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Abstract— This paper presents recent results and algorithms
that can be used to generate the entire set of stabilizing PID
controllers for single-input single-output 1) continuous-time
rational plants of arbitrary order, 2) discrete-time rational
plants of arbitrary order, and 3) continuous-time first or-
der plants with time delay. These algorithms follow from
substantial theoretical advances on PID stabilization that
have been reported by us in recent years. They display the
rich mathematical structure underlying the topology of PID
stabilizing sets. By presenting these algorithms without the
highly technical details of the underlying theory, the paper
seeks to make the results accessible to as wide an engineering
audience as possible. Examples are presented throughout
the paper to clarify the steps involved in implementing the
different algorithms. We believe that these algorithms can
significantly complement the current techniques for industrial
PID design, many of which are adhoc in nature. In particular,
the graphical displays of feasible design regions using 2-D and
3-D graphics should appeal to control designers and are very
suitable for computer aided design where several performance
objectives have to be overlaid and intersected. Specific design
problems where these algorithms can be profitably used are
discussed.

I. I NTRODUCTION

PID Controllers are widely used in applications [1].
However, in most cases, their designs are carried out using
adhoc tuning rules. These rules have been developed over
the years based primarily on empirical observations and
industrial experience. In part this state of affairs is due to the
fact that the state feedback observer based theory of modern
and post-modern control theory includingH2,H∞, µ andl1
optimal control cannot be applied to PID control. Indeed,
until the results to be described here appeared, it was not
known how to even determine whether stabilization of a
nominal system was possible using PID controllers.

In recent years, we have obtained a number of significant
results on PID stabilization [2], [3], [4] which, we believe,
could assist the industrial practitioner to carry out computer
aided designs of PID controllers with guaranteed stability

The work of M. T. Ho was supported by the National Science Council
of Taiwan under Grant NSC 92-2213-E-006-070. The work of A. Datta
was supported by the U. S. National Science Foundation underGrant
ECS-9903488, the Texas Advanced Technology Program under Grant No.
000512-0099-1999 and the U. S. National Cancer Institute under Grant
CA90301. The work of S. P. Bhattacharyya was supported by a grant
from National Instruments, the U. S. National Science Foundation under
Grant ECS-9903488 and the Texas Advanced Technology Program under
Grant No. 000512-0099-1999.

M. T. Ho is with the Engineering Science Department, National
Cheng Kung University, 1 University Road, Tainan 701, Taiwan, e-mail:
bruceho@mail.ncku.edu.tw

G. J. Silva is with the IBM Server Group, 11400 Burnet Road, Austin,
TX 78758, U.S.A., e-mail:guilsilv@us.ibm.com

A. Datta and S. P. Bhattacharyya are with the Department of Electrical
Engineering, Texas A & M University, College Station, TX 77843-3128,
U.S.A., e-mail:datta@ee.tamu.edu; bhatt@ee.tamu.edu

and performance. Given that PID controllers are used in
such diverse applications as process control, rolling mills,
aerospace, motion control, pneumatic, hydraulic, electrical
and mechanical systems, disc drives and digital cameras,
the impact of these results could be enormous.

The theoretical development of these results is quite in-
volved and technical, and this could make them inaccessible
to practicing engineers. However, the algorithms that result
are straightforward, and can be easily programmed on a
computer. The objective of this paper is to present these
PID stabilization and design algorithms, devoid of detailed
mathematical proofs, and show via examples how these
algorithms can be used by the industrial practitioner to carry
out computer-aided designs.

