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Abstract— In this paper we study the robust stability of uncer-
tain quasipolynomials, whose coef£cients may vary in a certain
prescribed range. We consider speci£cally the co-called interval
and diamond quasipolynomials, and our goal is to develop vertex-
and edge type-conditions for these quasipolynomial families to be
robustly stable independent of delay. Moreover, we also present
a number of extensions to more general uncertain quasipolyno-
mials, including both frequency-sweeping and vertex/edge type
results.
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I. INTRODUCTION

The effect of time delay on stability is a subject of recurring in-
terest in the study of dynamical systems. This subject received
considerable research attention in the last decade or so, and
has undergone a notable development both conceptually and
computationally; much of the progress during this period is
documented in the recent monographs [15], [17], [18], [10].
Two particular stability notions, delay-dependent and delay-
independent stability, respectively, have been the focus of these
studies, and both time and frequency domain stability tests
have been developed. Here by delay-independent stability of
a system we mean that the system is stable for all nonnegative
values of delay, and otherwise the system’s stability is delay-
dependent.

The aim of this paper is to study the delay-independent
stability of time-delay systems when certain system parameters
are only known to be within a prescribed range. Robust
stability problems of this kind, as expected, are far more
dif£cult. Indeed, while for a system with £xed parameters
the problem has received a de£nitive answer, few results are
available when the system is uncertain. In fact, based on the
known facts in robust stability analysis [8] and the results
for systems with incommensurate delays, it is not dif£cult
to conclude that this problem will be equivalent to one of
computing structured singular values [4] and can be shown to
be NP-hard in general.
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In this paper we shall focus on polytopic uncertain
quasipolynomials, and especially on its sub-families of interval
and diamond quasipolynomials. It is worth noting that the
robust stability of quasipolynomials has been a well-studied
topic (see, e.g., [9], [14], [12], [10] and the references therein),
though the results seem less well-developed. In particular, the
stability of interval quasipolynomials has been under inves-
tigation for some time [2], [19]. In the earlier work [7], the
authors showed that for uncertain quasipolynomials in these
classes, readily computable stability conditions are available in
the form of frequency-sweeping tests. In the present paper, we
derive “vertex type” stability tests which seek to ascertain the
stability of an entire family of quasipolynomials by checking
certain special members in that family. Our results continue
the spirit of the well-known Kharitonov approach [1], [3] and
are of conceptual interest. We show that as in robust stability
analysis for interval and diamond polynomials, the stability
of the interval and diamond quasipolynomial families can
be identi£ed with the stability of certain special vertex and
edge members in the quasipolynomial families, where such
vertex and edge quasipolynomials correspond to the vertex
and edge polynomials of interval and diamond polynomials,
respectively. The results thus complement in a natural manner
the frequency-sweeping conditions obtained in [7].

II. PRELIMINARIES

We consider the class of quasipolynomials given by

p
(

s; e−τ1s, · · · , e−τms
)

= a0(s) +

m
∑

k=1

ak(s)e
−τks, (1)

where τk ≥ 0, and

a0(s) = sn +

n−1
∑

i=0

a0is
i,

ak(s) =
n−1
∑

i=0

akis
i, k = 1, · · · , m.

This quasipolynomial corresponds to the characteristic func-
tion of delay systems described by

y(n)(t) +
n−1
∑

i=0

m
∑

k=0

akiy
(i)(t− τk) = 0, τk ≥ 0, (2)



or more generally, those given in the state-space description

ẋ(t) = A0 x(t) +

r
∑

k=1

Ak x(t− Tk), Tk ≥ 0. (3)

We study the stability properties of the quasipolynomial (1),
and accordingly, the stability of the time-delay systems (2)
and (3). The stability notion is stated formally as follows.

De£nition 2.1 The quasipolynomial (1) is said to be stable if

p
(

s; e−τ1s, · · · , e−τms
)

6= 0, ∀s ∈ C+. (4)

Here C+ := {s : <(s) ≥ 0} denotes the closed right half
plane. It is said to be stable independent of delay if the
condition (4) holds for all τk ≥ 0.

We shall consider quasipolynomials with incommensurate,
independent delays, by which we mean that in (1) the delay
parameters τk, k = 1, · · · ,m are independent of each other.
In this case, a necessary and suf£cient stability condition is
available from, e.g., [11], [4], [10].

