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Abstract— This paper studies the H
∞ fixed-lag smoothing

problem in both continuous and discrete time. The central
idea is to address it as a constrained version of thefixed-
interval smoothing (L∞ estimation) problem. This enables us
to separate geometric (which are independent of the smoothing
lag) and analytic constraints imposed by the problem data on the
achievable performance. As a byproduct the technique provides
an elegant means to find a minimal (finite) smoothing lag at
which the optimal L

∞ performance level is achieved. State-space
formulae are also derived in the continuous-time case.

I. I NTRODUCTION

This paper addresses theH∞ fixed-lag smoothing problem
in both continuous and discrete time. The fixed-lag smoothing
formulation of a general estimation problem reflects the situ-
ation where some delay or latency between the measurement
and the generation of estimation can be tolerated (e.g., in
numerous signal processing applications) [1].

Most of the existing solutions to theH∞ smoothing (or the
dual preview tracking) problem resort to strictly sufficient con-
ditions, system restrictions, iterative approximations and di-
mension increase. For example, the solution of the continuous-
time H∞ preview tracking, in [2], is derived in terms of
the standardH∞ algebraic Riccati equation (ARE), that is
associated with the tracking problem without preview. That
equation, however, might not admit a stabilizing solution under
some performance levelsγ, for which the preview problem
is solvable. In other words, that solvability condition is only
sufficient1. Similar situation takes place in the discrete-time
case, where available low-dimensional solution procedures
[4]–[6] might fail even when the problem is solvable.

The first complete solution to theH∞ fixed-lag smoothing
problem was obtained in [7] using theJ-spectral factorization
approach. In [8], [9], a game-theoretic approach was used
to obtain a different form of the solvability conditions (also
necessary and sufficient) and a (sub)optimal smoother in the
continuous and discrete time, respectively.

In this paper we propose an alternative solution procedure.
Following the idea of [10], [11], we shall treat the fixed-
lag smoothing problem as aconstrainedversion of a simpler
estimation problem. In our case, that is the infinite-horizon
fixed-interval smoothing problem, where the estimator has

1This problem was overcome in the recent paper [3] by the same authors.

access to the entire future information about the measured
signal, with no causality constraints. In other words, we view
the fixed-lag problem as a constrainedL∞ estimation prob-
lem, and fixed-lag solutions areextractedfrom the complete
parametrization of all fixed-interval (L∞) solutions. We show
that the extraction procedure reduces the original problemto
an equivalent Nehari-type problem, which, in turn, is solved
using the approach proposed in [12].

An attractive property of the proposed solution is the
separation of geometric and analytic constraints imposed by
the problem data on the achievable performance. The former
constraints are independent of the smoothing lagh, so that they
remain active even ash → ∞. The latter constraints do depend
on the smoothing lagh and vanish ash → ∞. We show
that generically there exists a finite smoothing lag for which
the analytic constraints become inactive, so that no further
increase ofh could improve the achievableH∞ performance.
This phenomenon, known as the saturation phenomenon, was
first quantified in the continuous-time case in [13] using a
different (state-space) approach. Yet in the discrete-time case
the question of whether theH∞ performance saturates for a
finite smoothing lag was still open.

In the continuous-time case we also provide the state-space
solution. It is based on two ARE’s ofH2 and H∞ types,
whose dimension is that of the (delay-free) problem. Both
these equations are independent of the smoothing lag, so the
proposed solution is better suited for the search of the minimal
smoothing lag for a given performance level than those in [7],
[8]. The smoothing lag appears only in an algebraic coupling
condition, imposed on the resulting Riccati solutions. Also, the
structure of the resulting estimator has some advantage over
that in [7] as it only involves the matrix exponentials of stable
(Hurwitz) matrices.

