0], R") and designate the
functional exBIicitIy dependent on the system time delay. A5 rm of an element in C by \||7¢| — u 6(0)|
in classical absolute stability theory [12], the fixed quadrati — SUPge[—r,0] :
part of the Lyapunov-Krasovskii functional is associatedd @8 € R andz € C([a — 7, + (], R™), then for every

t € [a,a+0], we letz, € C be defined by, (0) = x(t+0),

This research was supported in part by the National Science Foundatién€ [—7, 0]. Furthermore, foll € R™*", we write M * to
under Grant ECS-0133038 and the Air Force Office of Scientific Researdienote the transpose aff and M > 0 (resp.,M > 0) to
under Grant F49620-03-1-0178. denote the fact that the symmetric matfik is nonnegative
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resp., positive) definite. Lef(s) ~ denote a exists a € nonnegative-definite functiok : D — R such
(resp., p ) (s) Cc|D that (1) is satisfied witlz = 0.

state space realization of a transfer functi@(s); that is, Next, consider a dynamical systeii given by the
G(s) = C(sI — A)"'B + D. The notation """ is used octuple (D,W,U x Y, Z,Z,[0,00),3,4), where Z C

to denote a minimal realization. Finally, we writg, to RP, Z is an output space which consists of continu-

denote the: x n identity matrix andC® to denote continuous ous Z-valued functions on0, o), and consider the cas-
functions. cade interconnection off and X as shown in Figure 1.

In this paper we represent dynamical systeindefined We denote this interconnected dynamical Syste x
on the semi-infinite interval0, o) as a mapping between D,U, U, Z, Z,[0,0), [s",3"]", §) by G. For the following
function spaces satisfying an appropriate set of axioms. Fgefinition, let) € RP*? and@Q = Q7.
the following definition{ is an input space and consists
of bounded continuou#&-valued functions or0, co). The
setU C R™ contains the set of input values; that is, at U Y

any timet, u(t) € U. The spacel/ is assumed to be g
closed under the shift operator; that isuife ¢/, then the n LA
function u, defined byur(t) = u(t + T) is contained in

U for all T > 0. Furthermore,) is an output space and

consists of continuou¥ -valued functions orj0, o). The

setY C R! contains the set of output values; that is, each ]

value ofy(t) € Y, t > 0. The space) is assumed to be Fig- 1. Interconnection off and%
closed under the shift operator; that isyifc ), then the

function y defined byyr(t) = y(t +T) is contained iny Definition 2.3: A dynamical system G is (27@_

for all T"> 0. Finally, D Is a metric space with topology - PP A d 0 d
of uniform convergence and metric: D x D — [0, 00). exponentially dissipativéf there exists aC” nonnegative-

Hence, the notions of openness, convergence, continuifiefinite functionV; : D x D — R, called a(Z, Q)-storage
and compactness that we use in the paper refer to thenctionand a scalatr > 0, such that thé€X:, @))-dissipation
topology generated of® by the metricp(-, ). inequality
Defiﬂition 2.1I(J13]): A stationary dynamical hsyste(m .
D is the octuple(D,U,U,),Y, [0,0),s,q), wheres : - R - N s ~
[0,00) x D xZB — D andgq : 2[) X ()J —q>)Y are such ¢ Vs(z(t),2(t) < GEt‘é(x(tl),x(tl))+/t€€ 2T (5)Qz(s)ds
1
2)

that the following axioms hold:

is satisfied for alk,¢; > 0 and wherex(t) = s(t, xo, u(tS),
_ &(t) = 5(t, 2o, u(t),y(t)), t > ti, with zp € D, 3¢ €
ii) (Consistency)s(0,z9,u) = o for all zg € D and D, 2o = 0, u(t) € U, and y(t) = qlz(t),u(t)). A

i) (Continuity):s(-,-,u) is jointly continuous for alk, €
U

uweld. dynamical systen@ is (3, Q)-dissipativeif there exists a
iii) (Determinism):s(t, zo,u1) = s(t, xo, uz) for all t € 0 honnegative-definite functiof, : D x D — R such that
[07(00)), xo<§ D, anduy,us € U satisfyingu, (1) = (2) is satisfied withe = 0.
U2(7), T S T.

iv) (Semi-group property)s(r,s(t, zo,u),u) = s(t + Remark 2.1:If G is (¥, Q)-dissipative, whereX is a
7,20, u) for all zo € D, u € U, andr,t € [0, 00). linear dynamical system given by the transfer functi(),
v) (Read-out map): There exisyse ) such thaty(t) = then

q(s(t,xo,u),u(t)) for all zo € D, u € U, andt > 0.

