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Abstract—Let H(z) be a third-order discrete-time trans-  has a positive realization of ord@d. Without loss of generality,
fer function with complex poles. This paper considers the takey < 0.
following question: under what conditions does there exist a Definition 4 R = cl.condb, Ab, A%b,...), i.e. the closure of
positive realization whose dimension is equal to the McMillan  congb, Ab, A%b,...); S={z:cTA*2 >0,k =0,1,...}.

degree of H(Z) A sufficient condition is established for Lemma 2[4]7[8] Let H(Z) be a transfer function with minimal
such a realization, which is also necessary under some mild realization{A, b, c}, i.e., H(z) = " (zI — A)~'b. Then, H(z)

assumption on the behavior of the impulse response. has a positive realization if and only if there exists a matPix
such that

. INTRODUCTION RCP. APCP. ccP*
In this paper, we study the following problem: LEY>) be a third-  \ynerep — congP) andP* = {ﬁ :a’B>0,Va € P}.
order discrete-time strictly proper transfer function, under Whaﬁemma 38 Let (A,b,c) be an n-dim;nsional realization of
conditions does there exist a positive realization with dimensioyy(z)_ Then, H(z) isyp’ositively realizable if and only if there
3, which is the McMillan degree off (2)? As shown in [2], the exists a polyhedral con® such thatR ¢ P ¢ S, AP C P.
problem is quite intriguing, since the positivity constraint on theMoreover, a positive realizatiopA, b+, c;.) is given by solving
system matrices, may "force” a given transfer function to have a AP=PA,, b=Pb,, L =P
minimal positive realization of order much greater than its degree, . .
. . ]yvhereP is a matrix such thaP = cond P).
and this seems to be a typical feature of most systems, even for e} ) . ) .
. . . ... Lemma 4 Consider the transfer functiol (z) defined as in
a third-order transfer function. In [1], the positive realization is

] i - ) e Fl), then(A, b, c) is a 3-dimensional realization df (z), where
considered for a third-order transfer function with distinct real

positive poles. In this paper, we will solve the positive realization v Z 8 b z o 1
problem for a third-order transfer function with complex poles. “\ o Y o1/ L1 )\
[1. PRELIMINARIES AND LEMMAS

_ _ : Lemma 59  Let 4, = roy and A¥ =

In this paper, we focus on the following transfer function -y z
H(z) = 25 + - xmly e o — ( EEB ZlA(?f()k) >f°rk€ N, thend = < e 1 > and
- — 41 1 — 41— Y1
) ) s Ai(k), As(k — 1) satisfy the following equations

with A\, z1,y1, m1, mo are realyimimo Zé 0and\* > z7 +y7i. Av(k) = 2 (k — 1) + yAa(k — 1)

.. . . . 1 = 1 — 2 —
Definition 1  Given a matrixP, then? = congP) is the set of As(k) = 2As(k — 1) — yAL(k — 1) ke N (3

all (finite) nonnegative linear combinations of the columnsrof
Definition 2 The setsR = (—oo, 00), R4 = [0, +00) are called with A1(0) = 1,A2(0) = 0.

the sets of real numbers, positive real numbers, respectively. Legmma 62 The impulse response of the transfer functiéfz)
N = {1,2,...} and denote byR" the set ofn—tuples of the jn ) is

positive real numbers. The s&*" is called the set of positive h(k) =1+2mA(k—1), ke N

matrices of sizen by n. . . L .
Definition 3 A transfer functionfl(z) is said to be positively With A1(0) = 1. Moreover, a(k) is nonnegative if and only if
realizable if it has am®" order positive realization, i.e., there 2mAq(k—1)+12>0, k€ N.

exist a tripleA € RKX”, b € R}, c € R}, such thatH(z) = Lemma 7[9] The vectorsb, Ab and A%b lie in the plane
¢’ (zI — A)~'b, wheren is an integer. {(61,62,1) : &1, &2 € R}

Lemma 14 Let H(z) be a transfer function with nonnegative b(m,m)

impulse response. Thefi(z) has a positive realization if and only

if c1H(c2z) has a positive realization for any positive constants M.