Notations

The nomenclature adopted here is driven by the need for
a unified treatment of continuous- and discrete-time systems.
We use λ for the Laplace transform variable in both the
continuous (whereλ = s) and the discrete (whereλ = z)
cases. The notationB stands for the stability boundary in the
complexλ-plane:B = j(R ∪ ∞) (extended imaginary axis)
in the continuous-time case andB = D (unit circle) in the



discrete-time case. Furthermore,U denotes the “strictly” (i.e.,
excludingB) unstable region in theλ-plane. Given a transfer
function G(λ) =

»

A B

C D

–

, its conjugate is denoted asG∼(λ)

and is defined asG∼(s) = G′(−s) and G∼(z) = G′(z−1),

where G′(λ) =
»

A′ C′

B′ D′

–

. By Dh(λ) we denote the (inner)

transfer function of theh time units delay operator:Dh(s) =
e−sh andDh(z) = z−h.

II. PROBLEM FORMULATION AND PRELIMINARIES

Let G1 andG2 be finite-dimensional proper transfer matri-
ces given by their state-space realization

[

G1(λ)
G2(λ)

]

=





A B

C1 D1

C2 D2



 . (1)

We assume that this realization satisfies the following standard
assumptions:

A 1: (C2, A) is detectable;

A 2:

[

A − λI B

C2 D2

]

has full row rank∀λ ∈ B.

Note that in the continuous-time caseA 2 guarantees that
D2D

′
2 > 0 (as it should hold atλ = j∞). A generalH∞

fixed-lag smoothing problem is formulated as the problem of
finding an estimatorK(λ) ∈ H∞ such that

‖Dh(λ)G1(λ) − K(λ)G2(λ)‖H∞ < γ (2)

for a given smoothing lagh ≥ 0 and a constantγ > 0.
Note that no restriction on the stability ofG1 and G2 is

imposed. The treatment of the smoothing problem, however, is
somewhat more clean when the realization in (1) is stable. We
thus transform the original smoothing problem to an equivalent
one with stable data. We use this opportunity also to ensure
that the “G2” part of the new problem is co-inner.

Lemma 1:Let A1,2 hold. Then a left coprime factorization
of (1) can be chosen in the form

[

G1

G2

]

=

[

I M1

0 M2

]−1 [

N1

N2

]

with M1,M2, N1, N2 ∈ RH∞ and such that
[

N1

N2

]

N∼

2 =

[

V ∼

I

]

for somestrictly properV ∈ H∞. Moreover,K̃ ∈ H∞ solves
the fixed-lag smoothing problem

‖Dh(λ)N1(λ) − K̃(λ)N2(λ)‖H∞ < γ (3)

iff K = K̃M2 − DhM1 solves the original problem (2).
Proof: This result is a straightforward combination of [7,

Lemma 5] (see also [14]) and factorization arguments, such as
those in [15] (where§13.7 and§21.5.2 provide the continuous-
and discrete-time results, respectively).

Henceforth we consider the equivalentH∞ smoothing
problem (3).

III. A FREQUENCY-DOMAIN SOLUTION

The purpose of this section is to solve the smoothing
problem (3) using frequency-domain arguments. To this end
we treat (3) as a constrained case of the infinite-horizon
version of the fixed-interval smoothing problem.

The fixed-interval smoothing problem is the problem where
the estimatorK̃ has access to all future measurements of
the output ofN2. Problem (3) can the be interpreted as the
constrained problem in which̃K has access to the output of
N2 only h time units ahead. It is thus clear that the solvability
of the fixed-interval problem is necessary for the solvability
of the fixed-lag problem, for anyh. Moreover, solutions to the
latter problem constitute a subset of the solutions to the former.

To be more precise, note that sinceDh(λ) is inner in both
continuous and discrete time,

‖DhN1 − K̃N2‖H∞ = ‖N1 − D−hK̃N2‖L∞ .

