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Abstract—This paper studies the H*> fixed-lag smoothing access to the entire future information about the measured
problem in both continuous and discrete time. The central sjgnal, with no causality constraints. In other words, wewi
idea is to address it as a constrained version of thdixed- the fixed-lag problem as a constrainge® estimation prob-

interval smoothing (L°° estimation) problem. This enables us | d fixed-I luti tractedf th let
to separate geometric (which are independent of the smoothing em, and fixed-lag solulions aextractedirom the complete

lag) and analytic constraints imposed by the problem data on the Parametrization of all fixed-interval,(°) solutions. We show
achievable performance. As a byproduct the technique provides that the extraction procedure reduces the original prokitem

an elegant means to find a minimal (finite) smoothing lag at an equivalent Nehari-type problem, which, in turn, is sdive
which the optimal L°° performance level is achieved. State-space using the approach proposed in [12]
formulae are also derived in the continuous-time case. . ) . .
An attractive property of the proposed solution is the
I. INTRODUCTION separation of geometric and analytic constraints imposed b

This paper addresses tHi&™ fixed-lag smoothing problem the problem data on the achievable performance. The former
in both continuous and discrete time. The fixed-lag smogthifPnstraints are independent of the smoothingilagp that they
formulation of a general estimation problem reflects tha-sit"émain active even ds — oc. The latter constraints do depend
ation where some delay or latency between the measurenf@htthe smoothing lag: and vanish asi — oco. We show

and the generation of estimation can be tolerated (e.g., it generically there exists a finite smoothing lag for whic
numerous signal processing applications) [1]. the analytic constraints become inactive, so that no farthe

Most of the existing solutions to thE> smoothing (or the inc'rease ofh could improve the achievabILHOo performance.
dual preview tracking) problem resort to strictly sufficieon- 1 1iS phenomenon, known as the saturation phenomenon, was
ditions, system restrictions, iterative approximatioms afi- first quantified in the continuous-time case in [13] using a
mension increase. For example, the solution of the contisuo different (state-space) approach. Yet in the discrete-wase
time H> preview tracking, in [2], is derived in terms Oft_hg guestion _of whether th_HOO performance saturates for a
the standardi> algebraic Riccati equation (ARE), that isfinité smoothing lag was still open. _
associated with the tracking problem without preview. That /N the continuous-time case we also provide the state-space
equation, however, might not admit a stabilizing solutioner Solution. It is based on two ARE's oH* and H> types,
some performance levels, for which the preview problem whose dlmgnS|on |s.that of the (delay-free) pr.oblem. Both
is solvable. In other words, that solvability condition is ynl th€se equations are independent of the smoothing lag, so the
sufficient. Similar situation takes place in the discrete-timBrOPosed solution is better suited for the search of themahi
case, where available low-dimensional solution procesiurgM0othing lag for a given performance level than those in [7]
[4]-[6] might fail even when the problem is solvable. [8]. The smoothing lag appears only in an algebraic coupling

The first complete solution to thE> fixed-lag smoothing condition, imposed on'the res_ultlng Riccati solutions.cAkhe
problem was obtained in [7] using thespectral factorization Structure of the resulting estimator has some advantage ove
approach. In [8], [9], a game-theoretic approach was usthft in [7] as |t_only involves the matrix exponentials oftd&a
to obtain a different form of the solvability conditions gal (Hurwitz) matrices.
necessary and sufficient) and a (sub)optimal smoother in {Q§iations

continuous and discrete time, respectively. ) .
In this paper we propose an alternative solution procedure.Tn€ nomenclature adopted here is driven by the need for

Following the idea of [10], [11], we shall treat the fixed? unified treatment of continuous- and discrete-time system
lag smoothing problem as @onstrainedversion of a simpler W& use A for the Laplace transform variable in both the
estimation problem. In our case, that is the infinite-harizg*ontinuous (where\ = s) and the discrete (wherg = 2)

fixed-interval smoothing problem, where the estimator hasdSes- The notatioh stands for the stability boundary in the
complex A-plane:B = j(R U co) (extended imaginary axis)

