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Real and Complex Stabilization: Stability and Performance

Ming-Tzu Ho, Guillermo J. Silva, Aniruddha Datta and S. P. Bheltaryya

Abstract— This paper presents recent results and algorithms and performance. Given that PID controllers are used in
that can be used to generate the entire set of stabilizing PID such diverse applications as process control, rollingspill
controllers for single-input single-output 1) continuous-time aerospace, motion control, pneumatic, hydraulic, eletri

rational plants of arbitrary order, 2) discrete-time rational d hanical ¢ disc dri d diaital
plants of arbitrary order, and 3) continuous-time first or- and mechanical systems, disc drives and digital cameras,

der plants with time delay. These algorithms follow from the impact of these results could be enormous.
substantial theoretical advances on PID stabilization that The theoretical development of these results is quite in-
have been reported by us in recent years. They display the yolyed and technical, and this could make them inaccessible

rich mathematical structure underlying the topology of PID . ; ;
stabilizing sets. By presenting these algorithms without the to practicing engineers. However, the algorithms thatltesu

highly technical details of the underlying theory, the paper are stralghtforwarq, a.nd can Pe eaSIIy. programmed on a
seeks to make the results accessible to as wide an engineeringcomputer. The objective of this paper is to present these
audience as possible. Examples are presented throughout PID stabilization and design algorithms, devoid of dethile

the paper to clarify the steps involved in implementing the mathematical proofs, and show via examples how these

different algorithms. We believe that these algorithms can 5 4qrithms can be used by the industrial practitioner toycar
significantly complement the current techniques for industrial

PID design, many of which are adhoc in nature. In particular, ~©OUt COmputer-aided designs. _
the graphical displays of feasible design regions using 2-D and ~ The paper is organized as follows. In Section I, we
3-D graphics should appeal to control designers and are very present an algorithm for determining the set of all stainitjz
SE'_tab!e forhcompUtgr a'dec: ng'gg where Sevgra| Perf?”%a”?e PID controllers for a continuous-time delay free plant of
objectives have to be overlaid and intersected. Specific design 4oy order. An example is included to illustrate the
problems where these algorithms can be profitably used are . . - -
discussed. detailed calculations involved. In Section Ill, we show how
all PID stabilizers for a discrete-time plant of arbitrargler

. INTRODUCTION can be determined by suitably modifying the algorithm of

PID Controllers are widely used in applications [1]_Section [I. Once again, an illustrative example is included
However, in most cases, their designs are carried out usity Section IV, we present an algorithm to determine the
adhoctuning rules. These rules have been developed ovéft Of all stabilizing PID controllers for a continuous-&m
the years based primarily on empirical observations arfiSt-order plant with time delay. Since plants of this type
industrial experience. In part this state of affairs is duthe ~ are widely encountered in process control, this algorithm
fact that the state feedback observer based theory of modéftpuld be of particular interest to industrial practitiome
and post-modern control theory includitify, H.o, x andl; AN example is included to demonstrate the use of this
optimal control cannot be applied to PID control. Indeed@/gorithm. Section V discusses some PID controdlesign
until the results to be described here appeared, it was rfoblems involving frequency domain performance specifi-
known how to even determine whether stabilization of &ations, which can be solved by using a complex version
nominal system was possible using PID controllers. of the algorithm of Section Il. The modifications required

In recent years, we have obtained a number of significaff® indicated. Finally, Section VI contains some conclgdin
results on PID stabilization [2], [3], [4] which, we believe remarks.
could assist the industrial practitioner to carry out cotepu

aided designs of PID controllers with guaranteed stability”' PID CONTROLLERS FORLINEAR TIME-INVARIANT

CONTINUOUS-TIME SYSTEMS
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designed. The controlle?'(s) will be assumed to be of the
PID type so that

ks
C(s) =k, + . + kas

where k,, k; and k; are the proportional, integral and

complete set of parametefs, k;, kq resulting in Hurwitz
stability of (1). In the following we describe the esserttial
of this algorithm without mathematical proofs.

Using the even-odd decomposition &f(s), define

N*(s) = N(—s) = N.(s%) — sN,(s%).

derivative gains respectively. For this section, the plangq, let n, m be the degrees af(s, k,, ki, ka) and N (s)
Py iy

transfer functionG(s) will be assumed to be rational so
that

whereN(s), D(s) are polynomials in the Laplace variable
s. With this plant description, the closed-loop characteris
polynomial becomes

5(8,kp, kiy ka) = sD(s)+(ki+kas®)N(s)+kpsN(s). (1)

The problem of stabilization using a PID controller is to

determine the values df,, k; andkgy for which the closed-
loop characteristic polynomial(s, ky, ki, kq) is Hurwitz,
that is, has all its roots in the open left half plane. Sinc

respectively. To achieve the parameter separation mesttion
earlier, multiplyd (s, ky, ki, kq) by N*(s) and rewriteN (s),
D(s) in terms of their even-odd decompositions, to obtain

v(s) 0(s, kp, ki, ka)N™(s)

= [$*(Ne(s*)Do(5%) = De(5*) No(5?))
+(ks + kas?) (Ne(s?)No(s%)
—5No(5*) No(5%))] + s[De(s*)Ne(5?)
—5%Dy (%) No(s?) + kp(Ne(5*) Ne(s?)
—52No(s*)No(s%))]. 2

Note that the polynomial/(s) has degreen + m and
8(s, kp, ki, kq) is Hurwitz if and only if v(s) has exactly

plants with a zero at the origin cannot be stabilized by Plbhe same number of closed RHP zerosNags) and this

controllers we exclude such plants at the outset. In thi

section, we simply present an algorithm for computatignall

iS the condition we will use for stability. Note also that
while the characteristic polynomidl(s, k,, k;, k) has all

characterizing all stabilizing PID controllers for a giventhree parameters appearing in both the even and odd parts,

plant with N(0) # 0. For a proof of the derivation, the
reader is referred to [2].
We first introduce some definitions and notation.
Definition 2.1: The standard signum functiogn : R —
{-1,0,1} is defined by

-1 ifz <O
sgnlz] = 0 ifz=0
1 ifz > 0.

Definition 2.2: Let a(s) = ag + a1s + -+ + a,s™ be
a given real polynomial of degree. Let C~ denote the
open left-half plane (LHP) and* the open right-half plane
(RHP). Thenli(a(s)) and r(a(s)) denote the numbers of
roots ofa(s) in C~ andC* respectively.