C1,C2.

By Lemma 1, the transfer function given in (1) has a positive
realization of orderM (> 3) if and only if
1 M.
H(z) = 0 4™ @) 2
z—1 z—xz4+yj] z—xz—1yj Fig. 1
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Ill. M AIN RESULTS Hence,

Theorem 1 Let H(z) be a strictly proper transfer function __ _ 22 4 42
C ; ral : , +42+22<0 1 5,3
and (A,b,c) be ann — dimensional realization off(z). Ms € X if and only if { 92 +1>0 U{z =gV Fy
Then,H (z) is positively realizable if and only if there exists
a polyhedral coné such thath € P, c € P*, AP C P. ~ With the assumptions of? +y* < 1 andy # 0, the condition above
Theorem 2 The transfer functiorf (z) defined in (2) has 'S eduivalentto
a third-order positive realization if { 22+ y2+22<0 U { 224+ y? +20 <0
1 —_1
a){m2+y2+2$so7}u{ z2+y2+2z<0,}‘ $€(7§70) T = 2
_1 __1 ;
b)Qme—f 1( >20’,0) v 2 (4) Proof of Theorem 1: By Lemma 2, necessity follows immediately from
2m + 1 >0 ’ the fact thatb € R. To establish sufficiency, we assume tlbae P,

. c € P*, AP C P and prove thatH (z) is positively realizable. Since
Theorem 3 If there exists at least one€ {3,4,...} such ¢ p, 4P c P, we haveA*s c P for everyk € N. It follows that

that 1 + 2mA,(k — 1) = 0, then the conditions in (4) are R C P. By Lemma 2, the sufficiency is proved. o
sufficient and necessary for the existence of a third-ordé’FOOf of Theorem 2: The following is a third-order realization @ (z),

positive realization ofH (z). 0 0 z2+y2 1
Ay = 1 0 —az2—y%2—2z , by = 0o ],
IV. APPENDIX 0 1 2x+1 0
Remark Denoteb = ( b ) Ab = ( My ) and A%b = ( M ).Then, 2m+1
1 1 1 cy = 2mz+1

2m(z? —y2) + 1

T_( m T [ mx+y) Vo — (@ — y® + 2zy)
b=\ ,, ) M= m(z — y) , Mo = m(az? — g2 — 2zy)
‘ ¥ Yy The proof of2m(x? — y2) + 1 > 0 can refer to [9].
Proof of Theorem 3: To establish necessity, we assume th&tz) has

Proof of Lemma 9: Rewrite a third-order positive realization. By Theorem 1, there exists a polyhedral
x y coneP with three edges such that
2 2 2 2
- v PP V) *
— ’ I) b 3 IT ; IIT) A .
22 1y2 o ) beP; II) cePT ) APCP
and define a linear translation as follows: It follows thatb € S. Application of Lemma 8 shows that conditions
o:R" — R", b) and c) are true. Lemma 7 claims that the vectgrdb, A%b lie in a
o(p) = A11p, p€ R™. plane. LetK = (b, Ab, A2b), K = cong K). Apparently,C C P; and

Then the angle ob(p) is equal to the sum of that gf and the angle b Ab, A2b are linear independent in view gf 0. If there exists at least
#, and the magnitude of (p) is equal toy/x2 + y2 multiple of that of ~Onek € {3,4,...} such thatl +2mA, (k — 1) = 0, then the first three

p, Wwheresin ¢ = ——£—. Under the assumption af < 0, we have vectors of the free evolution emanating frdnlie on different edges of
Va?4y? . .
¢ € (0,7). S the observability con&. Hence, by Lemma 3 is the polyhedral cone
In this case, the relationship betweénM;, M; is shown in Fig. 1. satisfying conditions I)-Ill) with minimal number of edges contained in
Denote Ms = A1, Mp. Let | - | denote the determinant operation, by ¢ By Lemma 9, condition IIl) implies condition a). By Theorem 2, the
classical geometry, the area &f is )
m m 1 statement is proved.
= | m(@+y) m(z —y) L,
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