Thus, (3) is solvable iff there exists ãKα guaranteeing that
‖N1 − K̃αN2‖L∞ < γ and such thatDhK̃α ∈ H∞ (where
the fact thatN1, N2 ∈ H∞ is used). In other words,

K̃α ∈ D−hH∞ ⊂ L∞.

We shall therefore start with solving the fixed-interval smooth-
ing problem and then impose an additional (causality) con-
straint on its solution to solve the original fixed-lag problem.

A. L∞ solutions

The fixed-intervalH∞ smoothing problem was solved in
[16] by state-space methods and in [17] by I/O methods (in the
time domain). In this section we mainly follow the arguments
in the latter reference with some minor modifications.

Consider the problem of finding̃Kα ∈ L∞ such that

‖N1 − K̃αN2‖L∞ < γ. (4)

This is essentially an algebraic problem over the range ofλ ∈
B, which is equivalently rewritten as

(

N1 − K̃αN2

)

(N1 − K̃αN2)
∼ < γ2I, ∀λ ∈ B. (5)

A standard completion of squares argument is used to charac-
terize solutions of (5). SinceN1N

∼
2 = V ∼ and N2N

∼
2 = I

(Lemma 1), inequality (5) can be rewritten as

(V ∼ − K̃α)(V − K̃∼

α ) < γ2I − N1(I − N∼

2 N2)N
∼

1 . (6)

Since(V ∼ − K̃α)(V − K̃∼
α ) ≥ 0, Eq. (4) is solvable only if

γ2I > N1(I − N∼

2 N2)N
∼

1 , ∀λ ∈ B, (7)

or, equivalently,

γ > γ∞
.
= ‖N1(I − N∼

2 N2)‖L∞ . (8)

This condition is also sufficient as theñKα = V ∼ (∈ H∞

⊥
)

obviously solves the problem.
Now, let Wγ(λ) be any square transfer matrix such that its

frequency response satisfies

WγW∼

γ = I − 1
γ2 N1(I − N∼

2 N2)N
∼

1 , ∀λ ∈ B. (9)



By (7), suchWγ exists and has no zeros inB (equivalently,
Wγ is invertible inL∞). Having Wγ , (6) is equivalent to

W−1
γ (V ∼ − K̃α)(V − K̃∼

α )(W−1
γ )∼ < γ2I, ∀λ ∈ B.

This, in turn, implies that (4) is equivalent to the following
(one-block)L∞ model-matching problem:

∥

∥W−1
γ (λ)

(

V (λ)∼ − K̃α(λ)
)∥

∥

L∞
< γ. (10)

It is readily seen that all solutions to (10) are parametrized
in the form K̃α = V ∼ − WγQ, where Q is any transfer
function satisfying‖Q‖L∞ < γ. We, however, do not need
this parametrization. Rather, in the analysis below we shall
appeal directly to (10).

B. The one-block problem

As shown above,̃Kα solves (4) iff it solves (10). This ob-
viously remains true when any causality constraint is imposed
upon K̃α, which leads us to the conclusion thatK̃ ∈ H∞ is
a solution of the original problem (3) iff it satisfies

‖W−1
γ (DhV ∼ − K̃)‖L∞ < γ. (11)

Now, note that since the parahermitian transfer function on
the right-hand side of (9) has neither poles nor zeros inB, the
factor Wγ can always be chosen [15] such thatWγ ,W−1

γ ∈
RH∞ (spectral factorization).

Problem (11) would have been of a standard one-block
Nehari-type had it not contained the delayDh. Yet the
presence ofDh can be circumvented using a trick from [12].
The key idea there is to decompose

DhV ∼ = V ∼

h + Π (12)

for some strictly properVh ∈ RH∞ andΠ ∈ H∞ such that
Π(λ) is an entire function ofλ. The infinite-dimensional part
of this decomposition,Π, could then be absorbed intõK, so
that (11) can be equivalently rewritten as the following delay-
free (i.e., finite-dimensional) problem:

‖W−1
γ (V ∼

h − K̃π)‖L∞ < γ, (13)

whereK̃π
.
= K̃ − Π belongs toH∞ iff so doesK̃. Problem

(13) can then be solved using standard methods. In particular,
it is solvable iff

‖Vh(W−1
γ )∼‖H < γ, (14)

where the notation‖·‖H stands for the Henkel norm.
The required transfer matricesVh andΠ will be constructed

in Section IV in the continuous–time case using state-space
machinery (the state-space solution of (13) will also be pre-
sented there). Here we describe only the basic rationale behind
these choices, which will later help clarifying the effect of h

on (14). Rewrite (12) asV − DhVh = DhΠ∼ and choose a
rationalVh so that the impulse response ofDhVh cancels that
of V in the interval [h,∞), which is clearly possible. Such
a choice leads to an FIR (finite impulse response)DhΠ∼,
supported over[0, h] and, in turn, to an FIRΠ.

In closing, it is observed that standard frequency-domain
arguments, as in [15,§17.6], lead to the reduction to the one-
block problem (11) without an appeal to the fixed-interval
case. The proposed derivation has a conceptual advantages
as it clearly separates geometric constraints, reflected by(7),
which is independent ofh, and analytic constraints, reflected
by (14), where the effect ofh comes to bear. To reveal this
dependence, note that as the impulse response ofV decays
with the time,Vh can be made arbitrarily small (in any metric)
by increasingh. This means, that for anyγ satisfying (8) there
exists a (sufficiently large)hγ such that (14) holds∀h > hγ .
In other words, theanalytic constraints vanish ash → ∞.

The last observation has an interesting spin-off. Unless there
are no geometric constraints (i.e.,γ∞ = 0), there must exist a
finite smoothing lag for which anyγ > γ∞ is attainable. The
question is whether this still happens asγ → γ∞, i.e., whether
there exists afinite smoothing lag for which the finite-interval
performance is achievable (saturation of the performance). The
problem here is thatWγ∞

(λ) is no longer invertible inL∞,
so that the situation in the limit requires careful treatment.

C. Including the optimal case

To address the situation whenγ → γ∞ we shall modify
problem (2) as follows:

‖Dh(λ)G1(λ) − K(λ)G2(λ)‖H∞ ≤ γ. (2opt)

In that case, all arguments of Lemma 1 and§III-A remain
unchanged modulo the replacement of “<” and “>” with “ ≤”
and “≥”, respectively, up to the factorization in (9). Indeed,
if γ = γ∞, the right hand side of (9) is no longer invertible
in λ ∈ B. There are two different situations possible:(a) the
right hand side of (9) still has fullnormal rank [15, §3.11]
and (b) it is singular∀λ ∈ B, i.e., σ̄(Φ(λ)) is all-pass, where

Φ
.
= N1(I − N∼

2 N2)N
∼

1 .

We argue that the latter situation is rather non-generic. Indeed,
it is known [17,§10.3.2] thatΦ is the spectral density function
of the L2-optimal (non-causalH2-optimal) solution. One
would therefore expect that genericallȳσ(Φ) is not all-pass.
For that reason we assume throughout this section that

A3: γ2
∞

I − Φ(λ) is by-proper and has full normal rank.

This assumption also rules out the case whenγ∞ = 0.
When A3 holds, the rational transfer matrixW−1

γ exists
for all γ ≥ γ∞, though now it does not necessarily belong to
L∞ (it has at least one pole inB when γ = γ∞). We thus
still can reduce (10) to a one-block problem of the form

‖W−1
γ (DhV ∼ − K̃π)‖L∞ ≤ γ. (11opt)

The main difference from the suboptimal case in (11) is that
now there might be a need to impose interpolation constraints
on K̃ to guarantee thatW−1

γ (DhV ∼ − K̃) ∈ L∞.
The following result is geared to that end:
Lemma 2:Let Wγ ∈ RH∞ be so thatW−1

