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Abstract − Considered in this paper are multi-input multi-
output (MIMO) systems with non-minimum phase (NMP) 
zeros and unstable poles, where some of the unstable poles are 
located to the right of, or close to, the NMP zeros. In the 
single-input single-output (SISO) case such systems pose 
serious difficulties in controller synthesis for performance and 
stability. In spite of the added degrees of freedom the MIMO 
case also poses difficulties, as has been shown in the 
stabilization of the X-29 aircraft. When using the MIMO QFT 
technique, the design procedure proceeds by decomposing the 
MIMO design problem into multiple multi-input single-output 
(MISO) design problems, with the equivalent SISO plants iiq , 

where ( )1 1 iiii
P q− = , employed in each MISO design. 

Developed is a transformation scheme that can be used to 
condition the equivalent SISO plants so that the difficult 
problem of NMP zeros lying to the left of, or close to, unstable 
poles may be avoided. Examples illustrate the use of the 
proposed transformation. 
 

I. INTRODUCTION 
In non-sequential multi-input multi-output 

Quantitative Feedback Theory (NS MIMO QFT) the n n×  
design problem is first converted into multiple multi-input 
single-output (MISO) design problems, with n  single-input 
single-output (SISO) equivalent plants, the iiq . The robust 
performance (RP) and robust stability (RS) specifications 
on the original n n×  system are also translated into 
appropriate RP and RS specifications on these n  MISO 
problems. Then the MISO QFT method is executed for 
each MISO design problem. If those n  MISO design 
problems can be successfully completed, then it follows 
from the Schauder’s fixed-point mapping theorem ([1]) that 
MIMO closed-loop uncertain system’s RP specifications 
are satisfied. Moreover, from a NS MIMO QFT robust 
stability theorem ([4]), if the MIMO system also satisfies a 
necessary and sufficient existence condition the MIMO 
closed-loop uncertain system is guaranteed to be robustly 
stable. The basic QFT design procedure assumes a diagonal 
controller ( )G s  and a fully populated prefilter ( )F s . 

For a SISO control design problem, when the plant has 
unstable poles lying to the right of, or close to, non-
minimum phase (NMP) zeros, i.e. right-half plane (RHP) 

dipoles, the SISO QFT design problem may not be 
solvable. The reason for this is that in frequency domain 
designs a NMP zero restricts the maximum allowable loop 
cross-over frequency ( cω ) whereas an unstable pole calls 
for a minimum cω . Consequently, when the NMP zero is 
closer to the imaginary axis than an unstable pole, there 
may not exist a linear time invariant (LTI) controller that 
can stabilize the uncertain SISO system. 

In MIMO plants, due to the directional dependency of 
the poles and zeros, the role played by RHP poles and zeros 
is not the same as that in SISO plants. Consequently, a 
MIMO plant with RHP dipoles will not always present a 
difficult design problem. However, due to the consideration 
of the SISO equivalent plants, MIMO plants with RHP 
dipoles do present a difficult design problem in NS MIMO 
QFT, as this kind of MIMO plant typically leads to some of 
the equivalent plants also having a RHP dipole for all 
plants in the uncertain plant family. In a NS MIMO QFT 
design, if one of the equivalent SISO plants has a RHP 
dipole for all plants in the family, it may not be possible to 
successfully complete that equivalent MISO QFT design 
problem. This necessarily means that the NS MIMO QFT 
procedure will not yield a robustly stable MIMO design 
and obviously limits the ability of NS MIMO QFT to deal 
with systems possessing RHP dipoles. Furthermore, a 
minimum phase (MP) and stable MIMO plant can lead to 
some SISO equivalent plants being unstable, and a NMP 
and stable MIMO plant can lead to some SISO equivalent 
plants being NMP and unstable. This further reduces the 
class of systems to which NS MIMO QFT can be 
successfully applied. 

These limitations on the class of system to which NS 
MIMO QFT can be applied partly arise from the 
employment of a diagonal controller. However, it is 
entirely possible to use a fully populated controller in the 
design. As shown in this paper, it is possible to exploit the 
design freedom provided by a fully populated controller to 
transform the equivalent SISO plants from an apparent un-
stabilizable situation to a stabilizable one, thus facilitating a 
successful NS MIMO QFT design. 
 