Henceforth, we denote the dynamical system [~ [ UGw) 1" Aes \Ady U(jw)
(D,U,U,),Y,[0,00),s,q) by G. Fu¥thermore, x/ve /_Oo { Y (jw) ] GT(jw)QG (W) { Y (jw) dw >0,
refer to s(t,zo,u), t > 0, as thetrajectory or state (3)
transition operatorof G corresponding tar, € D and whereU(s) andY (s), s € C, are the Laplace transforms
u € U. For a given trajectorys(t,zo,u), t > 0, We  of y(#) andy(t), respectively. Hence(S, Q)-dissipativity

refer to xy € D as theinitial condition of G. For the ; e i i i
dynamical systeny given by Definition 2.1, a function I(?Q%tslgn [eléj]?maln analog to Integral Quadratic Constraints

r: U xY — R is called asupply rate[13] if it is locally

integrable; that is, for all input-output pairs € U and Remark 2.2:Letp = [+m and let the dynamical system
y € Y satisfying the dynamical systeg, r(-,-) satisfies > be such that = q(Z,u,y) = [u” y~]". Furthermore,
R S

i Ir(u(s), y(s))lds < oo, tr,t2 2 0. let Q = ] whereQ = QT € R, S €

-~ . . S Q
Definition 2.2 ( [13], [14]): A dynamical syste is . . A
exponentially dis(s[ipa]tiv[e \]/\)/ith regpect o the Stzrpgply rat® ", andR = RT € R™*™. In this caseg is (,Q)-
r(u,y) if there exists aC® nonnegative-definite function dissipative if and only iiG is dlsslpatlve W”? respect to the
V. : D — R, called astorage functionand a scalag > 0 quadratic supply rate(u,y) =y~ Qu + 2y~ Su + u" Ru.
such that thealissipation inequality Hence, (X, Q))-dissipativity provides a dynamic extension
. oftdissipativity notions with respect to a quadratic supply
rate.
et 231 £s
e Vo(2(t)) < e Vi(z(th)) +/t e*r(u(s), y(s))ds (1) The following result provides a sufficient condition for
' (2, Q)-dissipativity of G in the case wherg and . are
is satisfied for alk,, ¢ > 0 and wherex(t) = s(t, o, u(t)), linear dynamical systems. Specifically, {andX: be given

t > 1, with o € D andu(t) € U. A dynamical systeny; i | A|B A ~
is dissipative with respect to the supply rat@, y) if there by transfer functionsG:(s) C|D and G(s)
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[ g g ] respectively, whered € R"*", B € R"*™, td Ga yd
Zd

C eARlxn,AD c Rlxm, A e Rﬁxﬁ, B e Rﬁx(l-q—m), é e Ya >
RP*™ and D € RP*(+m) |n this case, the interconnection
of G and X as shown in Figure 1 is given by the transfer

. ~ A E Fig. 3. Interconnection andX
function G (s) ~ { 9 oG d

el } where
A= { A 0 } 7 B { B } 4) Definition 2.4: A dynamical systengy with input-output
B,C A B,D + B, pair (u, y) is zero-state observabié u(t) = 0 andy(t) =0
- R ) B . . implies s(t, xg,u) = 0.
¢=[Dy,C C, D =D, + DyD, ®) For the statement of the next result |et|, and || - | .
where B, € R*"*™, B c RW**L D, e RP*m andD, € denote operator norms of? and D4, respectively, and
Y v |etfy (a:o,xdo) = Ut>0{( (t,z0,u), 84(t, Tao,ua))}, With

R?*! are such thal = [B, B,] andD = [D,, D,]. = —y4 and uq = y, denote the positive orbit of
Proposition 2.1: Consider the dynamical systeghgiven the feedback systeng and Qd Furthermore, recall that
Al B R v (g, zap) is precompactf v (zg, zq9) can be enclosed

by the transfer functiolis(s) ~ | —5—-|, let@ € R”**, in the union of a finite number of-balls around elements