γ has no poles
in U andVh ∈ RH∞. Then



1) there exist strictly properV+, V− ∈ RH∞ so that

W−1
γ V ∼ = V ∼

+ + W−1
γ V−;

2) W−1
γ (DhV ∼ − K̃π) ∈ L∞ for a K̃π ∈ H∞ iff

K̃π = WγK̃ν + DhV− (15)

for someK̃ν ∈ RH∞.
Proof: Since the spectra ofW−1

γ and V ∼

h are disjoint,
the strictly properW−1

γ V ∼ can always be decomposed as

W−1
γ V ∼ = Uu + Us

for some strictly properUu ∈ RH∞

⊥
andUs with no poles in

U. For the same reason, we can always decompose

WγUu = Ûu + Ûs

for some strictly properÛu ∈ RH∞

⊥
and Ûs ∈ RH∞.

SubstitutingUu from the first decomposition above to the left-
hand side of the second decomposition, we get thatÛu = V ∼.
Hence, the first statement of the Lemma is true forV+ = U∼

u
andV− = Ûs.

Now, if K̃π is chosen according to (15), then

W−1
γ (DhV ∼ − K̃π) = DhV ∼

+ − K̃ν ∈ L∞.

On the other hand, if somẽKπ belonging toH∞ guarantees
that W−1

γ (DhV ∼ − K̃π) ∈ L∞, then

K̃ν = DhV+ − W−1
γ (DhV ∼ − K̃π) ∈ L∞.

At the same time,K̃ν = W−1
γ (K̃π − DhV−) has no poles in

U. Therefore,K̃ν ∈ H∞, which completes the proof.
Lemma 2 enables us to reduce (11) to the following Nehari

problem:
‖DhV ∼

+ − K̃ν‖L∞ ≤ γ,

which is solvable iff‖D−hV+‖H ≤ γ. SinceV+ ∈ RH∞,

lim
h→∞

‖D−hV+‖H = 0.

This proves the conjecture at the end of§III-B, that (under
the genericA3) smoothing performance saturates at a finite
smoothing lag, even asγ → γ∞.

Remark 3.1:The saturation property was first proved for
the continuous-time case, in [13], using state-space tech-
niques. In the discrete-time case, however, the existence of
this property was an open problem. The solution method for
the discreteH∞ fixed-lag smoothing problem, in [9], is not
readily suitable to address this issue.

IV. STATE-SPACE SOLUTION IN CONTINUOUS TIME

In this section we present the state-space formulae for all
steps described in the previous section. Because of space lim-
itations, only continuous-time results are discussed. Discrete-
time counterparts, the derivation of which is considerably
more involved though follows exactly the same steps, will be
presented in the full version of this paper.

A. Formulae of Lemma 1

The state-space realizations of the factors in Lemma 1 is
derived by a standard state-space technique [15], as follows.
Consider the standard continuous-time ARE

AY2 + Y2A
′ + BB′

− (Y2C
′

2 + BD′

2)R
−1
2 (C2Y2 + D2B

′) = 0, (16)

where R2
.
= D2D

′
2 > 0 by A2. By A1,2 there exists a

stabilizing solutionY2 = Y ′
2 ≥ 0; i.e., such that the matrix

Ã = A+L2C2 is Hurwitz, whereL2
.
= −(Y2C

′
2+BD′

2)R
−1
2 .

Defining B̃
.
= B + L2D2,

[

C̃2 D̃2

] .
= R

−1/2
2

[

C2 D2

]

, and
[

C̃1 D̃1

] .
=

[

C1 D1

]

− D1D
′

2R
−1
2

[

C2 D2

]

.

It is then the matter of a straightforward algebra to show that
the transfer matrices satisfying the conditions of Lemma 1
have the following state-space realizations:

[

N1

N2

]

=





Ã B̃

C̃1 D̃1

C̃2 D̃2



 ,

[

M1

M2

]

=





Ã L2

C̃1 −D1D
′
2R

−1
2

C̃2 R
−1/2
2



 .