Lemma 2.1 Let τk, k = 1, · · · ,m be independent delays.
Then quasipolynomial (1) is stable independent of delay iff
(i) a0(s) is stable;

(ii)
m
∑

k=0

ak0 6= 0; and

(iii)
m
∑

k=1

|ak(jω)|

|a0(jω)|
< 1, ∀ω > 0. (5)

Assume now that the coef£cients of the quasipolynomial
(1) vary in a prescribed set. More speci£cally, consider the
uncertain quasipolynomial

p
(

s; e−τ1s, · · · , e−τms; α
)

= a0(s, α0) +

m
∑

k=1

ak(s, αk)e
−τks,

(6)
where αk ∈ Qk ⊂ IRn, k = 0, · · · , m represent the

uncertain parameters. This uncertain quasipolynomial is said
to be robustly stable independent of delay in the following
sense.
De£nition 2.2 The quasipolynomial family (6) is said to be
robustly stable if for all αk ∈ Qk, k = 0, · · · ,m,

p
(

s; e
−τ1s, · · · , e

−τms; α
)

6= 0, ∀s ∈ C+. (7)

It is robustly stable independent of delay if (7) holds ∀τk ≥ 0.

We shall assume that each uncertain vector αk varies
independently. Furthermore, we assume that each uncertain
polynomial ak(s, αk) can be written as

a0(s, α0) = sn +
n−1
∑

i=0

α0is
i,

ak(s, αk) =

n−1
∑

i=0

αkis
i, k = 1, · · · , m (8)

where each αki, k = 0, 1, · · · , m is assumed to lie in
a given interval [αki, αki], and the vector αk belongs to a
weighted `p de£ned in the following manner. De£ne

α
∗
ki :=

αki + αki

2
, γki :=

αki − αki

2
,Γk := diag (γk1, · · · , γkn) .

Then for any p ∈ [1, ∞], the coef£cient vector αk is
characterized by the set

Q
(p)
k := {αk : αk = α

∗
k + Γkδk, ‖δk‖p ≤ 1} ,

where ‖ · ‖p denotes the `p-Hölder norm, that is,

‖δk‖p :=











(

n
∑

i=1

|δki|
p

)1/p

, 1 ≤ p ≤ ∞

max
1≤i≤n

|δki|, p =∞.

As such, for p =∞, 1, the uncertain polynomial ak(s, αk)
de£nes the families of interval and diamond polynomials,
respectively. We shall call the uncertain quasipolynomial (6)
the interval and diamond quasipolynomials correspondingly.

An important observation is that for the uncertain quasipoly-
nomial (6) to be robustly stable, it is both necessary and
suf£cient that (i) the polynomial a0(s, α0) is robustly stable,

(ii)
m
∑

k=0

αk0 > 0, and (iii)

m
∑

k=1

max
αk∈Q

(p)
k

|ak(jω, αk)|

min
α0∈Q

(p)
0

|a0(jω)|
< 1, ∀ω > 0. (9)

This is clear from Lemma 2.1. These conditions form the
basis for the frequency-sweeping conditions in [7], and will
likewise play an important role in our present development.

Assume, without loss of generality, that n is an even integer;
an analogous analysis applies when n is odd. Let q ∈ [1,∞]
satisfy the relation (1/p) + (1/q) = 1. For each ω ∈ [0,∞),
de£ne

Xk,q(ω) : =
(

γ
q
k0 + (γk2ω

2)q + (γk4ω
4)q + · · ·

)1/q
,

Yk,q(ω) : =
(

γ
q
k1 + (γk3ω

2)q + (γk5ω
4)q + · · ·

)1/q
,

Rk(ω) : = α
∗
k0 − α

∗
k2ω

2 − α
∗
k4ω

4 + · · · ,

Ik(ω) : = α
∗
k1 − α

∗
k3ω

2 + α
∗
k5ω

4 + · · ·

Note that for q =∞,

Xk,∞(ω) = max
{

γk0, γk2ω
2
, γk4ω

4
, · · ·

}

,

Yk,∞(ω) = max
{

γk1, γk3ω
2
, γk5ω

4
, · · ·

}

.

It also follows that ak(jω, α∗k) = Rk(ω) + jωIk(ω).