A AT . ' _of v (zo, Zdo)-
Q = @, and letX be a linear dynamical system given
3 Theorem 2.1:Let Q,Qq € RP*? be such tha = Q

o Al B :
by the transfer functiorG/(s) ~ { o1 D } Then,G is and Qq = QY. Consider the feedback system consisting
of the statlonary dynamical systergsand G4 with input-
(2, Q)-exponentially dissipative if and only if there exists aoutput pairs (u, y) and (uq,yq), respectively, and with

nonnegative-definite matrik € R("+)x(n+7) and a scalar ua = y an = —yq. Assume thatG and Gy are
€ > 0 such that (%, Q)- d|$5|pat|ve and¥q, Qq)-dissipative with € storage
AiTP L PA D PP AT 7 L functionsV, : Dx D — R and Vi : Dq x Dy — R,
A PJCf‘f1+€P PB } < [ QT } Q [C D} ) respectively, such that;(0,0) =0, Vsd(0,0) =0, and
B*P 0 D
(6) ; 5 >
Furthermore,G is (X, Q)-dissipative if and only if there alllzlo) < Vs(x’x)l (z,2) e? xD, . (7
exists a nonnegative-definite matrix € R(*+7)x(n+n) aa(l|lzall) < Via(wa;&a), (¥a,%a) € Da % Da, (8)
such that (6) holds witlk = 0.
here a,aq : [0,00) — [0,00) are classK func-
Proof. The proof is a direct consequence of the genera}’v ons. Furthermore, assume that for each initial condition
ized Kalman-Yakubovich-Popov lemma [14]. O Fxo,Ido) € D x Dy, the positive orbity™ (g, z4) Of the
Remark 2.3:Note that it follows from Propositon 2.1 feedback systeng and G, is precompact. Finally, assume

min Al|B there exists a scalar > 0 such thatQ + ¢Qq < 0. Then
that if Gi(s) "~ el } theng is (X, Q)-exponentially  the following statements hold:

dissipative if and only if there exists a positive-definite i) The negative feedback interconnection ®fand G4
matrix P such that (6) holds. is Lyapunov stable.

i)y If G is (X, Q)-exponentially dissipative, then the
= G negative feedback interconnection Gf and G, is
Lyapunov stable and for evety(0) € D, ||z(t)]|, —

0 ast — oo.

Proof. The proof follows from standard Lyapunov the-
Gy ory and invariant set arguments as applied to infinite-
‘ dimensional dynamical systems [11], [16]. O

Fig. 2. Feedback interconnection @fand G4

Next, we present a result on stability of feedback in-
terconnection of dissipative dynamical systems. Specifi-
cally, consider the negative feedback interconnection of X oF
dynamical systemG with a feedback systeng; given
by the octuple (Dq,Uq,Uq,Va,Ya, [0,00),54,q4). Note
that with the feedback interconnection given in Fig-
ure 2, u = —yq and uq = y. Hence,U = Yy
and Y = Uq. Furthermore, consider a dynamical sys-
tem X4 given by the octuple(D Wa,Uq X Ya, Za,Z, Yd Ga Uq
[0,00),34,qa), Where5q(t,Z,uq,ya) = 3(t, %0, —Yd, ud)
andqd(ac ud, Ya) = 4(&, —yd,ud) In addition, consider the Fig. 4. Interconnection of, G4, ands
interconnected dynamical syste@@ glven by the octuple

(Dq % D, Uy, Uq, 24, Z, [0, 00) 1 ,Ga) (see Figure Remark 2.4:Note that (7) and (8) are only sufficient
3). The foIIowmg definition is neededd or the statement otonditions needed to prove Lyapunov stability for the neg-
the next result. ative feedback interconnection gfandGy. In the case of

4173



stability analysis of time-delay systems, (7) and (8) may bR", Z,R? [0, 0), %, ¢), whereD c R2" and with transfer
replaced by a weaker condition. See Remark 3.2 below. Al B

Remark 2.5:In the case Wheré2 and X4 are such that
z = [uT y'IY and zg = [—yi ul]T, Theorem 2.1

specializes to Theorem 5.2 of [14]. A = block—diag[A;, Ay, B block—diag[B;, By,

C = block-diag[Cy,C4], D = I, (15)

and where4,; ¢ R™*% js Hurwitz, B; € R™*", and(C; €
R?*™_|n this case, the dynamlcal systejhl is given by