II. MATRIX TRANSFORMATION 
Described in this section is a procedure for determining 

a set of matrices M  and N  to yield desirable pole-zero *Address all correspondence to this author. 



locations in the equivalent SISO plants to facilitate a 
successful NS MIMO QFT design. Only one feasible 
approach is considered here, although there are number of 
other approaches that may be pursued. 

As depicted in Fig. 1, two non-singular matrices ,M N  
are introduced such that: 

1 1 1( )I MM PNN G T PNN GF− − −+ = . 
It follows that,  

1 1 1 1 1 1( )I M PNN GM M T M PNN GMM F− − − − − −+ = . 
The last equality can now be written as 

1 1 1 1 1 1( )I PG T PG F+ = , where 1
1P M PN−= ,  1

1G N GM−= , 
1

1T M T−=  and 1
1F M F−= . Note that the above equation 

is in exactly the same form as the standard equation with 
, ,P G F  replaced by 1 1 1, ,P G F . Consequently, one could 

derive all the required MIMO QFT design equations with 
these new variables. The following sections consider the 
employment of the transformation matrices M  and N  for 
2 2×  MIMO plants. 
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Fig. 1 Plant Transformation 

 
 
Plant Set-up. Consider a 2 2×  MIMO plant of the form 

ij ijP z p =   , where ijz  and ijp  are polynomials of s . 

The determinant of P  is, 

[ ] 11 22 12 21 12 21 11 22

11 22 12 21

( )det
( )

z z p p z z p p k sP
p p p p s

⋅ ⋅ ⋅ − ⋅ ⋅ ⋅ ⋅ Ζ
= =

⋅ ⋅ ⋅ Φ
, 

where ( )Z s  is the zero polynomial of the 2 2×  plant and 

( )sΦ  is the pole polynomial of the 2 2×  plant. 
In NS MIMO QFT the MIMO design problem is 

decomposed into n  MISO design problems with the 
equivalent SISO plants iiq , where ( )1 1 ijij

P q− = . The 

corresponding equivalent plant matrix ijQ q =    is given 

by: 
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Selecting the Transformation Matrices. In the design 
procedure it is possible to use either the N  or M  matrix, 
or both the N  and M  matrices, with the latter more 
complex due to the added degrees of freedom.  

 

1) Applying only the N  matrix transformation. Suppose 

11 12

21 22

n n
N

n n
 

=  
 

, where 1N −  exists and ijn  are constants 

or polynomials of s . Defining 1nP P N= ⋅ , the resulting Q  
matrix is: 

11 12
1

21 22

n n
n

n n

q q
Q

q q
 

=  
 
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  Let 1 12 21 22 22 22 21n z p n z pθ = −  and 

2 11 11 12 21 12 11n z p n z pθ = − . The objective is to select the ijn  

such that any RHP dipoles in the diagonal entries of 1nQ  
disappear. In order to accomplish this, one can select the 
target niiq  to be as follows: 
(a) 11nq  is MP but unstable, 22nq  is NMP but stable and all 
the zeros of ( )11 22 12 21n n n n−  are MP, if there are no 
unstable poles in 22q . 
(b) 11nq  is NMP but stable, 22nq  is MP but unstable and all 
the zeros of ( )11 22 12 21n n n n−  are MP, if there are no 
unstable poles in 11q . 
(c) Furthermore, one could have niiq  to be NMP and 
unstable as long as the NMP zero is lying to the right of, 
and far away from, the unstable poles. This allows 
( )11 22 12 21n n n n−  to have NMP zeros which lie to the right 
of niiq ’s unstable poles. 
 

Usually, cases (a) and (b) are preferred since they are 
easy to stabilize by applying a large gain to the unstable 
plant and a small gain to the NMP plant. Regardless of 
which case one employs, the matrix N  cannot possess any 
NMP zeros that are the same as the unstable poles of the 
MIMO system, as these NMP zeros of N  will show up as 
the controller’s NMP zeros, since 1nG N G= ⋅ . This results 
in RHP pole-zero cancellations between G  and the original 
P  and hence a loss of internal stability. 
 