Definition 2.3: Given a real polynomiak(s) of degree
n, the even-odd decomposition afs) is defined as

a(s) = ae(s?) + sao(s?)

wherea,(s%) andsa,(s?) are the components af s) made
up of even and odd powers efrespectively.

To motivate the manipulations to follow we observe first

that for a given real polynomial(s), the real and imaginary
parts ofa(jw) are given bya. (—w?) andwa,(—w?) respec-
tively. It will turn out that the root distribution (numbecs
left and right half plane roots) of(s) can be determined

the test polynomial/(s) exhibits parameter separation, that
is, k, appears in the odd part only whilg andk; appear
in the even part only. This will facilitate the applicatiofi o
root counting formulas te(s).

To proceed, substitute = jw into (2) to obtain

O(jw, kp, ki, ka) N* (jw) plw, ki, ka) + jq(w, kp)

3)
where
p(w, ki, ka) = pi(w)+ (ki — kaw®)pa(w)  (4)
q(w, kp) = (w)+kp q2(w) %)
pw) = —W*(Ne(—w?)Do(—w?)

De(—w?)Ny(—w?)) (6)

p2(w) = Ne(—w?)Ne(—w?)
+w? N, (=w?) Ny (—w?)) (7)

W) = W(De(_wg)Ne(_WQ)
+w?Dy(—w?)Ny(—w?)) (8)

@w) = wNe(-w?)Ne(-w?)
+w? N, (—w?) Ny (—w?)). 9)

The PID stabilization algorithm to be presented below
is based on a fundamental and new result generalizing the

from the zeros of its imaginary part and the signs of thelassical Hermite-Biehler Theorem [5] to the case of root

real parts at these zeros. Finally, éfs) has unknown

distribution determination of real polynomials which are

design parameters this approach to determining the roobt necessarily Hurwitz. This generalization reportedrf [
distribution is most conveniently applied when the unknowii2], [6] provides an analytical expression for the diffezen
parameter sets appearing in the real and imaginary parts &etween the numbers of roots of a real polynomial in the
separated, that is have no common elements. These idegen left-half and open right-half planes. In our case we

were used in [2] to develop an algorithm to determine th

will exploit these results to impose the stability conditio
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that v(s) has exactly the same number of RHP roots as (i) For all other t = 0,1,2,---,1,
N(—s). In order for this to happen a necessary condition Qe {~1,1}

is thatg(w, k,) has at least
With 4o, i1, - - - defined in this way, define the set A,y as

[n—((N(s))=r(N(s)))| for m + n even
’ (10) Ay = { {{io i)} fmt s even
- — ») ‘7‘7"'7‘* I + IS 00d;
In <1<N<s>>2r<zv(s)))|+1 for m +n odd o {{z? i1 z; 1}} d@ .; |
. - N tep 10: Determine the admissible strings
real, nonnegative, distinct roots of odd multiplicity. The =77 7™ " i) Ak, from (13). If there is no
ranges ofk, satisfying (10) are calledllowable Let admissible string then GOTO Step 7
_ Step 11: For an admissible string Z = {40,1,-- -}, de-
0=wo < wi < .. < Wit (11) termine the set of (k;, ka) values that simultaneously
denote the real, nonnegative distinct rootsgéb, k,) of satisfy the following string of linear inequalities:
odd multiplicity, and withw; := co write [p1(we) + (ki — kaw?)p2(we)]ie > 0,
. Vt=0,1,2,--- for which N*(jw 0;
sgnlp(w;)] =45,5 =0,1,....L (12) (jur) #

. . . Step 12: Repeat Step 11 for all admissible strings
It can be shown using the root counting results mentioned 7,/ 7, ... 7, to obtain the corresponding admissible

earlier, that the stability condition reduces to: (ki,kq) sets S1,82,---,8,. The set of all stabilizing
(ki, kq) values corresponding to the fixed k, is then
n—(I(N(s)) —r(N(s))) = given by
S(kp) = Ug=1, 2, vSaz;

{io — 2i1 + 2ig + - + (=1)! 712454
+(=1)%;} - (—1) - tsgrig(oo, kp)] Step 13: GOTO Step 7
for m + n even Step 14: Setj = j+1and P = P;. If j < d GOTO STEP

(13) 5; else, terminate the algorithm.

{io — 2i1 + 2ig + - + (—1)" 71244}
(=1)"""sgrlg(c0, ky )] We now present an example to illustrate the de-
for m +n odd tailed calculations involved in determining the stabilgi
and therefore the string of integefs, i, ...,i;} will be  (kp, ki, kq) gain values.
called admissibleif it satisfies (13). Example 2.1:Consider the problem of determining sta-
Using the above we can present the following algorithnilizing PID gains for the plant(s) = N(s) \where

for determining all stabilizingk,, k;, kq) values for the - b
given plant. The reader is referred to [2] for a more complete N(s) = 29262 _s—1
development, D(s) = 5+ 2% +32s% + 265> + 6552 — 85 + 1.

The closed-loop characteristic polynomial is

PID Stabilization Algonthm For LTI Plants: 5(8, ke, ki, kg) = sD(s) + (ki + kas?)N(s) + kpsN(s).
Step 1: For the given N(s) and D(s), compute the corre-
sponding p1 (w), p2(w), g1(w), and gz (w) from (6)-(9); Thusn =7 andm = 3. Also
Step 2: Determine the allowable ranges P;,i =
1,2,...,d of k, from (10). The resulting ranges of Ne(s?) = —25°—1,
kp are the only ranges of k&, for which stabilizing (k;, kq) N,(s%) = s2-1
values may exist; ° ’
Step 3: If there is no k, satisfying Step 2then output NO D.(s*) = s%+32s* +6552+1,
SOLUTION and EXIT ; 2y _ 4 2
Step 4: Initialize j = 1 and P = P;; Do(s7) = 257 +26s° =8,
Step 5: Pick a range [kiow, kupp] In P and initialize k, =  gnd
klow;
Step 6: Pick the number of grid points N and set step = N*(s) = (=2s* — 1) — s(s* — 1).
N;-&-l [kupp - klow]; )
Step 7: Increase k, as follows: k, = k, + step. If k, > Therefore, from (2) we obtain
kupp then GOTO Step 14 . 2 8 6 4 9
Step 8: For fixed k, in Step 7, solve for the real, non- (8, kp, ki, ka)N™(s) = [s7(—s" — 355" — 87s" + 5ds
negative, distinct finite zeros of g(w, k,) with odd mul- +9) + (ki + kas?)(—s® + 65
tiplicities and denote themby 0 = wp < w1 < ws < 9 8 6
- < wi—1. Also define w; = oo; +3s” + 1)] + s[(—4s” — 89s
Step 9: Construct sequences of numbers ig, 41,42, - -, % —128s* — 755 — 1)
as follows: 6 4 9
(i) f N*(jw:) = Oforsomet =1,2,---,1—1, then define +hp(—s” + 65" + 357 +1)]
it = 0; so that
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S(jw, kp, ki, kq) N*(jw) =
[p1(w) + (ki — kaw?)pa(w)]
+ilg (W)L + kp ga(w)]
where
pi(w) = w'®—350% + 87w’ + 5dw? — 9w?
p(w) = w®+6w?—3wr+1
(W) = —4w®+89w” —128w° + THw? — w
W) = W +6w —3w+w.