1This problem was overcome in the recent paper [3] by the santmmut in the continuous-time case ari®l = D (unit circle) in the
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discrete-time case. Furthermoiié,denotes the “strictly” (i.e., [1l. A FREQUENCY¥DOMAIN SOLUTION
excludingB) unstaE‘)I%region in the-plane. Given a transfer ¢ purpose of this section is to solve the smoothing
function G(\) = [ﬁf} its conjugate is denoted &~ (\) problem (3) using frequency-domain arguments. To this end
and is defined a&™~(s) = G'(—s) and G~ (z) = G'(z~'), We treat (3) as a constrained case of the infinite-horizon
/ _ 4] ; version of the fixed-interval smoothing problem.
where G7(3) = Fir ] Y Dn(%) we denote the (inner) The fixed-interval smoothing problem is the problem where
the estimatorK has access to all future measurements of
the output of Ny. Problem (3) can the be interpreted as the
constrained problem in whiclk has access to the output of
N only h time units ahead. It is thus clear that the solvability
Let G; and G2 be finite-dimensional proper transfer matriof the fixed-interval problem is necessary for the solvapili

transfer function of théx time units delay operato;, (s) =
e~ and Dy, (z) = 27",

II. PROBLEM FORMULATION AND PRELIMINARIES

ces given by their state-space realization of the fixed-lag problem, for ank. Moreover, solutions to the
latter problem constitute a subset of the solutions to thaéo.
Al B ) . o .
Gi(\) | _ 1D 1) To be more precise, note that sinfk, (\) is inner in both
Ga(N) ) continuous and discrete time,

Ca| D2

We assume that this realization satisfies the followingdsiath I1DrNy = KNa|| g = [N1 = D_p K Nol|ze.

assumptions: Thus, (3) is solvable iff there exists &, guaranteeing that
A1 (Cy, A) is detectable; I[Nt — KoN2| L~ < ~ and such thaD, K, € H* (where
Ay Ag A 5 ] has full row rankv\ € B. the fact thatV,, No € H° is used). In other words,

2 2

% oo o)
Note that in the continuous-time casé4, guarantees that Ko € D_pH™ C L™

Dy D;y > 0 (as it should hold at = joo). A general H>  We shall therefore start with solving the fixed-interval siio
fixed-lag smoothing problem is formulated as the problem @fg problem and then impose an additional (causality) con-
finding an estimatof(\) € H*> such that straint on its solution to solve the original fixed-lag prerol.

IDr(N)G1(A) — K(N)Ga2(N) || g < v (2) A. L* solutions
The fixed-interval H> smoothing problem was solved in

for a given smoothing lag > 0 and a constant > 0. : .
gven s ing lag > stang [16] by state-space methods and in [17] by I/O methods (in the

Note that no restriction on the stability @f; and G5 is ime d i In thi i v follow th ‘
imposed. The treatment of the smoothing problem, howelver,_'ime omain). In this section we mainly follow the arguments

somewhat more clean when the realization in (1) is stable. \}\?eéhe Ie_l(;ter trr(]aferentc)le W'thf ?_or(?_e mlnorLToodlfu;]a';lr(])nts.
thus transform the original smoothing problem to an eqeival onsider the problem of finding, € such tha
one with stable data. We use this opportunity also to ensure | Ny — ffaNzllLoo < 7. (4)

that the ‘G>" part of the new problem is co-inner. o _ )
Lemma 1:Let A1 hold. Then a left coprime factorization ThiS i essentially an algebraic problem over the range of

of (1) can be chosen in the form B, which is equivalently rewritten as
|:G1:| - [1 M1 [Nl] (N1 — KoNo) (N1 — KoNo)™ <4%I, VA€eB. (5)
Go 0 M, | N A standard completion of squares argument is used to charac-
with My, My, Ny, N, € RH*® and such that terize SO|UthnS of (5). SincdV; N = VN and NoN3» =1
i (Lemma 1), inequality (5) can be rewritten as
N]_ ~ VN ~ ~ iy 2 ~ ~
Ny | Ve =g (V™ = Ko)(V = KY) <% — Ny (I — N5"No)Ny”. (6)

~ i ~ 2% _ [~ > . . .
for somestrictly properV € H>°. Moreover,K € H* solves Since (V Ka)(V = K') 2 0, Bq. (4) is solvable only if

the fixed-lag smoothing problem 721 > Ny(I — N3°No)Ny, VA €B, @)
[ DR(A)N1(A) = KA No(\) || o < (3) or, equivalently,
iff K = KM, — DM, solves the original problem (2). Y > Yoo = [|[N1(L — N3"Na) || poe. (8)

Proof: This result is a straightforward combination of [7
Lemma 5] (see also [14]) and factorization arguments, ssch
those in [15] (wherg13.7 ands21.5.2 provide the continuous-
and discrete-time results, respectively).