The paper is organized as follows. In Section II, we
present an algorithm for determining the set of all stabilizing
PID controllers for a continuous-time delay free plant of
arbitrary order. An example is included to illustrate the
detailed calculations involved. In Section III, we show how
all PID stabilizers for a discrete-time plant of arbitrary order
can be determined by suitably modifying the algorithm of
Section II. Once again, an illustrative example is included.
In Section IV, we present an algorithm to determine the
set of all stabilizing PID controllers for a continuous-time
first-order plant with time delay. Since plants of this type
are widely encountered in process control, this algorithm
should be of particular interest to industrial practitioners.
An example is included to demonstrate the use of this
algorithm. Section V discusses some PID controllerdesign
problems involving frequency domain performance specifi-
cations, which can be solved by using a complex version
of the algorithm of Section II. The modifications required
are indicated. Finally, Section VI contains some concluding
remarks.

II. PID CONTROLLERS FORL INEAR TIME-INVARIANT

CONTINUOUS-TIME SYSTEMS

Consider the general feedback system shown in Fig. 1.
Here r is the command signal,y is the output,G(s) is
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Fig. 1. Feedback control system.

the plant to be controlled, andC(s) is the controller to be



designed. The controllerC(s) will be assumed to be of the
PID type so that

C(s) = kp +
ki

s
+ kds

where kp, ki and kd are the proportional, integral and
derivative gains respectively. For this section, the plant
transfer functionG(s) will be assumed to be rational so
that

G(s) =
N(s)

D(s)

whereN(s), D(s) are polynomials in the Laplace variable
s. With this plant description, the closed-loop characteristic
polynomial becomes

δ(s, kp, ki, kd) = sD(s)+(ki+kds
2)N(s)+kpsN(s). (1)

The problem of stabilization using a PID controller is to
determine the values ofkp, ki andkd for which the closed-
loop characteristic polynomialδ(s, kp, ki, kd) is Hurwitz,
that is, has all its roots in the open left half plane. Since
plants with a zero at the origin cannot be stabilized by PID
controllers we exclude such plants at the outset. In this
section, we simply present an algorithm for computationally
characterizing all stabilizing PID controllers for a given
plant with N(0) 6= 0. For a proof of the derivation, the
reader is referred to [2].

We first introduce some definitions and notation.
Definition 2.1: The standard signum functionsgn : R →

{−1, 0, 1} is defined by

sgn[x] =







−1 if x < 0
0 if x = 0
1 if x > 0.

Definition 2.2: Let a(s) = a0 + a1s + · · · + ansn be
a given real polynomial of degreen. Let C− denote the
open left-half plane (LHP) andC+ the open right-half plane
(RHP). Thenl(a(s)) and r(a(s)) denote the numbers of
roots ofa(s) in C− andC+ respectively.

Definition 2.3: Given a real polynomiala(s) of degree
n, the even-odd decomposition ofa(s) is defined as

a(s) = ae(s
2) + sao(s

2)

whereae(s
2) andsao(s

2) are the components ofa(s) made
up of even and odd powers ofs respectively.

To motivate the manipulations to follow we observe first
that for a given real polynomiala(s), the real and imaginary
parts ofa(jω) are given byae(−ω2) andωao(−ω2) respec-
tively. It will turn out that the root distribution (numbersof
left and right half plane roots) ofa(s) can be determined
from the zeros of its imaginary part and the signs of the
real parts at these zeros. Finally, ifa(s) has unknown
design parameters this approach to determining the root
distribution is most conveniently applied when the unknown
parameter sets appearing in the real and imaginary parts are
separated, that is have no common elements. These ideas
were used in [2] to develop an algorithm to determine the

complete set of parameterskp, ki, kd resulting in Hurwitz
stability of (1). In the following we describe the essentials
of this algorithm without mathematical proofs.

Using the even-odd decomposition ofN(s), define

N∗(s) = N(−s) = Ne(s
2) − sNo(s

2).