In Step 2 the range ofk, such thatgs(w, k,) has at

and

(—1)"'sgn[g(co, —18)] = —1,

it follows from Step 10that everyadmissiblestring

T = {io, i1, i2, 13, 14, i5}

must satisfy

{io — 211 + 210 — 213 + 244 — i5} . (—1) = 6.

Hence the admissible strings are

least 3 real, non-negative, distinct, finite zeros with odd T, =

multiplicities was determined to be-24.7513, 1) which is
the allowablerange. Now for a fixed:, € (—24.7513, 1),

for instancek, = —18,we have

q(w, —-18) =

Then the real,

¢1(w) — 18¢g2(w)
—40° + Tlw”

non-negative, distinct finite zeros

¢f(w, —18) with odd multiplicities are
wo =0, w1 = 0.5195, wy = 0.6055,
ws = 1.8804, wy = 3.6848.

Also definews =

becomes
{_17_17_17_17
{_1,17_17_17_17_1}
{_17_1717_17_17_1}
{-1,1,1,-1,-1— 1}
{~1,-1,-1,1,-1, -1}

{ 1717 17 7_17_1}
{_1 1717 3_1’_1}
{-1,1,1,1,-1,-1}
{_17_17_17_131?_1}
{-1,1,-1,-1,1,-1}
{71771717 1317 1}

{_171717_ ) 7 1}
{717717 17171771}
{-1,1,-1,1,1,-1}
{71, 717 17 13 la 71}

{-1,1,1,1,1,-1}
{717 717 717 713 71? 1}
{-1,1,-1,-1,-1,1}
{717 717 15 713 717 1}
{(~1,1,1,-1,-1,1}
{717 717 717 15 717 1}
{~1,1,-1,1,—1,1}
{717 171513 171}

{-1,1,1,1,-1,1}
{717 17 17 15171}
{_1117_17 7 }
{71771715 a }
{-1,1,1,-1, 17 1}
{717 717 717 15 17 1}
{-1,1,-1,1,1,1}
{717 717 17 15 17 1}
{-=1,1,1,1,1,1}

Sincel(N(s)) =2 andr(N

oo. Sincem +n = 10 which is even, and
N*(s) has nojw-axis roots, fromStep 9 the setA _;g)

_17_1} {17_17_17_17_17_1}

1,1,- 1—1, 1,-1}
{1 1717 7 17_1}
(1,1,1,-1,-1, -1}
{1a_17_1717_17_1}
(1,1,-1,1,-1, -1}
{1’_1a1717_13_1}
{1,1,1,1, 1,—-1}
{1 1713_1}

{1,1,—1 “1,1,-1)
{177]%17 1717 1}

{171717_ ) 7 1}
{177]% 17 ’ 571}
{1717_1> ) 7_1}

{13 717 17 15 13 71}
{1,1,1,1,1,-1}
{17 717 717 717 715 1}
{1,1,-1,-1,-1,1}
{17 717 17 717 715 1}
{1,1,1,-1,-1,1}
{17 717 717 17 715 1}
{1,1,-1,1,-1,1}
{1 1717157151}
{1, 1, 1, 1, 1,1}

{1, - 1,1,1}
{1717_ 7 1}
{1771717 7 1}
(1,1,1,-1,1,1}
{1771771717151}
{1,1,-1,1,1,1}
{177171717151}

{1,1,1,1,1,1}
(s)) =1,

I(N(s)) = r(N(s)) = 1

— 236w° + 12903 — 19w.

I, =

, ~1,1, -1, 1}
1, 1, —1, 1}
=1, 1}
1, 1 1, 1 1}
1, -1, 1, =1, —1}.

)

1
1, 1
1,1, —
1,1

{-
{-1, 1,
{-
{=
{

1

From Step 11 for Z; it follows that the stabilizing ;, k4)

{/alues corresponding tb, =

of inequalities:

p1(wo) + (ki — kawd)p2(wo) < 0
p1(w1) + (ki — kawi)pa(w1) <0
p1(we) + (ki — kqw3)pa(ws2) < 0
p1(ws) + (ki — kaw?)pa(ws) > 0
p1(wa) + (ki — kaw?)p2(ws) <0
p1(ws) + (ki — kaw?)pa(ws) > 0

—18 must satisfy the string

Substituting forwg, w1, wa, w3, wy and ws in the above
expressions, we obtain

k; <0
ki — 0.
ki — 0.
ki — 3.

2699k, < —4.6836
3666kq < —10.0797
5358kq > 3.912

ki — 13.5777kq < 140.2055

(14)

The set of values ofk;, k4) for which (14) holds can be
solved by linear programming and is denoted &y For

7>, we have
ki <0
k; — 0.
k; — 0.
k; — 3.