III. VERTEX AND EDGE RESULTS

In this section we derive vertex- and edge-type conditions
which seek to test the robust stability of a quasipolynomial
family in terms of its vertex and edge quasipolynomials.
While compared to the frequency-sweeping conditions ob-
tained in [7], these results may not be favorable computation-
ally, they remain to be of interest and constitute generalizations
to the well-known Kharitonov type robust stability conditions.



A. Interval Quasipolynomials

We consider £rst the interval quasipolynomials. This class
corresponds to the case that all the polynomials ak(s, αk)
are each interval polynomials, that is, αk ∈ [αki, αki], or
alternatively,

Q
(∞)
k := {αk : αk = α∗k + Γkδk, ‖δk‖∞ ≤ 1} . (10)

For each k = 0, 1, · · · , m, de£ne the four Kharitonov vertex
polynomials

Kk,1(s) : = αk0 + αk1s+ αk2s
2 + αk3s

3 + · · ·

Kk,2(s) : = αk0 + αk1s+ αk2s
2 + αk3s

3 + · · ·

Kk,3(s) : = αk0 + αk1s+ αk2s
2 + αk3s

3 + · · ·

Kk,4(s) : = αk0 + αk1s+ αk2s
2 + αk3s

3 + · · ·

and four edge polynomials

Kk,1(s, λ) : = λKk,1(s) + (1− λ)Kk,2(s)

Kk,2(s, λ) : = λKk,2(s) + (1− λ)Kk,3(s)

Kk,3(s, λ) : = λKk,3(s) + (1− λ)Kk,4(s)

Kk,4(s, λ) : = λKk,4(s) + (1− λ)Kk,1(s)

It is well-known that the interval polynomial ak(s, αk) will
be stable whenever αkn 6= 0 and the four vertex polynomials
are stable. In the present setting, of relevance is the stability
of the interval polynomial a0(s, α0).

We shall £rst state a suf£cient stability condition in terms
of the vertex polynomials.

Theorem 3.1 Let τk ≥ 0, k = 1, · · · , m be independent
delays. Then the interval quasipolynomial (6), with αk ∈

Q
(∞)
k , k = 0, 1, · · · , m, is robustly stable independent

of delay if
(i) The polynomials K0,i0(s) are stable;

(ii) α00 >

m
∑

k=1

max{|αk0|, |αk0|};

(iii) The 4m+1 quasipolynomials

K0,i0(s) +

m
∑

k=1

Kk,ik (s)e
−τks

are stable independent of delay, where ik ∈ {1, 2, 3, 4},
k = 0, 1, · · · , m.

It is worth noting that vertex-type conditions similar to
Theorem 3.1 have been previously stated in [2] and [19],
though each appears to contain some ¤aws. We remark that
the key restriction in Theorem 3.1 is imposed by the condition
(ii), which rendered the theorem a suf£cient but not necessary
condition. For interval quasipolynomials that do satisfy the
condition (ii), however, the result becomes both necessary and
suf£cient for robust stability. More generally, if the condition
is not satis£ed, we have the following necessary and suf£cient
condition which requires checking also edge quasipolynomi-
als.

Theorem 3.2 Let τk ≥ 0, k = 1, · · · , m be independent
delays. Then the interval quasipolynomial (6), with αk ∈

Q
(∞)
k , k = 0, 1, · · · , m, is robustly stable independent

of delay if
(i) The polynomials K0,i0(s) are stable;

(ii)
m
∑

k=0

αk0 > 0;

(iii) The 4m+1 one-parameter quasipolynomials

K0,i0(s, λ) +

m
∑

k=1

Kk,ik (s)e
−τks

are stable independent of delay, where λ ∈ [0, 1], and ik ∈
{1, 2, 3, 4}, k = 0, 1, · · · , m.

Note that whenever the condition
m
∑

k=0

αk0 > 0 coincides

with

α00 >

m
∑

k=1

max{|αk0|, |αk0|},

for example, when αk0 ≤ 0 for k = 1, · · · , m, then Theorem
3.2 can be strengthened to Theorem 3.1, that is, to a necessary
and suf£cient vertex test. Note also that in view of Lemma 2.1,
the theorem can also be stated as follows.