Remark: In cases where both 11nq  and 22nq  have a RHP 
dipole, one needs to remove the unstable pole from either 

11nq  or 22nq . There are two possible ways to resolve this 
situation. One is to produce a NMP zero in 



( )11 22 12 21n n n n−  that cancels the unstable pole. However, 
this results in RHP pole-zero cancellations between G  and 
the original P . The other way is to assign a common 
denominator for 12n  and 22n  such that this common 
denominator can cancel the unstable pole in 11nq  or 22nq  . 
However, by doing so ( )11 22 12 21n n n n−  will also have that 
common denominator (the unstable pole). Thus, an attempt 
in this direction is futile. This suggests that to alleviate the 
problem associated with the unstable pole one needs to use 
both M  and N  matrices. 
 

Now, assume ( )1
1 0

n n
ji jj n nz p a s a s a−

−= + + +L  and 

( )1
1 0

m m
jj ji m mz p b s b s b−

−= + + +L  in iθ . When selecting 

the ijn  in 1θ  and 2θ , one can take 
1

1 0
u u

ij u un c s c s c−
−= + + +L  and 

1
1 0

v v
jj v vn d s d s d−

−= + + +L , and use the following 
formulae: 

( )( )
( )( )

1
1 0 0

1
1 0 0

i ij ji jj jj jj ji

u u n
u u n

v v m
v v m

n z p n z p

c s c s c a s a

d s d s d b s b

θ
−

−

−
−

= ±

= ± + + + + +

+ + + + +

m

L L

m L L

. 

This can be put in the form ( )( ) ( )1 2i ts r s r s rθ α= − − −L , 
where the ir ’s are the roots of the polynomial iθ . 

In order to produce the desired niiq , some ir ’s can be 
specified to be the same as the NMP zeros and/or unstable 
poles of the MIMO system and the rest of them the free 
variables that can be arbitrarily chosen but have to be 
stable. For example, in case (b) one may need to assign 1r  
of 2θ  to cancel the NMP zero such that 22nq  is MP but 
unstable. The total number of roots, t , is the biggest 
number among n u+  , v m+  and the number of the 
specified roots. This is also the highest order for the 
polynomial iθ . 

Normally, one has to search for a set of solutions for 
the ijn ’s in iθ  from constant, order 1-polynomials, and 
then on to order 2 polynomials, etc. and at the same time to 
select those free stable ir ’s such that the determinant of the 
N  matrix satisfies the remaining requirements. An easier 
way is to assume that the free ir s are known and select the 
orders, u  and v , to be high enough such that the number of 

ijn   coefficients in iθ  matches the number of the 

polynomial iθ ’s coefficients, 1t + . Then solve the 
variables ic 's and id 's by Gauss-elimination in terms of 

ir s. After that, one can specify those free ir 's such that the 
determinant of the N  matrix satisfies the requirement. 

Sometimes, one can just arbitrarily select those free ir 's as 
a first attempt. 

The trick is that whenever the order of both ijn ’s in iθ  

is increased by one, the order t  of the polynomial iθ  is 
only increased by one so that a sufficient number of 
independent coefficients appear to match a desired 
polynomial. In particular, one obtains two more variables 
by adopting this procedure. Thus, it is possible to set up 
enough variables for Gauss-elimination. 

 
2) Applying only the M   matrix transformation. Using the 
M  matrix transformation is similar to the use of the N  

matrix. Suppose 11 121

21 22

ˆ ˆ
ˆ ˆ
m m

M
m m

−  
=  
 

 exists for some M , 

where the ˆ ijm  are constants or polynomials of s . With the 

transformation 1
1mP M P−= ⋅  the resulting Q  matrix is: 

( )( )
( )

( )( )
( )

11 22 12 21 11 22 12 21 12 21 11 22

21 12 22 22 22 12 11 21
1

11 22 12 21 11 22 12 21 12 21 11 22

21 11 21 22 21 11 12 22

ˆ ˆ ˆ ˆ
ˆ ˆ

ˆ ˆ ˆ ˆ
ˆ ˆ

m

m m m m z z p p z z p p
m z p m z p p p

Q
m m m m z z p p z z p p

m z p m z p p p

 − −


−=  − −−
 −

 

( )( )
( )

( )( )
( )

11 22 12 21 11 22 12 21 12 21 11 22

11 12 22 12 22 12 11 21

11 22 12 21 11 22 12 21 12 21 11 22

11 11 21 12 21 11 12 22

ˆ ˆ ˆ ˆ
ˆ ˆ

ˆ ˆ ˆ ˆ
ˆ ˆ

m m m m z z p p z z p p
m z p m z p p p

m m m m z z p p z z p p
m z p m z p p p

− −
− 

− 
− − 
− 

. 