2699k, > —4.6836
3666k4 > —10.0797
5358kq > 3.912

ki — 13.5777kq < 140.2055

(15)

The set of values ofk;, k4) for which (15) holds can also
be solved by linear programming and is denoted &y
Similarly, we obtain

= () for I
S, =0 for Z,
S5 = 0 for Zs

Then, the stabilizing set af;, k4) values wherk, = —18

is given by

S(-1s)

Uz=1, 2,--., 55z
= SUS,
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where k,, k; and k; are the proportional, integral and
derivative gains respectively. Plants with a zerozat 1
cannot be stabilized by PID controllers because of the
unstable pole-zero cancellation implied and are excluded
at the outset. Using the bilinear transformation- Zfﬂ,

6 we obtain thew domain plant:

. N(w)

D(w) ~ P24

-1or S, and thew-domain PID controller
B(w)  kiw?® +2(ky + ki)w + 2k, + k; + 4kq

A(w) 2w+ 2

M5 a0 s a0 25 20 15 10 5 0 The correspondingu-domain closed loop characteristic
ki .
' polynomial becomes:

kd

Fig. 2. The stabilizing set ofk;, kq) values wherk, = —18. 5(w, kp, ki, kd) _ (2w I 2)D(w) " (kin
—|—2(kp + kz)’UJ + 2kp + k;
The setS(_5) and the corresponding; andS, are shown +4kq)N (w) (16)

in Fig. 2. By sweeping over different, values within

the interval (—24.7513, 1) and repeating the above pro-
cedure at each stage, we can generate the set of stabilizf
(kp, ki, kq) values. This set is shown in Fig. 3.

and Hurwitz stability of this polynomial is equivalent to
bility of the original discrete time system.

ollowing [3] we proceed as in the last section and
multiply (16) by the factorN (—w) to obtain

5* (w, kp, ki, kd) = N(—w)é(w, kp, k,’, kd).
By using the substitution
ki = ks —kyp a7)
we can write
S (w, kp, ka ks) = 0L(w?, kp, ka, ks) +wdl (w?, k)
- [kpéép (wQ) + ks(gés (wZ)
+hadeq(w?) + 80 (w?)]
+w[k536/os (w2) + (Stl)c(wz)] (18)

where,
p(w?) = (1—w’)(NZ - wNy)
Fig. 3. The stabilizing set ofky, k;, kq) values. 5«23(“’2) = (I+ wz)(NeQ - szg)
ca(w?) = 4NZ —wNp)
6 (w?) = 2(N.D,+w?N.D, — w*N,D,
I11. PID CONTROLLERS FORDISCRETETIME SYSTEMS 9
—w*N,D,)
In the case of a discrete-time system, the plant is given s (4,2) = 2(N2? - w?N?)
by N, (Z) 5(/76(11}2) = 2(N€D€ + N.D, — N,D,
G.(2) = D.(2) —w?N,D,) (19)

g From (18), it is clear that we can now proceed as in the
previous section, i.e. fix,, then use linear programming
to solve for the stabilizing values df, and k4. In other

where N,(z) and D.(z) are polynomials in the forwar
shift operatorz. The discrete-time PID controller is given

by: words, the entire development in the last section can
C.(2) = kythi 1 k 1—2z71t 4272 be repeated by replacing(s, k,, k;, k) N*(s) in (2) by
z P 1= 1 d 1— -1 *(w, kp, kq, ks) and proceeding as before. However, this
(kp + ki + ka)2% — (kp + 2ka)z + ka procedure will yield the stabilizing parameters only in the
- 22 space of(k,, kq, ks). In order to recover the stabilizing
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parameters in the originalk,, k;, k4) space, we need to IV. PID CONTROLLERS FORCONTINUOUS-TIME FIRST

go through the inverse linear transformation. ORDER SYSTEMS WITH TIME DELAY
_Example 3.1:Consid(2)r a PID controller to stabilize the | this section, we consider the feedback system of Fig. 1
discrete-time systeny=%; where where the planti(s) is described by
k —Ls
N,(z) = z+1 G(s) = T Ts¢ (22)
D.(z) = 22—152+0.5. (20)

Here k represents the steady-state gain of the planthe
time delay, and" the time constant of the plant. As before,

Using the bilinear transformation, we obtain thhedomain the controller is of the PID typé.e.

plant ggz; where
k;
C(s) =k, + — + kqs .
N(w) = 2w?—2w 5
Dw) = w+3. 1) The objective is to determine the set of controller paramsete

(kp,kikq) for which the closed-loop system is stable. A
complete solution to this problem has been presented in

Fig. 4 shows the stabilizing regions in the space 0{4]. We provide a brief summary of these results.
(kp.,kaq,ks) determined using the procedure outlined above.

After going through the inverse linear transformation wea] Open-loop Stable Plant

In this caseT > 0. Furthermore, we make the standing
assumption thatc > 0 and L > 0. The next theorem
presents the complete set of stabilizing PID controllers fo
an open-loop stable plant described by (22).

05 —— —————_ Theorem 4.1:The range ofk, values for which a given

0s open-loop stable plant, with transfer functigi(s) as in
L (22), continues to have closed loop stability with a PID

os controller in the loop is given by

N 1 [T

: \ ‘ < kp < % Zalsm(al) — cos(aq) (23)

whereq; is the solution of the equation

-0.5 T
d -05 -1 o t — 24
an(a) = 7@ (24)
Fig. 4. The stabilizing region in the space @, (kq.ks). in the interval(0, ). For k, values outside this range, there
are no stabilizing PID controllers. The complete stahiligi

obtained the stabilizing regions in the space fof,;,ks).  egion is given by: (see Fig. 6)

This region is shown in Fig. 5. 1) For eachk, € (—4,1), the cross-section of the
stabilizing region in thék;, k) space is the trapezoid
T

2) Fork, = % the cross-section of the stabilizing region
in the (k;, kq) space is the trianglé\.
3) Foreachk, € (3,ky == 3 [Lonsin(ay) — cos(on)])
the cross-section of the stabilizing region in the
(k;, kq) space is the quadrilateral Q.
The parametersy;, b;, w;, j = 1,2 necessary for determin-
ing the boundaries of TA and(@ can be determined using
the following equations:

kd

L2
J
ki 0 ® L . T
b, = T {sm(zj) + 7% cos(zj)} (26)
Fig. 5. The stabilizing region in the space &f,(k; ,kq). .. J T
w; = ﬁ |:Sin(2j) + EZ]'(COS(Z]‘) + 1)} 27)
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wherez;, j =1,2,--- are the real, positive solutions of

kky + cos(z) — %zsm(z) =0 (28)

arranged in ascending order of magnitude.

(@)

kd

Line kg= mykj + by

ob Tk 1 Al A
S T by
20 : i
ol T Line ky= mqk; + by | Al i
05 0 05 1 15 o 5 25 3 35 4 Line kg= mak; + by
_3 - |
j j j j j wy, T/ Wy, T/K
2L Tk ] (wq,T7K) (W, T/K)
e) 0 A ,4 1 1 1 1 1 1 1 1 1
=77 Line ky=my k; + b 1 4 35 3 25 =2 45 1 05 0 05 1
2l K i Ki
050 0s g2 28 854 Fig. 7. The stabilizing region ofk kq) for k; < kp < — 1.
2| Lineky=myk +by (w2, T/K) (w1, T/K) )
20 7 TR
L b Line ky=mq k; + by (1) Initialize k, = —¢ and step = = (ku + ), Where N
| , . , , , , , is the desired number of grid points.
05 0 05 115 2 25 3 35 4 (2) Increase k, as follows: k, = k, + step.