Henceforth we consider the equivalef> smoothing
problem (3). WWr =1~ 7%Nl (I = Ny'No)N7T, YAeB. (9)
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This condition is also sufficient as thek, = V~ (¢ H)
Sbviously solves the problem.

Now, let W, (\) be any square transfer matrix such that its
frequency response satisfies



By (7), suchWW, exists and has no zeros i (equivalently, In closing, it is observed that standard frequency-domain
W.,, is invertible in L>). Having W.,, (6) is equivalent to arguments, as in [1517.6], lead to the reduction to the one-
e = - e 9 block problem (11) without an appeal to the fixed-interval
W (VY = Ko)(V = KZ) (W)™ <~7L, VAeB. case. The proposed derivation has a conceptual advantages
This, in turn, implies that (4) is equivalent to the follogin @S it clearly separates geometric constraints, reflecte(vy
(one-block) L model-matching problem: which is independent ofi, and analytic constraints, reflectt_ad
by (14), where the effect ok comes to bear. To reveal this
<. (10) dependence, note that as the impulse respongé décays
i ) ) . with the time,V}, can be made arbitrarily small (in any metric)
It is readily seen that all solutions to (10) are parameﬁhz%y increasings. This means, that for any satisfying (8) there

in th? form.Ka_ = V™ — W,Q, whereQ is any transfer exists a (sufficiently largek, such that (14) hold§'h > h..
function satisfying||Q|z~ < ~. We, however, do not needln other words, thenalytic constraints vanish ak — oco.

this parametrization. Rather, in the analysis below welshal The last observation has an interesting spin-off. Unlesteth

appeal directly to (10). are no geometric constraints (i.§. = 0), there must exist a
finite smoothing lag for which any > ~, is attainable. The
guestion is whether this still happensas- v, i.e., whether
there exists dinite smoothing lag for which the finite-interval
performance is achievable (saturation of the performanide
problem here is thatV,,__(\) is no longer invertible inL°°,
so that the situation in the limit requires careful treatinen

WS V)™ = Ka) [

B. The one-block problem

As shown abovek,, solves (4) iff it solves (10). This ob-
viously remains true when any causality constraint is ingpos
upon K, which leads us to the conclusion thete H*> is
a solution of the original problem (3) iff it satisfies

—1 ~ g -
W5 (DY Kl <7 (11) C. Including the optimal case

Now, note that since the parahermitian transfer function ontqy aqdress the situation when — ~., we shall modify

the right-hand side of (9) has neither poles nor zerds,ithe proplem (2) as follows:

factor W, can always be chosen [15] such that, W;l €

RH® (spectral factorization). IDr(AN)G1(A) — K(A)Ga2(N) || < 7. (20p1)
Problem (11) would have been of a standard one-block .

Nehari-type had it not contained the deldy,. Yet the In that case, all arguments of Lemma 1 aglt-A remain

presence of);, can be circumvented using a trick from [12]Unchanged modulo the replacement ef*"and "> with * <”
The key idea there is to decompose and “>", respectively, up to the factorization in (9). Indeed,

if v = 700, the right hand side of (9) is no longer invertible
Dy~ =V 4+ 11 (12) in X € B. There are two different situations possib{a) the
right hand side of (9) still has fulhormal rank [15, §3.11]

for some strictly propew, € RH* and Il € H* such that o4 p) it is singularv € B, i.e., 5(d()\)) is all-pass, where

II(A) is an entire function of\. The infinite-dimensional part
of this decomposition/!, could then be absorbed intd, so @ = Ny(I — NJ'N2)N7.

that (11) can be equivalently rewritten as the followingagel o .
free (i.e., finite-dimensional) problem: We argue that the latter situation is rather non-generitedud,

~ it is known [17,§10.3.2] that® is the spectral density function
W (Vi = Kol <7, (13) of the L2-optimal (non-causalH2-optimal) solution. One
would therefore expect that genericalif®) is not all-pass.
For that reason we assume throughout this section that

I
.alg: v2. I — @()\) is by-proper and has full normal rank.