Corollary 3.1 Let τk ≥ 0, k = 1, · · · , m be independent
delays. Then the interval quasipolynomial (6), with αk ∈

Q
(∞)
k , k = 0, 1, · · · , m, is robustly stable independent

of delay iff
(i) The polynomials K0,i0(s), i0 ∈ {1, 2, 3, 4}, are stable;

(ii)
m
∑

k=0

αk0 > 0; and

(iii) For λ ∈ [0, 1] and for all ik ∈ {1, 2, 3, 4}, k =
0, 1, · · · , m,

m
∑

k=1

|Kk,ik (jω)|

|K0,i0(jω, λ)|
< 1, ∀ω > 0. (11)

B. Diamond Quasipolynomials

For the diamond quasipolynomial family, each polynomial
ak(s, αk) de£nes a diamond polynomial, whose coef£cients
vary in the parameter set

Q
(1)
k := {αk : αk = α∗k + Γkδk, ‖δk‖1 ≤ 1} . (12)

For simplicity, we shall consider only uniformly weighted
diamond polynomials. This means that for each k =
0, 1, · · · , m, γk1 = · · · = γkn = γk. At each ω > 0,
denote the value set of ak(jω, αk) by V D

k (ω), i.e.,

V D
k (ω) =

{

ak(jω, αk) : αk ∈ Q
(1)
k

}

.

It is known that V D
k (ω) forms a frequency-dependent diamond

with its center at ak(jω, α∗k). For ω ∈ (0, 1], the four vertices
of the diamond are the polynomials ek,1(s), ek,2(s), ek,3(s),
and ek,4(s), while for ω ∈ (1, ∞), the vertices are ek,5(s),
ek,6(s), ek,7(s), and ek,8(s), where

ek,1(s) = ak(s, α
∗
k)− γk, ek,2(s) = ak(s, α

∗
k) + γk

ek,3(s) = ak(s, α
∗
k)− γks, ek,4(s) = ak(s, α

∗
k) + γks,

ek,5(s) = ak(s, α
∗
k)− γks

n−2
, ek,6(s) = ak(s, α

∗
k) + γks

n−2
,

ek,7(s) = ak(s, α
∗
k)− γks

n−1
, ek,8(s) = ak(s, α

∗
k) + γks

n−1
.



These are the extremes of the eight edge polynomials

ek,1(s, λ) = ak(s, α
∗
k)− λγk − (1− λ)γks,

ek,2(s, λ) = ak(s, α
∗
k) + λγk − (1− λ)γks,

ek,3(s, λ) = ak(s, α
∗
k) + λγk + (1− λ)γks,

ek,4(s, λ) = ak(s, α
∗
k)− λγk + (1− λ)γks,

ek,5(s, λ) = ak(s, α
∗
k)− λγks

n−1 − (1− λ)γks
n−2

,

ek,6(s, λ) = ak(s, α
∗
k) + λγks

n−1 − (1− λ)γks
n−2

,

ek,7(s, λ) = ak(s, α
∗
k) + λγks

n−1 + (1− λ)γks
n−2

,

ek,8(s, λ) = ak(s, α
∗
k)− λγks

n−1 + (1− λ)γks
n−2

.

It is well-known that the diamond polynomial a0(s, α0) is
robustly stable if and only if its eight vertex polynomials are
stable. We have the following result.

Theorem 3.3 Let τk ≥ 0, k = 1, · · · , m be independent
delays. Assume that for each k = 0, 1, · · · , m, γk1 =
· · · = γkn = γk. Then the diamond quasipolynomial (6), with
αk ∈ Q

(1)
k , k = 0, 1, · · · , m, is robustly stable independent

of delay iff
(i) The polynomials e0,i0(s), i0 ∈ {1, · · · , 8}, are stable;

(ii)
m
∑

k=0

αk0 > 0;

(iii) For λ ∈ [0, 1] and for all ik ∈ {1, · · · , 8}, k =
0, 1, · · · , m,

m
∑

k=1

|ek,ik (jω)|

|e0,i0(jω, λ)|
< 1, ∀ω > 0. (13)

In view of Lemma 2.1, we may also state Theorem 3.3
alternatively as follows.