We then follow the same procedure as described for the N  
matrix to select the M  matrix with the controller 

1
1mG G M −= ⋅ . 

 
3) Using both N   and M   transformation matrices. When 
the use of a single matrix fails, one can use both M  and 
N . This approach is more powerful and more 
cumbersome. The main difference between using a single 
matrix and both matrices is that no ijp  in the denominator 
is left unaffected in the diagonal entries of Q . In some 
cases where 11nq  and 22nq  (or, 11mq  and 22mq  ) are both 
unstable, using both matrices appears to be the only way to 
achieve desirable equivalent plants. The reason is that one 
is not able to cancel the unstable pole in all the diagonal 
entries of Q  by selecting entries of a single matrix. 
However, the complexity of using both matrices grows as 
the number of entries and the number of coefficients 
increases. Hence, although one can take all entries of M  
and N  to be polynomials in s  and then try to select their 
coefficients, a simpler approach is to arbitrarily assign one 
of the matrices to be a specified constant matrix and then 
try to find another s -polynomial matrix. 

Using the transformation 1
1mnP M P N−= ⋅ ⋅ , the 

resulting Q  matrix is: 



11 12
1

21 22

mn mn
mn

mn mn

q q
Q

q q
 

=  
 

, 

where, 
11mnq =  

( ) ( )( )11 22 12 21 11 22 12 21 11 22 12 21 12 21 11 22

12 21 11 22 12 21 12 22 21 11 22 12

22 21 12 11 22 21 22 22 22 11 12 21

ˆ ˆ ˆ ˆ
ˆ ˆ

ˆ ˆ

n n n n m m m m z z p p z z p p
n m z p p p n m z p p p

n m z p p p n m z p p p

− − −

+ 
 + + 

, 

22mnq =  
( ) ( )( )11 22 12 21 11 22 12 21 11 22 12 21 12 21 11 22

11 11 11 22 12 21 11 12 21 11 22 12

21 11 12 11 22 21 21 12 22 11 12 21

ˆ ˆ ˆ ˆ
ˆ ˆ

ˆ ˆ

n n n n m m m m z z p p z z p p
n m z p p p n m z p p p

n m z p p p n m z p p p

− − −

+ 
 + + 

. 

Again, the aim is to select ijn  and ˆ ijm  such that the RHP 
dipoles in the diagonal entries of Q  disappear. The 
resulting controller transfer function matrix (TFM) is 

1
1mnG N G M −= ⋅ ⋅ . 

Following the procedures outlined in the preceding 
section, we can find a set of M  and N  matrices such that 
the transformed Q  matrix is more suitable for design. It 
should be noted that we have given only one possible way 
of finding M  and N  matrices. Many more M  and N  
sets are possible. Our continuing research will explore 
other ways of prescribing these transformation matrices. 
 

III. EXAMPLES 
In this section two concocted examples are given to 

illustrate the proposed method. 
 
Example 1. In this example we consider a control problem 
for a 2 2×  LTI uncertain system possessing a RHP dipole. 
The uncertain 2 2×  plant is given by: 

2

k k
s a s aP

k k
s a s

− 
 + +=  
 
 + − 

, where 1 2k≤ ≤  and 1 2a≤ ≤ . 

We want to design a controller G  and a prefilter F  
such that for all plants in the family the closed-loop system 
is robustly stable and the closed-loop transfer function 
matrix satisfies a RP specification, 

( ) ( ) ( )ij ij ijb j t j a jω ω ω≥ ≥  when i j=  and 

( ) ( ) 0ij ijb j t jω ω≥ ≥  when i j≠  (Values listed in Table 

I). First we choose the specific plant corresponding to 
1k = , and 1a =  as the nominal plant. Thus,  

0

1 1
1 1

1 1
1 2

s sP

s s

− 
 + +=  
 
 + − 

 and 
( )

( ) ( )
0 2

2 1
( )

2 1

s
Det P

s s

−
=

− +
. 