() If k, < k, then go to Step 4. Else, terminate the
(b) al_gorithm.
ky =1 ()L <k, <k k (4) Find the roots 2; and 22 of (28).
L (5) Compute the parameters m; and b;, j = 1,2 associated
with the previously found z; by using (25) and (26).
(6) Determine the stabilizing region in the k;-k4 space using

Fig. 6. The stabilizing region ofk§ k) for: (@) —L < kp <

Sl

[B] Open-Loop Unstable Plant Fig. 6.
In this casel’ < 0 in (22). Furthermore, let us assume that(7) Go to Step 2.
k>0andL > 0. A similar algorithm can be written down for the case of

Theorem 4.2:A necessary and sufficient condition foran open-loop unstable plant by using Theorem 4.2.
the existence of a stabilizing PID controller for the open- We next present an example that illustrates the use of the
loop unstable plant (22) i%| > 0.5. If this condition is above algorithm to determine stabilizing PID parameters.
satisfied, then the range df, values for which a given  Example 4.1:Consider the PID stabilization problem for
open-loop unstable plant, with transfer functi6iis) as in @ plant described by the differential equation

(22), can be stabilized using a PID controller is given by ¢
LT . dzji—g) = —0.5y(t) + 0.5u(t — 4) .

% fo‘lsm(o‘l) —cos(ar)| <kp < k 29 This process can also be described by the transfer function
. . . G(s) in (22) with the following parameters: =1, T' = 2
wherea, s the solution of the equation sec, andl = 4 sec. Since the system is open-loop stable we
T use Theorem 4.1 to find the range fgf values for which
T+ L (30) a solution to the PID stabilization problem exists. We first

in the interval (0, ). In the special case OF%| _ compute the parameter; € (0, ) satisfying the following

we havea; = 7. For k, values outside this range, thereequatlon
are no stabilizing PID controllers. Moreover, the complete
stabilizing region is characterized by: (see Fig. 7) Solving this equation we obtain; = 2.4557. Thus, from
For eachk, € (k= [Laysin(ar) —cos(o)],—%), (23) the range of;, values is given by

the cross-section of the stabilizing region in the, kg4

space is the quadrilateral Q. o fe: ) —L<kp <1.5515.
The parametersn;,b; andw;, j = 1,2 necessary for de- We now sweep over the above range kgf values and
termining the boundary of Q are as defined in the statemedétermine the stabilizing set ¢k;, k;) values at each stage

of Theorem 4.1. using the previous algorithm. These regions are sketched in
In view of Theorem 4.1, we now propose an algorithm tqrig. 8

determine the set of stabilizing parameters for the pla2f (ZAny |5ID gains selected from these regions will result

tan(a) =

tan(a) = —0.3333cx .

with T' > 0. in closed-loop stability and any gains outside will result
in instability. Now, consider the following performance
PID Stabilization Algorithm for Time-Delay Plants: specifications:
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0.9845) and the Ziegler-Nichols methotk, = 0.6,k; =
0.075, k4 = 1.2) Notice that in these cases also the system
is stable and achieves setpoint following. However, the
responses are much more oscillatory. A
Although the design presented above is essentially an
optimization search by gridding, nevertheless the fact tha
the algorithm of this section can be used to confine the
search to the stabilizing set makes the design problem®rder

of magnitude easier.

V. PID CONTROLLERDESIGN

-1
o 5 _0'2 The PID stabilization algorithms presented in the last
kd ! 2 T “ three sections can be used to determine the entire set of
stabilizing PID controllers. Hence, in principle, they can
be used to facilitate PID design; indeed, by confining the
search for the PID parameters to the stabilizing regions, it
is possible to optimize different performance indices whil
o ensuring that the stability constraint is always satisfied.
1) Settling time< 60 secs; This, however, constitutes a numerical design approach and
2) Overshoots 20%. Example 4.1 does illustrate this point. In certain situasio
We can obtain the transient responses of the closed-loggyertheless, it is possible to do better than mere nunierica
system for the;, k;,kq) values inside the regions depictedgptimization and this section is devoted to a discussion of
in Fig.8. In general we also need some tolerance around tgfch situations that have arisen so far in our research.
controller parameters, that is we want the controller to be | many situations control system performance can be
controller-robust or non-fragile [8]. Thus we only conside gpecified by a frequency domain inequality or equivalently

PID gains lying inside the following box defined in thegn 7 norm constraint on a closed loop transfer function
parameter space: Gls) = M.

01<k, <1 ,01<k;<03 and 0.5<kg<15.

Fig. 8. The stabilizing region ofk,,k;,k4) values for the PID controller
in Example 4.1.

1G($)lloo < -

By searching over this box, severat,(k;kq) values are It has been shown in [10] that the above condition is
found to meet the desired performance specifications. Wegjuivalent to Hurwitz stability of the complex polynomial
arbitrarily set the controller parameters tg; = 0.3444, family: ,
k; = 0.1667, k4 = 0.8333. Fig. 9 shows the step response of yD(s) 4+ e’ N(s),6 € [0, 27].
the resulting closed-loop sy;tem. It is clear from the f|gur?n our PID design problem the polynomialS(s), N (s)
that the closed-loop system is stable, the ouigdu} tracks . : .
: . e will have the PID gains embedded in them and the set
the step input signal and the performance specifications ar? e e L
. Qf parameters achieving specifications is given by those
met. The figure also shows the responses of the closed-loog L ; S
achieving simultaneously the stabilization of the complex
R — polynomial family as well as the real closed loop charac-
T CongnGoon oo teristic polynomial. It turns out that the set of PID gains
— - Ziegler-Nichols Method | achieving stabilization of a complex polynomial family and
! therefore attaining the specifications can be found by an
A A et extension of the algorithm given for the real case. Towards
! -~ | this end, consider a complex polynomial of the form:

C(Sv kpv kia kd) =
0.6} ! ‘\' 4
L(s) + (kas® + kps + ki) M(s) (31)