In particular, denotingN
.
=

[

N1

N2

]

,

NN∼ =

[

N1N
∼
1 V ∼

V I

]

=









Ã −B̃B̃′ B̃D̃′
1 B̃D̃′

2

0 −Ã′ C̃ ′
1 C̃ ′

2

C̃1 −D̃1B̃
′ D̃1D̃

′
1 0

C̃2 −D̃2B̃
′ 0 I









=









Ã 0 Ỹ2C̃
′
1 + B̃D̃′

1 0

0 −Ã′ C̃ ′
1 C̃ ′

2

C̃1 −C̃1Ỹ2 − D̃1B̃
′ D̃1D̃

′
1 0

C̃2 0 0 I









,

where the latter equality is obtained by the similarity trans-
formation with

[

I Y2

0 I

]

, whereY2 is the solution of (16) (note
that it satisfiesÃY2 + Y2Ã

′ + B̃B̃′ = 0).

B. Spectral factorization in(9)

Arguably, the simplest way to derive the state-space realiza-
tion of the system in the right-hand side of (9) is by applying
the S-transformation introduced in [18]. We have:

S`

(

NN∼
)

=

[

N1(I − N∼
2 N2)N

∼
1 N1N

∼
2

−N2N
∼
1 I

]

=









Ã 0 Ỹ2C̃
′
1 + B̃D̃′

1 0

−C̃ ′
2C̃2 −Ã′ C̃ ′

1 C̃ ′
2

C̃1 −C̃1Ỹ2 − D̃1B̃
′ D̃1D̃

′
1 0

−C̃2 0 0 I









.

DenoteC̃γ
.
= 1

γ C̃1, D̃γ
.
= 1

γ D̃1, and L̃γ
.
= −(Ỹ2C̃

′
γ + B̃D̃′

γ)

(in the sequel, we writẽL1 to denoteL̃γ |γ=1) and then

Ψγ
.
=

[

I − 1
γ2 N1(I − N∼

2 N2)N
∼
1

1
γ N1N

∼
2

1
γ N2N

∼
1 I

]



=









Ã 0 L̃γ 0

−C̃ ′
2C̃2 −Ã′ −C̃ ′

γ C̃ ′
2

C̃γ L̃′
γ I − D̃γD̃′

γ 0

−C̃2 0 0 I









.

Let Wo be the observability Gramian of(Ã, C̃2), i.e.,

WoÃ + Ã′Wo + C̃ ′

2C̃2 = 0.

Then

Ψγ =









Ã 0 L̃γ 0

0 −Ã′ −C̃ ′
γ − WoL̃γ C̃ ′

2

C̃γ + L̃′
γWo L̃′

γ I − D̃γD̃′
γ 0

−C̃2 0 0 I









. (17)

We are now in the position to analyze the spectral factoriza-
tion problem associated with (9). To this end, introduce now
another Riccati equation:

ÃỸγ + ỸγÃ′ +
(

L̃γ − Ỹγ(C̃ ′

γ + WoL̃γ)
)

× R̃−1
γ

(

L̃′

γ − (C̃γ + L̃′

γWo)Ỹγ

)

= 0, (18)

whereR̃γ
.
= I−D̃γD̃′

γ . A solutionỸγ is said to be stabilizing
if the matrix Ãγ

.
= Ã −

(

L̃γ − Ỹγ(C̃ ′
γ + WoL̃γ)

)

R̃−1
γ (C̃γ +

L̃′
γWo) is Hurwitz. We have:
Proposition 1: Condition (7) holds iffR̃γ > 0 and there

exists a stabilizing solutioñYγ to the ARE (18). If this
condition holds, then

Wγ =

[

Ã B̃γR̃−1
γ

C̃γ + L̃′
γWo I

]

R̃1/2
γ ,

whereB̃γ
.
= L̃γ−Ỹγ(C̃ ′

γ+WoL̃γ), is a bistable transfer matrix
satisfying (9).