Note that there is a RHP dipole in each member of the 

plant family, since 
( )

( ) ( )

2

2

2 2
( )

2

k s a
Det P

s a s

+ −
=

+ −
. 

Consequently, the standard NS MIMO QFT design 
problem is impossible or extremely difficult to solve. The 
proposed design method alleviates this difficulty in the 
design using NS MIMO QFT. 

 
Step 1: We determine M  and N  matrices based on the 
nominal plant so that the resulting two SISO equivalent 
nominal plants do not possess any RHP dipoles. If we 
apply the NS MIMO QFT to the nominal plant 0P , the 
resulting Q -matrix is: 

( )
( )

( )
( )( )

( )
( )( )

( )
( )( )

2

0

2 1 2 1
1 21

2 1 2 1
1 2 1 2

s s
s ss

Q
s s

s s s s

 − −
 

+ −+ 
=  

− − − 
 + − + − 

. 

Note that the entry 011q  is NMP but stable and the entry 

022q  possesses a RHP dipole, making the design problem 
difficult to solve. 
 
Table I. Robust Performance Specification for Example 1 
ω  0.001 0.01 0.1 1 2 

( )ωjb11
 20 20 15 7 4 

( )ωja11
 -70 -50 -30 -10 -10 

( )ωjb22
 .01 .01 .0001 .00002 .00002 

( )ωja 22
 -.91 -.91 -.9999 -1 -1 

( )ωjb12
 25 25 25 5 5 

( )ωjb21
 -24 -40 -50 -60 -70 

 
ω  5 10 20 40 80 

( )ωjb11
 0 -5 -10 -15 -20 

( )ωja11
 -15 -20 -25 -30 -35 

( )ωjb22
 .00005 .00005 .00005 -5 -10 

( )ωja 22
 -1 -3 -6 -16 -21 

( )ωjb12
 -6 -6 -6 -11 -16 

( )ωjb21
 -80 -90 -90 -90 -90 

  
ω  160 320 600 1200 2400 

( )ωjb11
 -25 -32 -37 -42 -47 

( )ωja11
 -40 -46 -55 -62 -70 

( )ωjb22
 -15 -16 -18 -20 -20 

( )ωja 22
 -22 -25 -29 -31 -36 

( )ωjb12
 -21 -21 -21 -26 -26 

( )ωjb21
 -90 -90 -90 -90 -90 

Units: rad/sec; dB 
 
Suppose we let M  be the identity matrix and apply 

only the N  matrix transformation to the system such that 



1nP P N= × . All the entries of N  can be constants or 

polynomials of s and 1N −  must exist. With this choice the 
nominal equivalent plant matrix ( Q -matrix) is: 

( )( )
( )( )( )

( )( )
( )( )( )

( )( )
( )( )( )

( )( )
( )( )( )

11 22 12 21 11 22 12 21

12 2212 22 12 22
0

11 22 12 21 11 22 12 21

11 2111 21 11 21

2 1 2 1
1 22 1

2 1 2 1
1 22 1

n

n n n n s n n n n s
n n s sn n s n n s

Q
n n n n s n n n n s

n n s sn n s n n s

 − − − − −
 

− + −+ − + + 
=  

− − − − − 
 − + −+ − + + 

. 

Considering the above TFM, we wish to select 11n  and 22n  
such that 0 11nq  is NMP and stable and select 11n  and 21n  
such that 0 22nq  is MP and unstable. Consequently, the 
following constraints are enforced: 
− ( )11 22 12 21 ( )n n n n f s− = , where ( )f s  is stable. 

− ( )1 12 22 12 222n n s n nθ = + − + , where  1θ  is stable. 

− ( ) ( )2 11 21 2 1n n sθ = − = − , where it cancels the NMP 
zero. 