» This assumption also rules out the case whgn= 0.
IVa(W5 )" Ml <, (14)  When A; holds, the rational transfer matri¥’;" exists

where the notatior|-|| z stands for the Henkel norm. for al! 7 2 Yec, though now it QOes not necessarily belong to
L (it has at least one pole iB when~ = ~,). We thus

The required transfer matricéy and 7 will be constructed .
in Section IV in the continuous—time case using state-spa‘cf;[gl can reduce (10) to a one-block problem of the form
machinery (the state-space ;olution of (13) 'Wi|| glso pe pre ||W;1(D;,,V” — K| < 7. (11op0)
sented there). Here we describe only the basic rationali@deh
these choices, which will later help clarifying the effeét’o The main difference from the suboptimal case in (11) is that
on (14). Rewrite (12) a¥ — D, V,, = D,II™~ and choose a now there might be a need to impose interpolation consgraint
rational V;, so that the impulse response Bf,V}, cancels that on K to guarantee thaW;l(DhVN —K) e L™.
of V in the interval[h, o), which is clearly possible. Such The following result is geared to that end:
a choice leads to an FIR (finite impulse respongg)l~, Lemma 2:Let W, € RH> be so thati¥"' has no poles
supported ovef0, 4] and, in turn, to an FIRT. in U andV,, € RH*. Then

where K, = K — II belongs toH iff so doesk. Problem
(13) can then be solved using standard methods. In panticu
it is solvable iff
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1) there exist strictly propeV,,V_ € RH so that
—1y/~ _ ~ 1 .
W’Y 4 _V+ +W'y V77
2) WDV~ — K,) € L™ for a K, € H* iff

K, =W,K, + D,V_ (15)

for somekK, € RH®.
Proof: Since the spectra W;l and V> are disjoint,
the strictly propeiV. Ly~ can always be decomposed as

WV = Uy +Us

for some strictly propet/, € RH$® and Us with no poles in
U. For the same reason, we can always decompose

W'yUU == 0[1 + US

for some strictly properlU, € RH$ and Us € RH™.
Substitutingl, from the first decomposition above to the left
hand side of the second decomposition, we getthat V™.
Hence, the first statement of the Lemma is true¥War= U;”
andV_ = Us.

Now, if K, is chosen according to (15), then

W HDyV™ — Kp) = DV — K, € L.
On the other hand, if som&, belonging toH> guarantees
that W (D, V™~ — K;) € L™, then

K, =DyVy — W, (DV™ — Kr) € L™,

At the same timek, = W '(K, — D,V_) has no poles in
U. Therefore, K, € H*>, which completes the proof. ®

Lemma 2 enables us to reduce (11) to the following Nehari

problem:
DRV = Kyl <7,

which is solvable iff| D_,Vy ||z <. SinceVy € RH*,
Jim [[D—p Ve[ = 0.

This proves the conjecture at the end 5ifi-B, that (under

A. Formulae of Lemma 1

The state-space realizations of the factors in Lemma 1 is
derived by a standard state-space technique [15], as fllow
Consider the standard continuous-time ARE

AY, + Y, A’ + BB’
— (YaC) + BDy) Ry (C2Yo + DoB') =0, (16)

where Ry, = D,D) > 0 by A,. By A;, there exists a
stabilizing solutionY; = Yy > 0; i.e., such that the matrix
A = A+ LyCs is Hurwitz, whereLy = —(Y>C%+ BD,)R; .
Defining B = B+ LyDs, [Cy Dy | = Ry 2 [Cy Dy ], and

[Cy Dy]=[Cy D1] -~ DiDyRy [Cy Dy ].

It is then the matter of a straightforward algebra to show tha
the transfer matrices satisfying the conditions of Lemma 1
have the following state-space realizations:

A —BB'| BD} BD,
NN~ V™ 0o -A | ¢c
NNN — 1 — 1 2
V] - [ o
Cy —DsB'| 0 I
A 0 Y,Cf + BDj 0
1o i c c,
Cy —C1Y, — D1B'|  DiDj 0|’
Cs 0 0 I

where the latter equality is obtained by the similarity &an
formation with [ [ *? ], whereY; is the solution of (16) (note

that it satisfiesdY; + Y, A’ + BB’ = 0).