Also let n, m be the degrees ofδ(s, kp, ki, kd) and N(s)
respectively. To achieve the parameter separation mentioned
earlier, multiplyδ(s, kp, ki, kd) by N∗(s) and rewriteN(s),
D(s) in terms of their even-odd decompositions, to obtain

ν(s) := δ(s, kp, ki, kd)N
∗(s)

= [s2(Ne(s
2)Do(s

2) − De(s
2)No(s

2))

+(ki + kds
2)(Ne(s

2)Ne(s
2)

−s2No(s
2)No(s

2))] + s[De(s
2)Ne(s

2)

−s2Do(s
2)No(s

2) + kp(Ne(s
2)Ne(s

2)

−s2No(s
2)No(s

2))]. (2)

Note that the polynomialν(s) has degreen + m and
δ(s, kp, ki, kd) is Hurwitz if and only if ν(s) has exactly
the same number of closed RHP zeros asN∗(s) and this
is the condition we will use for stability. Note also that
while the characteristic polynomialδ(s, kp, ki, kd) has all
three parameters appearing in both the even and odd parts,
the test polynomialν(s) exhibits parameter separation, that
is, kp appears in the odd part only whileki andkd appear
in the even part only. This will facilitate the application of
root counting formulas toν(s).

To proceed, substitutes = jω into (2) to obtain

δ(jω, kp, ki, kd)N
∗(jω) = p(ω, ki, kd) + jq(ω, kp)

(3)

where

p(ω, ki, kd) = p1(ω) + (ki − kdω
2)p2(ω) (4)

q(ω, kp) = q1(ω) + kp q2(ω) (5)

p1(ω) = −ω2(Ne(−ω2)Do(−ω2)

−De(−ω2)No(−ω2)) (6)

p2(ω) = Ne(−ω2)Ne(−ω2)

+ω2No(−ω2)No(−ω2)) (7)

q1(ω) = ω(De(−ω2)Ne(−ω2)

+ω2Do(−ω2)No(−ω2)) (8)

q2(ω) = ω(Ne(−ω2)Ne(−ω2)

+ω2No(−ω2)No(−ω2)). (9)

The PID stabilization algorithm to be presented below
is based on a fundamental and new result generalizing the
classical Hermite-Biehler Theorem [5] to the case of root
distribution determination of real polynomials which are
not necessarily Hurwitz. This generalization reported in [7],
[2], [6] provides an analytical expression for the difference
between the numbers of roots of a real polynomial in the
open left-half and open right-half planes. In our case we
will exploit these results to impose the stability condition



that ν(s) has exactly the same number of RHP roots as
N(−s). In order for this to happen a necessary condition
is thatq(ω, kp) has at least







|n−(l(N(s))−r(N(s)))|
2 for m + n even

|n−(l(N(s))−r(N(s)))|+1
2 for m + n odd

(10)

real, nonnegative, distinct roots of odd multiplicity. The
ranges ofkp satisfying (10) are calledallowable. Let

0 = ω0 < ω1 < ... < ωl−1 (11)

denote the real, nonnegative distinct roots ofq(ω, kp) of
odd multiplicity, and withωl := ∞ write

sgn[p(ωj)] = ij , j = 0, 1, ....l. (12)

It can be shown using the root counting results mentioned
earlier, that the stability condition reduces to:

n − (l(N(s)) − r(N(s))) =







































{i0 − 2i1 + 2i2 + · · · + (−1)l−12il−1

+(−1)lil} · (−1)l−1sgn[q(∞, kp)]
for m + n even

{i0 − 2i1 + 2i2 + · · · + (−1)l−12il−1}
·(−1)l−1sgn[q(∞, kp)]

for m + n odd

(13)

and therefore the string of integers{i0, i1, ..., il} will be
calledadmissibleif it satisfies (13).

Using the above we can present the following algorithm
for determining all stabilizing(kp, ki, kd) values for the
given plant. The reader is referred to [2] for a more complete
development.