In this section we consider linear time delay dynamicale transfer funct|oer(.s) N { Aq } where

function G(s) ~ {ﬁg—%} where

IIl. STABILITY THEORY FORTIME-DELAY DYNAMICAL
SYSTEMS USINGDISSIPATIVITY THEORY

systemsj of the form Cy
&(t) = Ax(t) + Aqz(t — 1), x(0) = ¢(0), . . 0 —-B
—7<6<0, t>0, 9) Aa = 4, Bd:[Bl 01]’
wherex(t) € R*, t > 0, A € R"*", Aq € R"*", 7 > A~ A A | 0-I,
0, and¢(-) € C = C(|—7,0],R™) is a continuous vector Ca=C, Da= I, 0 |- (16)

valuedhfunﬁtion spe]gi( ;ng the miﬂal state ?f the system.
Note that the state of (9) at timas thepiece of trajectories . :
x between/—r and, or, equivalently, thelement, in the . oﬂ(asrn%?/(/nhi(ra\ sl,:tiatlerg%aicse rit\a/g;e%entanon of the interconnec-
space of continuous functions defined on the intefvad 0] 9 9 y

and taking values iiR"; that is,z; € C([—,0],R™). Hence, = 0 — (0

z4() = x(t+0), 6 € [-7,0]. Furthermore, since for a given alt) gd(ud( )2)’ 89>(0’¢’ ua) = ¢(6), 17

time ¢ the piece of the trajectories, is defined on—, 0], €[=70], t =0, 17

the uniform norm|z|| = supyc|_, o [l z(t+6)|| is used for T, (t) Arza, (t) — Biya(t), xq,(0) =0, (18)
the definitions of Lyapunov and asymptotlc stability of (9). da,(t) = Aima,(t) + Brua(t), zq4,(0) =0, (19)
For further details see [4], [11]. Za,(t) = Cima,(t) — Dyya(t), (20)
Next, we rewrite (9) as a feedback system so that 2,(t) = Chaa,(t) + Diualt) 21)
i(t) = Ax(t) — Aqu(t), z(0) = ¢(0), t > 0,(10) Lemma 3.1:Let O — block-diag—0Q, @), where <
yt) = l’(t% (1) roxp_if $(6) =0, 6 € [, 0], then for everyua(-) € Us,
ya(t) = Ga(ua(t), 12 .
where u(t) = wa(t), ua(t) = y(t), and Gq : zg (£)Qazq(t)dt = / 21 (0)Qaza, (t)dt >0, T > 0,
C([-7,00),R") — ([ ), R™) denotes a delay opera- 0 22)

tor defined bygd(udé )) = uq(t — 7). Note that (10R wheref = 0, T € [0,7], andf =T — 7, T > 7.
(12) is a negative feedback interconnection of a linear Proof. Note that
finite-dimensional systerg with transfer functionG/(s) ~ rool. Hote tha

— t
l }i 64d and the infinite-dimensional delay operator za,(t) = _/ M=) By(s)ds, ¢ >0,
1. Hence, stability of (9) is equiva%eglt to stability of the to
negative feedback interconnection@s) andG4. Next, we _ Aq(t—s)
present a key result that shows that the delay opetor and zq,(t) = o e Brua(s)ds, t=0.

Is dissipative with respect to a quadratic supply rate. First,

however, we show that theput-outputoperatorGy can be Sinceyq(t) = uq(t — 7), ¢ > 0 and uq(d) = ¢(0) =

characterized as a stationary dynamical systerl. @pecif- 6 € [—r,0], it follows thatzq, (t) = 0, ¢ € [0, 7], and

ically, let Uy = C([—7,00),R"), Vg = C([O o), R™), allt>r,

and Ug = Yy = R™. Now for every ¢ € C, define
: [0, oo)><C><Ud—>C by

t
xq, (t) = —/ eMU=) Blug(s — 7)ds = —zq, (t — 7).
Se(t ¢7 ud) = ud(t + 9)7 0 S [_T7 0]7 t 2 07 (13) T

whereud(g € [—7,0]. Finally, defineqq : C x ?infeviﬁléh)wnp%eé teha(g 7], and 2q, (8) = —Za, (t — 7),
Ug — Yq
T T
qa(so(t, ,ua), ua(t)) = s_r (t, 6, ua) = ua(t - 7) / ST (1) Oaza(t)dt = / BT (0Qza(8) — 2T ()Q2a, (D)1
=Ga(ua(t)). (14) Jo o
Note that the octupléC, Uy, Uq, Va, Ya, [0, ), e, qa) Sat- = / Zd2( VQZq,()dt >0, T > .
T—T

isfies Axiomsi)—v) of Definition 2.1 which implies that

the octuple(C, Uq, Uq, Va, Ya, [0, 00), sg, q4) IS a Stationary . .
dynamical system o@. For notational convenience we referThe case wher@” & [0, ] follows in ‘? similar manner.[}
to this dynamical system &&;. Theorem Se% :Consider the dynamu;al systefiq defined
. A L by the octuple(C,Uy, Uq, Va, Y, [0,0), S, qa), Wheresy