0.4+t u 4
| where L(s) and M (s) are given complex polynomials. In
o2t 1 1 [11], the results on PID stabilization presented in Section
were extended to the stabilization of (31). The algorithm,
0G40 20 30 40 _30 60 70 80 90 100 described below, is similar to the stabilization algorithm
Time (sec) . . .
given for the real case and we will therefore not write the
algorithm in detail but only point out the differences in the

formulas and steps from that of the real case. We then show

systems for the case of a PID controller designed usinfrough examples how, many Plperformance or design
the Cohen-Coon methogk, = 0.9180, k; = 0.1456,k; =  problems can be converted into stabilization problems of
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complex polynomial families of the form of (31) and solvedLet ¢  denote  the leading coefficient  of

using this algorithm. c(s, kp, ki, kq)M*(s). The procedure for determining
all stabilizing (k,, k;, kq) for which c(s, k,, ki, kq)
A. Complex PID Stabilization Algorithm is Hurwitz for the givenL(s) and M(s) is identical to

P : o the stabilization algorithm of Section 2 except for the
The complex PID Stabilization Algorithm is similar t0 ¢1ouing steps below, labelled Step ic, in the computation

the algorithm given for the real case in Section 2 and Wgf the allowable range andadmissiblestrings.

need only to point out the differences in some formulas

and steps. To do that we first introduce some definitiongitferences between real and complex PID Stabilization

and notation. Algorithms:
Definition 5.1: Let a(s) be a given complex polynomial . Step 1c Compute pi(w),pa(w), q1(w), g2(w) from (35)-
of degreen: (38).
o Step 2c The allowable ranges of k, are such that
a(s) = (ap+jbo) + (a1 + jb1)s+--- q(w, k,) has at least
Han—1 + jba—1)s""" + (ay + jba)s", In— (l(M(s)) —r(M(s)))| - 1,
) ) ) . . if m + n is even and ¢ is purely real,
an +jbn # 0. The real-imaginary decomposition afs) is or m 4 n is odd and ¢ is purely imaginary
defined as
a(s) = ar(s) +ar(s) [n — (I(M(s)) —r(M(s)))] ,
if m + n is even and & is not purely real,
where or m + n is odd and ¢ is not purely imaginary
_ ; 2 p 3. real, distinct finite zeros with odd multiplicities. The re-
ar(s) = O_LO +ibis+ ?28 2+ 36383 * sulting ranges of k, are the only ranges of k, for which
ar(s) = jbo+ais+ jbes®+azs®+---. stabilizing (k;, kq) values may exist;
Now we consider a complex polynomial of the form: « Step 8cFor fixed k, solve for the real, distinct finite zeros
of g(w, kp) with odd multiplicities and denote them by
c(s, kp, ki, kq) = L(s) wi < w2 < -+ < w1 andletwy = —oo and
+(kqs® + kps + ki) M(s) (32) Wi =00,

« Step 9cThe construction of the sequences of numbers

whereL(s) and M (s) are two given complex polynomials. t0, @i, 12, -+, 11 1S as follows: .
Write L(s) and M(s) in terms of their real-imaginary If M7 (jwr) = 0 for some ¢ = 0,1,---, 1, then define
decompositions: 1 = 0;
L(s) = Ln(s)+ Li(s) else
M(s) = Mg(s)+ M;(s) i¢ € {—1,1}, forallothert =0,1,---,1.
and define With 4o, i1, - - - defined in this way, define the set A<kp) as
M*<8) :MR(S) 7MI(S) {{7*071177“}} ’
if m 4+ n is even and & is purely real,
and or m + n is odd and ¢ is purely
v(s) = c(s, kp, ki, ka)M™(s) ) imaginary
(kp)
Also letn, m be the degrees af(s, k,, k;, kq) andM (s) {Hir,iz, - iea}} _
respectively. Evaluating the polynomia(s) at s = jw, we if m + n is even and ¢ is not purely
obtain real, or m + n is odd and £ is not
purely imaginary
v(jw) = c(jw, kp, ki, ka) M (jw) « Step 10cDetermine the admissible strings 7 € A,
= p(w, ki, ka) + jg(w, k) such that the following equality holds:
10 -1 -1 . I—1—7r
_ 2 slio- (=11 +237 7 ir - (—1)
p(w, ki, ka) = pi1(w) + (ki — kaw”)p2(w) (33) zi;_}~sgn[q(oo, kp)] ! .
q(w, kp) = q(w)+kpga(w) (34) if m 4 n is even and ¢ is purely real,
. . or m + n is odd and £ is purely imaginar
pw) = Lr(jw)Mg(jw) ¢ 15 purely imaginary
—Li(jw)M;(jw) (35) 3230 L in - (=)' 777} - sgn(g(oo, ky)]
_ 20N Ar2(s if m 4+ n is even and ¢ is not purely real,
p2(w) ]1\/[R(jw) Mi(jw) (36) or m + n is odd and ¢ is not purely imaginary
@) = Z[Lr(jw)Mp(jw) _ - @
J ‘ . We now give some application examples of PID perfor-
—Lp(jw)M;(jw)] (37)  mance using the complex stabilization algorithm.
W) = wMg(jw) - M7(jw).  (38)
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B. Synthesis off, PID controllers (1) o(s, kp, ki, kq) is Hurwitz;

First, let us consider the problem of synthesizing PID (2) @(s, kp, ki, ka, 7, 0) is Hurwitz for all 6 in
controllers for which the closed-loop system is internally [0, 27);
stable and thef..-norm of a certain closed loop transfer ~ (3) [W(o0)Te (00, Ky, ki, ka)| <.
function is less than a prescribed level. In particular, thé&he above equivalence can be used to determine stabilizing
following closed-loop transfer functions are considered: (kp, ki, kq) values such that thé/.-norm of a certain

« The sensitivity function: closed-loop transfer function is less than a prescribeellev
This is illustrated using the following example.