Corollary 3.2 Let τk ≥ 0, k = 1, · · · , m be independent
delays. Assume that for each k = 0, 1, · · · , m, γk1 =
· · · = γkn = γk. Then the diamond quasipolynomial (6), with
αk ∈ Q

(1)
k , k = 0, 1, · · · , m, is robustly stable independent

of delay iff
(i) The polynomials e0,i0(s), i0 ∈ {1, · · · , 8}, are stable;

(ii)
m
∑

k=0

αk0 > 0;

(iii) The 8m+1 one-parameter quasipolynomials

e0,i0(s, λ) +

m
∑

k=1

ek,ik (s)e
−τks

are stable independent of delay for λ ∈ [0, 1], where ik ∈
{1, · · · , 8}, k = 0, 1, · · · , m.

As in the case of interval diamond polynomials, Theorem
3.3 and Corollary 3.2 follow from the recognition that the
maximum of |ak(jω, αk) is achieved on one of the vertices
ek,ik(jω), while the minimum of |a0(jω, α0) occurs on one
of the edges e0,i0(jω, λ). These results can be extended to
more general cases where the diamond polynomials need
not be uniformly weighted. Indeed, they can be extended
to quasipolynomials with a polytopic uncertainty description.
This is pursued in the next section.

IV. EXTENSIONS

Our purpose in this section is to provide a number of
extensions to more general uncertain quasipolynomials than
those in the interval and diamond families. We consider more
general uncertainty descriptions and seek both frequency-
sweeping and vertex type results. A generalization is also made
to a special class of multivariate polynomials.

A. Uncertain Coef£cients in `p Balls

Our £rst generalization is sought after for a case where
uncertain coef£cients are characterized by general `p norms.
Consider the uncertain quasipolynomial (6) with the coef£-
cients described by

Qk := {αk : αk = α∗k + Γkδk, ‖δk‖ ≤ 1} , (14)

where
‖δk‖ := max {‖δek‖p1

, ‖δok‖p2
} . (15)

In other words, we assume that the real and imaginary parts of
the coef£cient polynomials vary independently of each other.
Note that uncertain polynomials with independent real and
imaginary parts are studied in [20]. Note also that in this case
a similar frequency-sweeping condition for the robust stability
of a0(s, α0) can be obtained in much the same spirit as in
[6].

Lemma 4.1 Suppose that a0(s, α∗0) is stable. Then, the
uncertain polynomial a0(s, α0) with Q0 given by (14-15) is
robustly stable if and only if α00 > 0 and

min

{

X0,q1(ω)

|R0(ω)|
,

Y0,q2(ω)

|I0(ω)|

}

< 1, ∀ω > 0. (16)

The following result gives a frequency-sweeping condition
similar to those developed in [7].

Theorem 4.1 Let τk, k = 1, · · · , m be independent delays.
De£ne

ρk(ω) :=

√

(|Rk(ω)|+Xk,q1(ω))
2
+ ω2 (|Ik(ω)|+ Yk,q2(ω))

2
,

ρ
0
(ω) :=

√

M2
R(ω) + ω2M2

I (ω) ,

where

MR(ω) =

{

|R0(ω)| −X0,q1(ω) if |R0(ω)| > X0,q1(ω)
0 if |R0(ω)| ≤ X0,q1(ω)

MI(ω) : =

{

|I0(ω)| − Y0,q2(ω) if |I0(ω)| > Y0,q2(ω)
0 if |I0(ω)| ≤ Y0,q2(ω)

Then the uncertain quasipolynomial (6), with ak(s, αk)
given by (8) and (14-15), is robustly stable independent of
delay iff
(i) The uncertain polynomial a0(s, α0) is stable;

(ii)
m
∑

k=0

αk0 > 0;

(iii)
m
∑

k=1

ρk(ω)

ρ
0
(ω)

< 1, ∀ω > 0. (17)



B. Polytopic Uncertainty

Extensions may also be found to quasipolynomials with
polytopic uncertainties. For this purpose, let the family of
polynomials ak(s, αk) be the convex hull

Pk := conv {pk1(s), · · · , pk,lk(s)} . (18)

In other words, ak(s, αk) can be expressed as the convex
combination of the generating polynomials pkj(s):

ak(s, αk) =

lk
∑

j=1

λjpkj(s), (19)

where
lk
∑

j=1

λj = 1, λj ≥ 0, j = 1, · · · , lk,

and

p0j(s) = s
n +

n−1
∑

i=0

p
(j)
0i s

i
, (20)

pkj(s) =

n−1
∑

i=0

p
(j)
ki s

i
, k = 1, 2, · · · , m. (21)

We note that both the interval and diamond polynomials
fall as special cases of this polytopic class. Note also that
the stability of a0(s, α0) can be checked using the so-called
edge theorem and other tools (see, e.g., [1], [3]). We provide
below both frequency-sweeping and edge type results for the
corresponding quasipolynomials.