To show thatGy is (X4, Qa)-dissipative, let: denote a and ¢, are given by (13) and (14), respect%/ely Next, let

linear dynamical system given by the octugle, W, R" x X4 be a linear dynamical system with transfer function
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Aa | Ba } where A4, By, Cyq and Dy are

d
given by (16), and letDqs = block- diag—@, @], where

Q € RPXP, Q > 0. Then, Gq is (X4, Qq)-dissipative.
Furthermore

T A
Via(, 4ay, 8a,) = — _inf /éE(t)Qdfda)dt
0

ua () EUa, T>0
(23)

is a (Zd,Qd) storage function foiGy; where the infimum

in (23) is performed over all trajectories @f; with initial
conditionsg(-) = ¥(-), x4, (0) = Zq,, andzg,(0) = Zq,.

Proof. It follows from (23) that

T
Vsd(% j(h ) jjdz) = inf / 2(? (t)Qdéd (t)dt
0

wq(-) €U, T>0

T
= swp [ R (0Quz () - 2, 00Quia (]dr.
U,d(~)€Ud,TZO 0
@4

Hence,Via (¥, Z4,,%a,) > 0, ¥(-) € C, &q,,%a, € R™. |
P(0) =0, 0 € [, Of, Z4, = 0, 24, = 0, then it follows
from Lemma 3.1 that

T R T .
/ ST (1)Qaza(t)dt = / ST (0Quia(dt, T >0,
0 0

which implies that
T A~
Va(0,0,0)=  sup  — / 5T (1)Qaza, (1)dt < 0.
ud(')EUd,TZO 0

Hence, sincé/,q(0,0,0) > 0, V4q(0,0,0) = 0. Next, note
that for everyuq(t), t € [t1, 5], andT € [t1, t¢],

- sd(SO(tla P, ud)v Zd, (t1)7 Td, (tQ))

< / 5T (0)Quia (1)t

t1

T R te R
= / 24, 1)Qaza, (t)dt + /T 24, (1) Qaza, (t)dt.

t1

Hence,

- sd(sﬁ(tla 1/}’ Ud); Tq, (tl)v Td, (tl))

- / 23 (t)QaZa, (t)dt

ty
te .
< [ hwQaiat
T
which implies that

- sd(se(tla ¥, ud)7 Tdy (tl)v Ld, (tQ))

- [ L0 0

t1

te .
< ot Qe

uq(-)€Uq,ts>T J
= - sd(SG(Ta¢aud)axd1(T)axd2(T))7

establishing th&>,, Qd)—dissipativity ofGq. O

Remark 3.1:In the case whered; = 0, By = 0, and
Cy =0, it can be shown that

0
Vaa (¥, a1, wa2) = Vaa () = T (0)Qu(0)do. (25)

Next, using Theorem 3.1, we present a sufficient con-
dition on G(s) that guarantees asymptotic stability of the
negative feedback interconnection of the time delay dynam-
ical system given by (9). For the following result we assume
that Vaa(-, -, -) given by (23) is continuously differentiable.

Theorem 3.2:Consider the linear time delay dynamical
system given by (9). Le@y = block-diad@, —Q], where
Q € RP*P, @ > 0. Assume there exists a nonnegative
definite matrixP € R("+M)*(n+1) and scalars, n > 0 such

that (6) holds andP? > block— diag[nl,, Onxn, Onxal,
where

3 A 0 0 . —Aq
A= 0 A 0 |, B= B, ,
B 0 A 0
= | 0 Ci 0 =~ | In
c[[n ; Cl},p{o] (26)

Then the linear time delay dynamical system given by (9)
is asymptotically stable for every € [0, o00).

Proof. It follows from Theorem 3.1 thatGy is
(34, Qq)-dissipative with (X4,Qq4)- storage function
Vad(V, 2a,,7a,), ¥ € C, x4 € R", given by
(23). Next it’ follows from IJ-"roposmon 2.1 thag is
(=,Q)- exponentially dissipative withi, Q)-storage func-
tion Vy(z) = 3T Pz, wherez = [27,2],27]T. Further-
more, note that: = 1/)( ) and as in the proof of Theorem
2.1, it can be shown that; (t) = xq, (), Z2(t) = xa,(t),
¢ >0, and hence the state of the overall interconnection of
G, gd, and¥. (see Figure 4) is given bjyT, #T]T where
& = [2T, 24]". Next, using the Lyapunov-Krasovskii
functronal candrdateV(r/),xl,xg) = Vi(¥(0),21,22) +