PID Stabilization Algorithm For LTI Plants:
Step 1: For the given N(s) and D(s), compute the corre-

sponding p1(ω), p2(ω), q1(ω), and q2(ω) from (6)-(9);
Step 2: Determine the allowable ranges Pi, i =
1, 2, . . . , d of kp from (10). The resulting ranges of
kp are the only ranges of kp for which stabilizing (ki, kd)
values may exist;

Step 3: If there is no kp satisfying Step 2then output NO
SOLUTION and EXIT ;

Step 4: Initialize j = 1 and P = Pj ;
Step 5: Pick a range [klow, kupp] in P and initialize kp =
klow;

Step 6: Pick the number of grid points N and set step =
1

N+1
[kupp − klow];

Step 7: Increase kp as follows: kp = kp + step. If kp >
kupp then GOTO Step 14;

Step 8: For fixed kp in Step 7, solve for the real, non-
negative, distinct finite zeros of q(ω, kp) with odd mul-
tiplicities and denote them by 0 = ω0 < ω1 < ω2 <
· · · < ωl−1. Also define ωl = ∞;

Step 9: Construct sequences of numbers i0, i1, i2, · · · , il
as follows:
(i) If N∗(jωt) = 0 for some t = 1, 2, · · · , l−1, then define

it = 0;

(ii) For all other t = 0, 1, 2, · · · , l,

it ∈ {−1, 1}.

With i0, i1, · · · defined in this way, define the set A(kp) as

A(kp) :=

{

{{i0, i1, · · · , il}} if m + n is even
{{i0, i1, · · · , il−1}} if m + n is odd;

Step 10: Determine the admissible strings
I = {i0, i1, · · ·} in A(kp) from (13). If there is no
admissible string then GOTO Step 7;

Step 11: For an admissible string I = {i0, i1, · · ·}, de-
termine the set of (ki, kd) values that simultaneously
satisfy the following string of linear inequalities:

[p1(ωt) + (ki − kdω
2
t )p2(ωt)]it > 0,

∀ t = 0, 1, 2, · · · for which N
∗(jωt) 6= 0;

Step 12: Repeat Step 11 for all admissible strings
I1, I2, · · · , Iv to obtain the corresponding admissible
(ki, kd) sets S1,S2, · · · ,Sv. The set of all stabilizing
(ki, kd) values corresponding to the fixed kp is then
given by

S(kp) = ∪x=1, 2,···, vSx;

Step 13: GOTO Step 7
Step 14: Set j = j + 1 and P = Pj . If j ≤ d GOTO STEP

5; else, terminate the algorithm.

We now present an example to illustrate the de-
tailed calculations involved in determining the stabilizing
(kp, ki, kd) gain values.

Example 2.1:Consider the problem of determining sta-
bilizing PID gains for the plantG(s) = N(s)

D(s) where

N(s) = s3 − 2s2 − s − 1

D(s) = s6 + 2s5 + 32s4 + 26s3 + 65s2 − 8s + 1.

The closed-loop characteristic polynomial is

δ(s, kp, ki, kd) = sD(s) + (ki + kds
2)N(s) + kpsN(s).

Thusn = 7 andm = 3. Also

Ne(s
2) = −2s2 − 1 ,

No(s
2) = s2 − 1 ,

De(s
2) = s6 + 32s4 + 65s2 + 1 ,

Do(s
2) = 2s4 + 26s2 − 8 ,

and

N∗(s) = (−2s2 − 1) − s(s2 − 1).

Therefore, from (2) we obtain

δ(s, kp, ki, kd)N
∗(s) = [s2(−s8 − 35s6 − 87s4 + 54s2

+9) + (ki + kds
2)(−s6 + 6s4

+3s2 + 1)] + s[(−4s8 − 89s6

−128s4 − 75s2 − 1)

+kp(−s6 + 6s4 + 3s2 + 1)]

so that



δ(jω, kp, ki, kd) N∗(jω) =
[p1(ω) + (ki − kdω

2)p2(ω)]
+j[q1(ω)L + kp q2(ω)]

where

p1(ω) = ω10 − 35ω8 + 87ω6 + 54ω4 − 9ω2

p2(ω) = ω6 + 6ω4 − 3ω2 + 1

q1(ω) = −4ω9 + 89ω7 − 128ω5 + 75ω3 − ω

q2(ω) = ω7 + 6ω5 − 3ω3 + ω.