Let 11 21,n as b n cs d= + = + ⇒ 2, 1a c b d− = − = − . 
Choose 3a d= = , 2b = , 1c = . Necessarily, 12 22 0n n+ >  
and 22 122 0n n− > . Choose 12 1n = , 22 3n = . Therefore  

3 2 1
3 3

s
N

s
+ 

=  + 
 and ( ) 8 3Det N s= + . This leads to the 

following Q -matrix which importantly has no RHP dipoles 
in either diagonal entry: 

( )( )
( )( )

( )( )
( )( )

( )
( )( )

( )
( )( )

0

8 3 2 1 0.5 8 3 2 1
4 1 1 1 2

8 3 8 3
1 2 1 1 2

n

s s s s
s s s s

Q
s s

s s s s

 + − + −
 

+ + + − =  − + + 
 + + + − 

. 

Step 2: We now apply the chosen M  and N  to our 
original problem and transform it into a new design 
problem. Using the transformation 1

1P M P N−= × ×  the 
transformed plant is: 

( )

( )( )
( ) ( )

( )
( )( )

21

2 1 2

4 1 3 4 4 2 3
2 2

k s k
s a s a

P
k s a s a k s a

s a s s a s

 − −
 

+ + =  + − + − − + 
 + − + − 

, 

where 1 2k≤ ≤  and 1 2a≤ ≤ . It remains to design a 

diagonal controller 1
1

2

0
0
g

G
g

 
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 

 and prefilter 

11 12
1

21 22

f f
F

f f
 

=  
 

 such that for all 1P  the system is robustly 

stable and its closed-loop TFM satisfies the performance 
specification in Table  I. The performance specification for 
the transformed problem is the same as the performance 
specification for the original problem because 1

1T M T−=  
and M I= . It is worth noting that in this transformed NS 
MIMO QFT design problem, the nominal equivalent SISO 

plants are free from any RHP dipoles. Thus, one can easily 
stabilize the nominal plant. 
 
Step 3: We now perform the NS MIMO QFT design on the 
transformed design problem. Since the design problem asks 
for the minimum magnitude off-diagonal elements of the 
closed-loop TFM, we let 12 210, 0f f= = . Due to the 
transformation of the design problem loop 1 can be easily 
stabilized using a small gain controller and loop 2 can be 
easily stabilized using a large gain controller. The chosen 

controller TFM is 
( )

9

1 4

0.12 8.965 10diag ,
1 8.15 10

G
s s

 
× =

 + + ×  

. The 

chosen prefilter TFM is 
( )

( )( )1
106.67 230

diag 3.7,
18 1420

s
F

s s
 +

=  
+ +  

. 

With the RP specifications and the RS specification 
satisfied, the closed-loop system is guaranteed to be 
robustly stable (see Theorem 1 in [4]). Note that, whilst this 
control system serves to demonstrate the application of 
design process, it might be possible to reduce the 
bandwidth of the controller by employing a higher order 
controller.  

 
Step 4: Inverse Transformation and Verification. We now 
assess the effect of the final design on the original system. 
The real controller for our original uncertain plant is given 
by, 

( )
( ) ( )
( )
( ) ( )

9

1 10

3 3 2 8.965 10
25 1 81500

3 3 2.6895 10
25 1 81500

s
s s

G N G
s
s s

 + ×
 

+ + = × =  + × 
 + + 

. 

       The prefilter for our original plant is given by 1F F=  
since M I= . We now calculate the closed-loop transfer 
function matrices for checking stability. The MIMO poles 
were calculated for different plants in the plant family and 
it was verified that all poles have negative real part. 
Moreover, there is no pole-zero cancellations between P  
and G . Thus, the uncertain plant is internally stabilized by 
the controller G .  
 
Example 2. Consider the following 2 2×  LTI plant with 
NMP transmission zero and unstable pole: 

( )( )
( )

( )( )

0

1 0
1 5

1
0

2 3

s s
P

s
s s

 
 + + =  −
 

− +  

, 

where 0 0Q P=  and 
( )( )( )( )0

1( )
1 5 2 3

sDet P
s s s s

−
=

+ + − +
.  