B. Spectral factorization irf9)

the genericA3) smoothing performance saturates at a finite Arguably, the simplest way to derive the state-space @aliz

smoothing lag, even ag — voo.

tion of the system in the right-hand side of (9) is by applying

Remark 3.1:The saturation property was first proved fokne S-transformation introduced in [18]. We have:

the continuous-time case, in [13], using state-space tech-

nigues. In the discrete-time case, however, the existefice @ NN~) = [ Ny(I — N§"No)Ny N1N2~]
this property was an open problem. The solution method for I —No Ny~ I
the discreteH > fixed-lag smoothing problem, in [9], is not r A 0 Y»,C} + BD) 0
readily suitable to address this issue. —C4C, _A o ¢
— _ / /
IV. STATE-SPACE SOLUTION IN CONTINUOUS TIME C(Zl* ClYQO DB ‘ D10D1 ?
L — Y2

In this section we present the state-space formulae for all ) o } } o o

steps described in the previous section. Because of space IDenoteC., = %Cl, D, = %Dl, and L, = —(Y2C!, + BD’)

itations, only continuous-time results are discussedcite- (in the sequel, we writd; to denoteﬂvhzl) and then

time counterparts, the derivation of which is considerably
more involved though follows exactly the same steps, will be
presented in the full version of this paper.

v, =

— LN\(I - Ny Na) Ny LNiNp:
LNy Ny I
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A 0 | L, 0 C. Decomposition oD}, V™

e Vol v A1
= %02 LI,4 T gWD’ C(;2 Given a transfer matrixz(s) = {%’%}, define the transfer
& o o I matrix
- 6 = [ oty
~ ~ h - .
Let W, be the observability Gramian ¢f, Cs), i.e., Ce™ |0
W,A + A'W, + C4Cy = 0. Then, theh-truncation ofG [11], 7,{G}, is defined as
Then T{G} =G — e "G} = C(I — e Ty (sT — A)7'B.
A 0 L, 0 It is readily seen that-,{G} is an entire function ok and
0 —A _C'; ~W,L, C} its impulse response is zero in the whole interjfaloc) as
vy = C,+LW, I'| T-D,D, 0 @ e~*"G), cancels out the impulse responsefThus,r,{G}
_@; 07 0 7 I is an FIR system, exactly how discussedih-B.

) . . Therefore, we choos®, 11~ = 7,{V} for the decompo-
We are now in the position to analyze the spectral factorizagion in (12). This results in

tion problem associated with (9). To this end, introduce now

another Riccati equation: Vi(s) = {g ef:)hil}
-~ ~ o~ ~ ~ ~ ~ 2
AY, + YV, A" + (Ly — Y, (Cl 4+ WoLy)) .
x RZV(L, — (Cy+ DL W,)Y,) =0, (18)

5 5 A —AleAnCy ] w [ —A|C)
whereR, = I—D,D/. AsolutionY, is said to be stabilizing I(s) = [ 1o 2| _gsh [ 7 02} (19)
if the matrix A, = A — (L, — Y, (C, + WoL,))R;"(C, + oo ; 1
L/ W,) is Hurwitz. We have: with &, = II¢; implies that

Proposition 1: Condition (7) holds iff R, > 0 and there Y N
exists a stabilizing solutior’, to the ARE (18). If this o(t) = L /t_he G5 &i(T)dr.

condition holds, then . . . . .
It is worth emphasizing that the implementation of the iefat

W — A |BvR§ RY/2 above requires the computation of matrix exponentials of
TG+ LW, T T Hurwitz matrices only.

whereB, = L,—Y,(C,+W,L,), is a bistable transfer matrix D. Solution to the one-block problem

satisfying (9). We are now in the position to address (13). In its solution
Proof: Let W.,, denote the(1, 1) subblock ofW., from \ye will follow the arguments from the proof of Lemma 2

(17). Following the standard bounded-real arguments [B8] 0(though we address the suboptimal problem only). To this end

can show that (7) holds iffz, > 0 and the A" matrix of ,5te that using the fact th&iﬁ;ﬁ—fﬁfl’ _ —Bvéffi/w the

W1y, which is following decomposition can be performed:

=0 )t o T, | B 16 B ), WV = Vi A W Y
v where

has no eigenvalues on the imaginary axis. On the other - -

hand, it is readily seen thaf{; is the Hamiltonian matrix Vig = [ ~A Y Bl} R;1/2’

associated with (18). Since the péit;, '/*(C, + L. W,), A — _C%e ON o

L,R;YCy + L W,)) is detectable 4 is Hurwitz), Theo- R | \Yve“"hcg]

rem 13.6 in [15] yields that the absence of the imaginary B C1 + LYW, 0 '

axis eigenvalues off, is equivalent to the existence of
stabilizing solution of (18). This proves the first statemeh
the Proposition. 1Vice — Kol <7, (20)
To derive the formula for the spectral factdr,,, apply the _ 1 o i -
similarity transformation[ ¥ ] to the realization (17). Then, Where K, = W /(K — Vi) € H> iff K € H>. The
solution to this problem is given by the following Propaoaiti

aProbIem (13) is reduced then to the standard Nehari problem

A Bwf%{lé’v } 37 3 Proposition 2: Nehari problem (20) is solvable iff
\I/vll = 0 —A —C,/Y — WOL"/ ) - A'h Ah
o T ILW, B | 7, p(Ywe Wee ) <1. (21)
which is W, WZ*. This W., € RH* by construction and it Furthermore, if (21) h0|(~15, the? L )
can be easily verified that thed” matrix of W" is actually i g [As Z;}CQCQeA’ﬂZth
A, so thatW;' € RH> as well. [ v B BleA MW, el \ 0 |’
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where Z, = (I — Y,eA"W, eAh)flff eA'h, solves (20).

the optimaly (more premsely;Y,y might become unbounded

Proof: Note thateA hW,eA andY, are the controlla- only if R, is singular). It is then clear that the solvability
bility and observability Gramians 0¥Vh+, respectively. The condition (21) always holds if. is sufficiently large (since

proof then follows by a direct appllcat|on of []. [ ]
To solve (3) it is only left to substitute the realizations ofag
Wy, Vi, and K, to

K=W,K, +Vj_

After some straightforward algebra the following resulh dee
formulated:

Theorem 1:Let A;, hold. Then the fixed-lag smoothing
problem (3) is solvable iff there exists a stabilizing st
to the ARE (18) and condition (21) holds. In this case, o
solution of (3) is given by

= |:A - Zhé'éé’ge“iﬂZhC'é

|+ e

K =
() —C — LW, | 0 g
whereIl(s) is as defined by (19), (2]
. N heo (3]
Wy = W, — eA "W, el — / A1 Gl et at a
0

and Z;, is as defined in Proposition 2.

The original problem, (2), is also solved: (5]

Corollary 1: Let .41, hold. Then the fixed-lag smoothing
problem (2) is solvable iff the conditions of Theorem 1 hold.[s]
In that case one solution is given by

(7]
1} )

o efsh |:
where K is given by (22).

Some remarks are in order. o

Remark 4.1:An important advantage of the solution of
Theorem 1 over that in [7] is that the former does not involvol
matrix exponentials of matrices with eigenvalues in the RHP
(including that in the last term of (22)). All exponentialeea [11]
of the Hurwitz matrixA, so that the smoother (22) remains
well-posed even as — oo. However, after the transformationy; 5,
from K back to K, as in Corollary 1, the structure of (22) is
lost.

Remark 4.2:Another potential advantage of the proposeH?’]
solution is that only the matrixZ, might become ill-
conditioned whery approaches its minimal value (at least4
whendet(R,) # 0). Indeed, A and W, do not depend o 15
andY remains finite even for the optimal performance [19{.
Note also that the singularity itZ;,, can be handled easily [16]
by standard descriptor arguments [$56.9] and results in an
order reduction of the first term on the right-hand side of)(22/17]
In contrast, in the solutions developed in [7], [8], the Ritic
solution do become unbounded for the optimal performancgg]

Remark 4.3:The saturation phenomenon provedsih-C
can also be seen through the state-space solvability dxmmdit[lg]
(21). To this end, note that neith&r, nor W, depends on the
smoothing lag. Moreover, these matrices are bounded even fo

Al Ly
—1/2

Cs| R;

A Lo

K( ) (& —D1D/2R5

limy, .o eA" = 0). Thus, for a sufficiently large smoothing

(21) is no longer restrictive and the solvability coratis

reduce to the solvability of the ARE (18), which is indepentde
of h. The minimaly for which (18) is solvable is the minimal
achievable performance in the fixed-interval smoothihgr)
case.
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