In Step 2, the range ofkp such thatqf (ω, kp) has at
least 3 real, non-negative, distinct, finite zeros with odd
multiplicities was determined to be(−24.7513, 1) which is
the allowable range. Now for a fixedkp ∈ (−24.7513, 1),
for instancekp = −18,we have

q(ω,−18) = q1(ω) − 18q2(ω)

= −4ω9 + 71ω7 − 236ω5 + 129ω3 − 19ω.

Then the real, non-negative, distinct finite zeros of
qf (ω, −18) with odd multiplicities are

ω0 = 0, ω1 = 0.5195, ω2 = 0.6055,

ω3 = 1.8804, ω4 = 3.6848.

Also defineω5 = ∞. Sincem+n = 10 which is even, and
N∗(s) has nojω-axis roots, fromStep 9, the setA(−18)

becomes


































































































































































































{−1,−1,−1,−1,−1,−1} {1,−1,−1,−1,−1,−1}
{−1, 1,−1,−1,−1,−1} {1, 1,−1,−1,−1,−1}
{−1,−1, 1,−1,−1,−1} {1,−1, 1,−1,−1,−1}
{−1, 1, 1,−1,−1 − 1} {1, 1, 1,−1,−1,−1}
{−1,−1,−1, 1,−1,−1} {1,−1,−1, 1,−1,−1}
{−1, 1,−1, 1,−1,−1} {1, 1,−1, 1,−1,−1}
{−1,−1, 1, 1,−1,−1} {1,−1, 1, 1,−1,−1}
{−1, 1, 1, 1,−1,−1} {1, 1, 1, 1,−1,−1}

{−1,−1,−1,−1, 1,−1} {1,−1,−1,−1, 1,−1}
{−1, 1,−1,−1, 1,−1} {1, 1,−1,−1, 1,−1}
{−1,−1, 1,−1, 1,−1} {1,−1, 1,−1, 1,−1}
{−1, 1, 1,−1, 1,−1} {1, 1, 1,−1, 1,−1}
{−1,−1,−1, 1, 1,−1} {1,−1,−1, 1, 1,−1}
{−1, 1,−1, 1, 1,−1} {1, 1,−1, 1, 1,−1}
{−1,−1, 1, 1, 1,−1} {1,−1, 1, 1, 1,−1}
{−1, 1, 1, 1, 1,−1} {1, 1, 1, 1, 1,−1}

{−1,−1,−1,−1,−1, 1} {1,−1,−1,−1,−1, 1}
{−1, 1,−1,−1,−1, 1} {1, 1,−1,−1,−1, 1}
{−1,−1, 1,−1,−1, 1} {1,−1, 1,−1,−1, 1}
{−1, 1, 1,−1,−1, 1} {1, 1, 1,−1,−1, 1}
{−1,−1,−1, 1,−1, 1} {1,−1,−1, 1,−1, 1}
{−1, 1,−1, 1,−1, 1} {1, 1,−1, 1,−1, 1}
{−1,−1, 1, 1,−1, 1} {1,−1, 1, 1,−1, 1}
{−1, 1, 1, 1,−1, 1} {1, 1, 1, 1,−1, 1}

{−1,−1,−1,−1, 1, 1} {1,−1,−1,−1, 1, 1}
{−1, 1,−1,−1, 1, 1} {1, 1,−1,−1, 1, 1}
{−1,−1, 1,−1, 1, 1} {1,−1, 1,−1, 1, 1}
{−1, 1, 1,−1, 1, 1} {1, 1, 1,−1, 1, 1}
{−1,−1,−1, 1, 1, 1} {1,−1,−1, 1, 1, 1}
{−1, 1,−1, 1, 1, 1} {1, 1,−1, 1, 1, 1}
{−1,−1, 1, 1, 1, 1} {1,−1, 1, 1, 1, 1}
{−1, 1, 1, 1, 1, 1} {1, 1, 1, 1, 1, 1}



































































































































































