        By employing transformation matrices we can 
transform the plant TFM such that neither of the SISO 



equivalent plants  possess a RHP dipole. This plant cannot 
be handled by just the N  matrix. Thus, we arbitrarily 

choose 1 2 5
3 1

M −  
=  
 

 resulting in: 

( )( )
( )

( )( )

( )( )
( )

( )( )

( )( )
( )

( )( )

0

1 0
1 52 5

13 1
0

2 3

5 12
1 5 2 3

13
1 5 2 3

m

s s
P

s
s s

s
s s s s

s
s s s s

 
 + +   =    −   

− +  
 −
 

+ + − + =  − 
 + + − + 

. 

We then select the N  matrix so that 0 11mnq  is NMP 
but stable and 0 22mnq  is MP but unstable. This gives, 

1
0 0 0mn mP P N M P N−= × = × × , 

and        0 0mn mnijQ q =   , 

where, 

( )( )
0 11

11 22 12 21
3 2

22 12 22 12 22 12 22

13 1

n s +(3n +5n )s +(3n -n )s-18n -5n

mnq
s n n n n

=

− − − , 

( )( )
0 22

11 22 12 21
3 2

21 11 21 11 21 11 21

13 1

5n s +(2n +25n )s +(2n -5n )s-12n -25n

mnq
s n n n n

=

− − − . 

Now we enforce the following constraints: 
− ( )11 22 12 21 ( )n n n n f s− = , where ( )f s  is stable 

− 3 2
1 22 12 22 12 22 12 22n s +(3n +5n )s +(3n -n )s-18n -5n ,θ =      

where 1θ  is stable 

− 
( )( ) ( )

3 2
2 21 11 21 11 21 11 215n s +(2n +25n )s +(2n -5n )s-12n -25n

1 s-2s g s
θ =

= −
 

The selected N  is: 
2 21.01 0.12 1.13 0.8095 5 4.1905
2.03 4.06 3.4286 10.2857

s s s sN
s s

 + − − − −
=  

− + +  
, 

where ( ) 3 21.8195 3.9367 9.1533 5.3905Det N s s s= + + +  

( )( )( )1.8195 0.7456 0.7090 + 1.8630i 0.7090 - 1.8630is s s= + + +

. 
With 0 11mnq  NMP and stable and 0 22mnq  MP and 

unstable, a small gain is chosen to stabilize 0 11mnq  and a 
large gain to stabilize 0 22mnq . The resulting controller is: 

( )( ) ( )( )0
0.33 40diag ,

3 4 5 6mnG
s s s s

 −
=  

+ + + +  
.  

Thus, 

( )( )( )( )

( )( )( )( )

4 3 2

0 3 2

97.8066 1287.4 5888.7 10714 6011.9
3 4 5 6

412.7718s 4126.4s 13588s 14731
3 4 5 6

s s s s
s s s s

G

s s s s

 − − − − −


+ + + +=  + + +
 + + + +

       

( )( )( )( )

( )( )( )( )

4 3 2

3 2

34.0465  445.1895  2006.5  3558.8 1955.5 
3 4 5 6

 140.4935s  1401.6s  4552.5s 4736.2 
3 4 5 6

s s s s
s s s s

s s s s

− − − − −


+ + + + 
+ + + 
+ + + + 

 

Analysis confirms that the closed-loop system with 
controller 0G  and plant 0P  is internally stable, with closed-
loop TFM and sensitivity TFM stable and no RHP pole-
zero cancellations between 0P  and 0G . 
 

IV. CONCLUSIONS 
In this paper, a transformation scheme is proposed to 

facilitate the synthesis of controllers for NMP and unstable 
systems using NS MIMO QFT. Through the use of 
transformation matrices it was shown that one can obtain a 
new set of equivalent iiq  with desired stable and/or MP 
structure. In effect the scheme helps to eliminate the 
presence of spurious RHP dipoles that may appear in the 
equivalent SISO plants, the iiq , and hence makes the 
design feasible using NS MIMO QFT. A systematic 
procedure to prescribe the transformation matrices is 
provided. Different from the standard NS MIMO QFT, the 
transformation scheme leads to a fully populated controller. 
Thus, it is possible to systematically design a robust 
controller for a MIMO system with RHP dipoles using NS 
MIMO QFT. The proposed transformations apply in many 
situations making NS MIMO QFT a viable design method 
for a much larger class of problems than has been possible 
thus far. 
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