Proof: Let Ψγ11 denote the(1, 1) subblock ofΨγ from
(17). Following the standard bounded-real arguments [15] one
can show that (7) holds iff̃Rγ > 0 and the “A” matrix of
Ψ−1

γ11, which is

H̃γ
.
=

[

Ã 0

0 −Ã′

]

+

[

−L̃γ

C̃ ′
γ + WoL̃γ

]

R̃−1
γ

[

C̃γ + L̃′
γWo L̃′

γ

]

,

has no eigenvalues on the imaginary axis. On the other
hand, it is readily seen that̃H ′

γ is the Hamiltonian matrix

associated with (18). Since the pair
(

R̃
−1/2
γ (C̃γ +L̃′

γWo), Ã−

L̃γR̃−1
γ (C̃γ + L̃′

γWo)
)

is detectable (̃A is Hurwitz), Theo-
rem 13.6 in [15] yields that the absence of the imaginary
axis eigenvalues ofHγ is equivalent to the existence of a
stabilizing solution of (18). This proves the first statement of
the Proposition.

To derive the formula for the spectral factorWγ , apply the
similarity transformation

[

I Ỹγ

0 I

]

to the realization (17). Then,

Ψγ11 =





Ã B̃γR̃−1
γ B̃′

γ B̃γ

0 −Ã′ −C̃ ′
γ − WoL̃γ

C̃γ + L̃′
γWo B̃′

γ R̃γ



 ,

which is WγW∼
γ . This Wγ ∈ RH∞ by construction and it

can be easily verified that the “A” matrix of W−1
γ is actually

Ãγ , so thatW−1
γ ∈ RH∞ as well.

C. Decomposition ofDhV ∼

Given a transfer matrixG(s) =
»

A B

C 0

–

, define the transfer

matrix

Gh(s)
.
=

[

A B

CeAh 0

]

.

Then, theh-truncation ofG [11], τh{G}, is defined as

τh{G} = G − e−shGh = C(I − e−(sI−A)h)(sI − A)−1B.

It is readily seen thatτh{G} is an entire function ofs and
its impulse response is zero in the whole interval[h,∞) as
e−shGh cancels out the impulse response ofG. Thus,τh{G}
is an FIR system, exactly how discussed in§III-B.

Therefore, we chooseDhΠ∼ = τh{V } for the decompo-
sition in (12). This results in

Vh(s) =

[

Ã −eÃhL̃1

C̃2 0

]

and

Π(s) =

[

−Ã eÃ′hC̃ ′
2

L̃′
1 0

]

− e−sh

[

−Ã C̃ ′
2

L̃′
1 0

]

(19)

with ξo = Πξi implies that

ξ0(t) = L̃′

1

∫ t

t−h

eÃ′(h+τ−t)C̃ ′

2 ξi(τ)dτ.

It is worth emphasizing that the implementation of the relation
above requires the computation of matrix exponentials of
Hurwitz matrices only.

D. Solution to the one-block problem

We are now in the position to address (13). In its solution
we will follow the arguments from the proof of Lemma 2
(though we address the suboptimal problem only). To this end,
note that using the fact that̃Aγ Ỹγ + ỸγÃ′ = −B̃γR̃−1

γ L̃′
γ , the

following decomposition can be performed:

W−1
γ V ∼

h = V ∼

h+ + W−1
γ Vh−,

where

Vh+
.
=

[

Ã B̃1

−C̃2e
Ãh 0

]

R̃−1/2
γ ,

Vh−
.
=

[

Ã ỸγeÃ′hC̃ ′
2

C̃1 + L̃′
1Wo 0

]

.