S(s) = m (40) Example 5.1:Consider the plan&(s) = gg:g where
o The complementary sensitivity function: N(s) = 52* 1
o) - C(s)G(s) | ) D(s) = s°40.8s—0.2
14+ C(s)G(s) and the PID controller
« The input sensitivity function: Cls) = kqs® + l;ps + k;
U(s) = #j@‘(s) (42) In this example, we consider the problem of de-

termining all stabilizing PID gain values for which
As shown in [9], various performance and robustnesgiy (s)7'(s, k,, ki, ka)lloc < 1, WhereT(s, k,, ki, kaq)
specifications can be captured by using g -norm of s the complementary sensitivity function:
weighted versions of the transfer functions (40)-(42).ah c T(s, by, ki, ka) =
be verified that wherC(s) is a PID controller, the transfer ) A Ry R ; 2 g 5 1
functions (40)-(42) can all be represented in the following (kas” + kps + ki) (s — 1)

general form: s(s2 +0.85s — 0.2) + (kas® + kps + k;)(s — 1)
A kas? 4+ k k) B and the weightl¥/(s) is chosen as a high pass transfer
Tu(s, kp, ki, ka) = (5) + (kas” + kys 1 ki) Bls) function:
sD(s) + (kqs? + kps + ki) N (s) 01
(43) W) = PO
s+1

where A(s) and B(s) are some real polynomials. For the\y. \now that (ky, ki, k) values meeting theH..

transfer functiont(s, kp, ki, ka) and a given number performance constraint exist if and only if the following
~ > 0, the standardd,, performance specification usually conditions hold:

takes the form: (1) 8(s, kp, ki, ka) = s(s*+0.85—0.2)+ (kgs*+
W (s)Tei(s, kp, ki, ka)lloo <7 (44) kps + k;)(s — 1) is Hurwitz;

(2) &(s, kp, ki, ka, 1, 0) = s(s+1)(s>+0.8s—

0.2) + (kas® + kps +k)[(s +1)(s — 1) + /(s +

0.1)(s — 1)] is Hurwitz for all § in [0, 27);

(3) [W(00)T (00, kp, ki, ka)| = |5 | < 1.

The set of all(k,, ki, kq) values for which theH, per-

formance specifications are met are precisely the values of

kp, ki, kq for which conditions (1),(2) and (3) are satisfied.

5(s, kp, ki, ka) A sD(s) + (ki+kps+kd32)N(s) To search for such values @k, k;, kq), we fix k, and
determine all the values dfk;, k;) for which conditions

where W(s) is a stable frequency-dependent weighting
function that is selected to capture the desired design
objectives at hand. Suppose the weighting functidts) =

Y,Vvd—gjg where W, (s) and Wy(s) are coprime polyno-
mials and Wy(s) is Hurwitz. Define the polynomials
3(s, kp, ki, kq) and ¢(s, ky, k;, kq, v, 0) as follows:

and (1),(2) and (3) hold.
o(s, kp, ki, ka, v, 0) EY For the condition (1), with a fixed,, for instancek, =
P [sWa(s)D(s) + Lei® T, (s)A(s)] —0.35, by settingL(s) = s(s* + 0.8s — 0.2) and M (s) =
5 ,

9 s — 1, and using the algorithm of Section 2, we obtain the
i(;kedfeuj f§)83+(5§ﬁ)[Wd(S)N(S) set of (k;, kq) values for which the closed-loop system is
v " ' stable. This set is denoted I8};, .35, and is sketched in
Then as shown in [11], we can establish the following=ig. 10. Now fixingk, = —0.35 and any fixed) € [0, 2x),
relationship betweerf,, synthesis using PID controllers by settingL(s) = s(s+1)(s?40.8s—0.2) and M (s, 0) =
and simultaneous stabilization of a complex polynomials+1)(s—1)+e’?(s+0.1)(s — 1) and using the complex
family: stabilization algorithm of Section V-A again we can solve a
For a givenry > 0, there exist PID gain valuggy, k,, k;)  linear programming problem to determine the setiof k4)
such that||W (s)Teu(s, kp, ki, ka)lloo < v if and only if  values. Let this set be denoted 8y _ .35, ¢). By keeping
the following conditions hold: k, fixed, sweeping ovef € [0,27), and using the complex
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k, € (—0.5566, —0.2197). Then, by sweeping ovek, €
(—0.5566, —0.2197), and repeating the above procedure,
we obtained the stabilizing set ¢k,, k;, kq) values for
which |W (s)T'(s, kp, ki, ka)|leo < 1. This set is sketched
in Fig. 12.

-0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 -0.5
ki

Fig. 10. The setS1, _¢.35)- -06 -l

0.4
0

-0.2

stabilization algorithm of Section V-A at each stage, we can 0 -os
determine the set dfk;, k) values for which condition (2)

is satisfied. This set is denoted By, _.35) and is given rig. 12.  The set of stabilizingkp, ki, kq) values for which
by W (s)T'(s, kp, kis ka)lloo < 1.

S(2, —0.35) = Noelo, 2r)S(2, —0.35, 6)-

kd

The setS(;, _¢.35) is sketched in Fig. 11. Le$3 o35y be  C. PID Controller Design for Robust Performance

This subsection is devoted to the problem of synthesizing
PID controllers for robust performance. In particular, we
focus on the following robust performance specification [9]

0.1

[W1(s)S(s)| + [Wa(s)T(s)[[lc < 1, (45)

where W (s) = $24% and Wy(s) = p2() are stable

. . . w1 S w2 s e .
weighting functions, and'(s) and7T'(s) are the sensitivity
and the complementary sensitivity functions respectively
As before, leté(s, kp, ki, kq) denote the closed loop char-

acteristic polynomial

2-02F

~0.3F

5(s, kp, iy ka) 2 sD(s) + (ki + kps + kas?)N(s).

We define the complex polynomial(s, &y, k;, kq, 6, ¢) by

,9(')‘?0?—0.04 -0.035 -0.03 -0.025 kI—O.OZ -0.015 -0.01 -0.005 0 ’[Z)(S7 kp’ kh ,l(jd7 0, ¢) '
) sDw1(5)Dwa(5)D(s) + €7sNy1(s) Dwa(s)D(s)
Fig. 11. The seSi3, _g.35) = Noe[o, 2r)S(2, —0.35, 6)- +(kqs® + kys + ki) [Dw (s)Dwa(s)N(s)
L . _ 39D N N (s)].
the set of(k;, k4) values satisfying condition (3) and this e Dwi(s)Nw ()N (s)]
set is given by As shown in [12], the problem of synthesizing PID con-

trollers for robust performance can be converted into the
S, ~035) = {(kis ka)| ki € R, ka > —0.5}. problem of determining values dk,, k;, kq) for which

Then fork, = —0.35, the set of(k;, kq) values for which the following conditions hold:

A

W (s)T (s, kp, ki, ka)lloo < 1is denoted byS_g 35 and (1) (s, kp, ki, kq) is Hurwitz;
is given by (2) (s, kp, ki, ka, 0, ¢) is Hurwitz for all 8 €
[0, 27) and for all¢ € [0, 27);
S(-038) = Nim12556, ~0.39)- (3) [W3(00)S(00) |+ [Wa(o0)T(00)] < 1.