Vea (¥, &1, o), it follows that

V(e @1(t),21(t)) < —e" (1) PE(t) < —snxT(t)x(t)-27
Now, Lyapunov stability follows from standard arguments
as applied to time delay systems (see Theorem 2.1 of
[11, F 132] for a similar proof). The proof of asymptotic
stability is similar to that of Theorem 2.1 and hence is
omitted. O

Remark 3.2:Note that if Vi(z) and Via(v, z4,,Zd,)
satisfy (7) and (8), then Theorem 3.2 follows from Theorem
2.1. However, in the case of time delay dynamical systems
(7) and (8) can be replaced by a weaker condition

T (0)$(0) < V(,81,8), $€C, d,dp € er.zs)
In this case, Lyapunov and asymptotic stability can be
shown using the fact thdtz(t)|| <e, ¢t > 0, if and only if
lzell <&, t > 0.

Remark 3.3:Recall that the linear time delay dynamical
system given by (9) is stable for atl€ [0, 00) if and only
if [17] there existsN : yJR — C™*™ such thatN (yw) > 0,
w € R, and
G*(yw)N (jw)G(jw) — N(jw) < 0, weR. (29

Thus, if there existsP € R(+)x(+7) sych that (6)

holds, then it follows from Proposition 2.1 th@tis (2, Q)-
exponentlally dissipative which implies (29) (see Remark
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2.1) with N(jw) = G;(jw)QG1(yw), where Gy (jw)
Ci(ywlz — A1)™1By + 1, w € R. Hence, (6) is a sufficient
condition for satisfying (29) andr; (jw)QG:(yw) is a real
rational approximation taV(yw) in (29).

Remark 3.4:In the case whered; = 0, By = 0, and
C; = 0, it follows from Theorem 3.2 that if there exists a [3]
positive-definite matrix? € R™*™ such that 0

ATP+ PA+eP+Q —PAq

—ATP —Q (5]
then the negative feedback interconnectiongofand Gq
is asymptotically stable. Furthermore, it follows from Re- [6]
mark 3.1 thatVi(y) = [° ¢T(0)Q¢(0)d0 and hence
V(©) = ¢T(0)Py(0)+ [ ¥ (0)Qu(0)d6 is a Lyapunov-
Krasovskii functional for the linear time delay dynamical (8]
system (9). Thus, Theorem 3.2 provides a generalizatior[b]

to the sufficient conditions for linear time delay dynamical
systems given in [9], [10]. [10]

(1]
(2]

<0, (30

V. [11]

In this section, we provide a numerical example td12]
illustrate the utility of the results developed in the paper.
?gnsu?qer the linear time delay dynamical system given bi3l
9) wit

| LLUSTRATIVE NUMERICAL EXAMPLE

[14]
0 1 0 0
0 0 1 0
A=10 0o o 1 | 191
-2 -3 -5 -2 [16]
~0.0604 0.0060 0.3018 0
~ | 0.0060 0.0060 0 0 [17]
Aa = 0 0 0 0 (31)
12074 0  —0.6037 0
Now, with A; = —1I4, By = I, andC; = [04x4 I4]%,

we can show that there exist positive definite matri¢es
and(@ such that (6) holds. Hence, it follows from Theorem
3.2 that the linear time-delay dynamical system given by
(9) with A and A4 given by (31) is asymptotically stable
for every T € [0, 00). However, it can be shown that there
does not exist positive-definite matric&sand @) such that
(30) holds which shows that Theorem 3.2 provides less
conservative sufficient conditions for stability analysis of
time delay systems as compared to the standard sufficient
E:f(;}()ditions given in the literature (see, for example, [9],

V. CONCLUSION

In this paper, we extended the concepts of dissipativity
and the exponential dissipativity to provide new sufficient
conditions for guaranteeing asymptotic stability of a time
delay dynamical system. Specifically, representing a time
delay dynamical system as a negative feedback interconnec-
tion of a finite-dimensional linear dynamical system and an
infinite-dimensional time delay operator, we showed that the
time delay operator is dissipative. Finally, using stability of
feedback interconnection results for dissipative systems, we
developed new sufficient conditions for asymptotic stability
of time delay dynamical systems. The overall approach
provides an explicit framework for constructing Lyapunov-
Krasovskii functionals as well as deriving new sufficient
conditions for stability analysis of asymptotically stable
time delay dynamical systems based on the dissipativity
properties of the time delay operator.
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