Problem (13) is reduced then to the standard Nehari problem

‖V ∼

h+ − K̃ν‖L∞ < γ, (20)

where K̃ν
.
= W−1

γ (K̃π − Vh−) ∈ H∞ iff K̃π ∈ H∞. The
solution to this problem is given by the following Proposition:

Proposition 2: Nehari problem (20) is solvable iff

ρ
(

ỸγeÃ′hWoe
Ãh

)

< 1. (21)

Furthermore, if (21) holds, then

K̃ν = R̃−1/2
γ

[

Ã − ZhC̃ ′
2C̃2e

Ãh ZhC̃ ′
2

B̃′
1e

Ã′hWoe
Ãh 0

]

,



whereZh
.
=

(

I − ỸγeÃ′hWoe
Ãh

)−1
ỸγeÃ′h, solves (20).

Proof: Note thateÃ′hWoe
Ãh and Ỹγ are the controlla-

bility and observability Gramians of1γ Vh+, respectively. The
proof then follows by a direct application of [].

To solve (3) it is only left to substitute the realizations of
Wγ , Vh−, andK̃ν to

K̃ = WγK̃ν + Vh− + Π.

After some straightforward algebra the following result can be
formulated:

Theorem 1:Let A1,2 hold. Then the fixed-lag smoothing
problem (3) is solvable iff there exists a stabilizing solution
to the ARE (18) and condition (21) holds. In this case, one
solution of (3) is given by

K̃(s) =

[

Ã − ZhC̃ ′
2C̃2e

Ãh ZhC̃ ′
2

−C̃1 − L̃′
1Wh 0

]

+ Π(s) (22)

whereΠ(s) is as defined by (19),

Wh
.
= Wo − eÃ′hWoe

Ãh =

∫ h

0

eÃ′tC̃ ′

2C̃2e
Ãtdt

andZh is as defined in Proposition 2.
The original problem, (2), is also solved:
Corollary 1: Let A 1,2 hold. Then the fixed-lag smoothing

problem (2) is solvable iff the conditions of Theorem 1 hold.
In that case one solution is given by

K(s) = K̃(s)

[

Ã L2

C̃2 R
−1/2
2

]

− e−sh

[

Ã L2

C̃1 −D1D
′
2R

−1
2

]

,

whereK̃ is given by (22).
Some remarks are in order.
Remark 4.1:An important advantage of the solution of

Theorem 1 over that in [7] is that the former does not involve
matrix exponentials of matrices with eigenvalues in the RHP
(including that in the last term of (22)). All exponentials are
of the Hurwitz matrixÃ, so that the smoother (22) remains
well-posed even ash → ∞. However, after the transformation
from K̃ back toK, as in Corollary 1, the structure of (22) is
lost.

Remark 4.2:Another potential advantage of the proposed
solution is that only the matrixZh might become ill-
conditioned whenγ approaches its minimal value (at least
whendet(R̃γ) 6= 0). Indeed,Ã andWo do not depend onγ
and Ỹγ remains finite even for the optimal performance [19].
Note also that the singularity inZh can be handled easily
by standard descriptor arguments [15,§16.9] and results in an
order reduction of the first term on the right-hand side of (22).
In contrast, in the solutions developed in [7], [8], the Riccati
solution do become unbounded for the optimal performance.

Remark 4.3:The saturation phenomenon proved in§III-C
can also be seen through the state-space solvability condition
(21). To this end, note that neither̃Yγ nor Wo depends on the
smoothing lag. Moreover, these matrices are bounded even for

the optimalγ (more precisely,Ỹγ might become unbounded
only if R̃γ is singular). It is then clear that the solvability
condition (21) always holds ifh is sufficiently large (since
limh→∞ eÃh = 0). Thus, for a sufficiently large smoothing
lag (21) is no longer restrictive and the solvability conditions
reduce to the solvability of the ARE (18), which is independent
of h. The minimalγ for which (18) is solvable is the minimal
achievable performance in the fixed-interval smoothing (L∞)
case.
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