In this case, we havé 35 = S(2, —0.35)- Now, using The following example shows how the above conditions can
root loci [2], it was determined that a necessary condibe used to determine the set of stabilizing gdits k;, kq)
tion for the existence of stabilizingk;, k) values is that for which the robust performance specification (45) is met.
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Example 5.2:Consider the plantz(s) = ]1\)[8 where -ois
N(s) = s—15 :0:
D(s) = s®+s—1. s
Then the sensitivity function and complementary sensjtivi 7o
function are: - o4
5(87 kp7 kia kd) = —0.45
8(52 +5— 1) -05
s(s2+s—1)+ (kas® + kps + ki) (s — 15)’ —oss
T(57 k;lh k’ia kd) = o .
(kd82 + kpS + kl)(S — 15) kd Soms oz —025 -03 —035 —04

s(s24+s—1) + (kas® + kps + k;) (s — 15) , ’ i

The W9|ght|ng functions are chosen @(Eﬁ( ) s+0 5 and Fig. 13. The set of (kp, ki, kg) values for which
Wa(s) = =21 We know that stabilizing(ky, ki, kq) [IWi(s)S(s kp, ki ka)l + W2 ()T (s, kp, kis Ka)llloc <1
values meeting the performance specification (45) exist if
and only if the following conditions hold:
(1) 8(s, kp, ki, ka) = s(s®> +5—1) + (kas® +
kps + k;)(s — 15) is Hurwitz;

(1) sD(s) + A(kqs® + kps + k;)N(s) is Hurwitz
forall A €[1, Al and
(2) sD(s)+e 99 (kqs® +kyps+k;)N(s) is Hurwitz

(2) 1[1(37 kpa kia kda 07 ¢) = 3(8 + 02)( for all 6 [0 0 }
2 _ 70 _ y mle
D(s? +5 = 1)+ e?s(02)(s + 1)(s> +5— 1)+ Thus the problem to be solved is reduced to the problem of
(kas® + kps + ki)l(s +0.2)(s + 1)(s —15) + simultaneous stabilization of two families of polynomials
eI?(s+0. 2)(3 +0.1)(s — 15)] is Hurwitz for all : ) y
The algorithm of Section V-A can now be used to solve
6 € [0, 2m) and for all¢ € [0, 27r) . L .
these simultaneous stabilization problems. The following
W (00)T(00, ky, ki, ka)| = |£o| < 1 example illustrates the procedure. N
b Fa+l Example 5.3:Consider the plan&(s) = 55 where
The procedure for determining the set Gf,, ki, kq) (s)
values satisfying conditions (1), (2) and (3) is similar N(s) = 2s—1
to that presented in the previous exampled. First using D(s) = s'438%+42+7s+0.

root loci [2], it was determined that a necessary con-

dition for the existence of stabilizingk;, k,) values is In this example, we consider the problem of determining
that k, € (—0.5079, —0.1155). For any fixedk, & all (kp, ki, kq) gain values that provide a gain margin
(—0. 5079 —0.1155), we use the algorithm of Section V-A Am > 3.0 and a phase margifl,, > 40°. A given set of

to determine the set @k;, kq) values satisfying conditions (kp; ki, ka) values will meet these specifications if and only
(1) and (2). The condition (3) gives that the admissible sét the following conditions hold:

of (ki, ka) is {(ki, ka)| ki € R, kg > —0.5}. Then for a (1) s(s*+3s3 +4s2 + 75 +9) + A(kas® + kps +

fixed k,, we obtain the set of allk;, k) values for which ki)(2s — 1) is Hurwitz for all A € [1, 3.0];
1W1(s)S(s, kp, kiy ka)|+|Wa(8)T(s, kp, kiy ka)llloo < (2) s(s*+3s5>+4s2+T7s+9)+e % (kgs® + kps+
1 by taking the intersection of the set of;, k;) values k;)(2s — 1) is Hurwitz for all § € [0°, 40°].

satisfying conditions (1), (2) and (3). Thus by sweepingroveAgain, the procedure for determining the sethf, k;, kq)
k, € (—0.5079, —0.1155), and repeating the above proce-values is similar to that presented in Section V-B and,
dure, we obtain the set af,, k;, kq) values for which therefore, a detailed description is omitted. The resgltin
W1 (8)S(s, kp, ki, ka)|+|Wa(s)T(s, kp, ki, ka)|llc < setis sketched in Fig. 14.
1. This set is sketched in Fig. 13.
VI. CONCLUDING REMARKS

In this paper, we have presented algorithms for determin-
ing the set of all PID controllers that stabilize 1) continge

In this subsection, we consider the problem of designintime rational plants of arbitrary order; 2) discrete-tinge r
PID controllers that achieve pre-specified gain and phasienal plants of arbitrary order; and 3) continuous-timstfir
margins for a given plant. Towards this end, let for examplerder plants with delay. In addition, we showed how some of
A,, and 60,, denote the desired upper gain and phasthese algorithms and their extensions can be used to tackle
margins respectively. From the definitions of the upper gaiimportant problems in industrial PID design. The stahiligi
and phase margins, it follows that the PID gain valuesets are neither convex nor even connected in general;
(kp, ki, kq) achieving gain margimi,, and phase margin nevertheless there is considerable structure availabie fo
0., must satisfy the following conditions: both computation and design in particular due to the fact
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Fig. 14. The set ofky, ks, kq) values for which the resulting closed

loop system achieves a gain marglp, > 3.0 and a phase margify,, >
40°.

that the regions are bounded by straight lines in ithé,

(7]

(8]
[0
[10]
[11]

[12]

(23]

[14]

space for fixeds, in both, the real and complex cases. This

facilitates the complete determination of both stabilizin
regions and performance attainment regions and intengecti

them, and this feature along with the 2D and 3D graphical
displays of these sets should appeal to control designers.
In addition to the performance criteria discussed here it is

possible to achieve prescribed offset of root locationsfro

the imaginary axis as shown in [13].

The presentation here was motivated by our desire to

bring these algorithms to the notice of the industrial cointr

community, whose members, we believe, stand to benefit
the most from these results. More motivated development
of these algorithms, along with the associated mathenatica

machinery, can be found in [2], [3], [4], [11], [12], [13].

For an alternative approach digital PID controller design

the reader is referred to the recent paper [14].
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