Theorem 4.2 Let τk ≥ 0, k = 1, · · · , m be independent
delays. De£ne

ρij(ω) :=



















|={p0i(−jω)p0j(jω)}|

|p0i(jω)−p0j(jω)|

if <{p0i(−jω)p0j(jω)} <

min{|p0i(jω)|
2, |p0j(jω)|

2},

min{|p0i(jω)|, |p0j(jω)|} otherwise.

Then the uncertain quasipolynomial (6), with ak(s, αk)
given by (19-21), is robustly stable independent of delay iff
(i) The polytopic polynomial a0(s, α0) is robustly stable;

(ii)
m
∑

k=0

min
1≤j≤lk

p
(j)
k0 > 0;

(iii)
m
∑

k=1

max
1≤j≤lk

|pkj(jω)|

min
1≤i<j≤l0

ρij(ω)
< 1, ∀ω > 0. (22)

Note that the numerator in (22) can be easily computed.
The computation of the denominator can be more demanding,
which requires l0(l0 − 1)/2 computations of ρij(ω).

We may also state this result alternatively in terms of the
vertices of ak(jω, αk) and the edges of a0(jω, α0).

Corollary 4.1 Let τk ≥ 0, k = 1, · · · , m be independent de-
lays. Then the uncertain quasipolynomial (6), with ak(s, αk)
given by (19-21), is robustly stable independent of delay iff
(i) The edge polynomials λp0i(s) + (1 − λ)p0j(s) are stable
for all 1 ≤ i ≤ j ≤ l0;

(ii)
m
∑

k=0

min
1≤j≤lk

p
(j)
k0 > 0;

(iii) The quasipolynomials

λp0i(s) + (1− λ)p0j(s) +

m
∑

k=1

pk,jk
(s)e−τks

are stable for all λ ∈ [0, 1], 1 ≤ i < j ≤ l0, and 1 ≤ jk ≤ lk.

C. Multivariate Polynomials

It is straightforward to extend the preceding results to a
special class of multivariate polynomials which are also known
as disc polynomials [3]. This class of multivariate polynomials
are described as

p (s; z1, · · · , zm) = a0(s) +
m
∑

k=1

ak(s)zk. (23)

The multivariate polynomial p (s; z1, · · · , zm) is said to be
stable if

p (s; z1, · · · , zm) 6= 0, ∀s ∈ C+, zk ∈ ID
c
, k = 1, · · · , m.

A necessary and suf£cient condition for the stability of
p (s; z1, · · · , zm) is available from, e.g., [3], [16], which
can also be seen rather trivially from [4].

Lemma 4.2 The multivariate polynomial (23) is stable if and
only if
(i) a0(s) is stable;
(ii)

m
∑

k=1

|ak(jω)|

|a0(jω)|
< 1, ∀ω ≥ 0. (24)

Clearly, the sole difference between Lemma 4.2 and Lemma
2.1 lies at the frequency ω = 0. It is thus unsurprising that
the preceding results can all be extended readily to this class
of multivariate polynomials with uncertain coef£cients.

V. CONCLUDING REMARKS

In this paper we have studied the robust stability of uncertain
quasipolynomials, speci£cally those in the families of interval
and diamond quasipolynomials. We addressed speci£cally the
notion of robust stability independent of delay. For each
of these quasipolynomial families, we showed that simple
edge-type test can be used to checked the robust stability,
which is both necessary and suf£cient. We also provided a
vertex-type stability condition for interval quasipolynomials.
This condition, while only a suf£cient condition in general,
will become necessary and suf£cient under some rather mild
restriction. Our results extend the well-known Kharitonov-type
analysis to quasipolynomials, and complement the frequency-
sweeping conditions developed elsewhere.
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