Sincel(N(s)) = 2 andr(N(s)) = 1,

l(N(s)) − r(N(s)) = 1

and
(−1)l−1sgn[q(∞, −18)] = −1,

it follows from Step 10that everyadmissiblestring

I = {i0, i1, i2, i3, i4, i5}

must satisfy

{i0 − 2i1 + 2i2 − 2i3 + 2i4 − i5} · (−1) = 6.

Hence the admissible strings are

I1 = {−1, −1, −1, 1, −1, 1}

I2 = {−1, 1, 1, 1, −1, 1}

I3 = {−1, 1, −1, −1, −1, 1}

I4 = {−1, 1, −1, 1, 1, 1}

I5 = {1, 1, −1, 1, −1, −1}.

From Step 11, for I1 it follows that the stabilizing(ki, kd)
values corresponding tokp = −18 must satisfy the string
of inequalities:































p1(ω0) + (ki − kdω
2
0)p2(ω0) < 0

p1(ω1) + (ki − kdω
2
1)p2(ω1) < 0

p1(ω2) + (ki − kdω
2
2)p2(ω2) < 0

p1(ω3) + (ki − kdω
2
3)p2(ω3) > 0

p1(ω4) + (ki − kdω
2
4)p2(ω4) < 0

p1(ω5) + (ki − kdω
2
5)p2(ω5) > 0

Substituting forω0, ω1, ω2, ω3, ω4 and ω5 in the above
expressions, we obtain























ki < 0
ki − 0.2699kd < −4.6836
ki − 0.3666kd < −10.0797
ki − 3.5358kd > 3.912
ki − 13.5777kd < 140.2055

(14)

The set of values of(ki, kd) for which (14) holds can be
solved by linear programming and is denoted byS1. For
I2, we have























ki < 0
ki − 0.2699kd > −4.6836
ki − 0.3666kd > −10.0797
ki − 3.5358kd > 3.912
ki − 13.5777kd < 140.2055

(15)

The set of values of(ki, kd) for which (15) holds can also
be solved by linear programming and is denoted byS2.
Similarly, we obtain







S3 = ∅ for I3

S4 = ∅ for I4

S5 = ∅ for I5

Then, the stabilizing set of(ki, kd) values whenkp = −18
is given by

S(−18) = ∪x=1, 2,···, 5Sx

= S1 ∪ S2
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Fig. 2. The stabilizing set of(ki, kd) values whenkp = −18.

The setS(−18) and the correspondingS1 andS2 are shown
in Fig. 2. By sweeping over differentkp values within
the interval (−24.7513, 1) and repeating the above pro-
cedure at each stage, we can generate the set of stabilizing
(kp, ki, kd) values. This set is shown in Fig. 3.
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Fig. 3. The stabilizing set of(kp, ki, kd) values.

III. PID CONTROLLERS FORDISCRETE-TIME SYSTEMS

In the case of a discrete-time system, the plant is given
by

Gz(z) =
Nz(z)

Dz(z)

where Nz(z) and Dz(z) are polynomials in the forward
shift operatorz. The discrete-time PID controller is given
by:

Cz(z) = kp + ki

1

1 − z−1
+ kd

1 − 2z−1 + z−2

1 − z−1

=
(kp + ki + kd)z

2 − (kp + 2kd)z + kd

z2 − z

where kp, ki and kd are the proportional, integral and
derivative gains respectively. Plants with a zero atz = 1
cannot be stabilized by PID controllers because of the
unstable pole-zero cancellation implied and are excluded
at the outset. Using the bilinear transformationz = w+1

w−1 ,
we obtain thew domain plant:

N(w)

D(w)
= Gz(z)|z= w+1

w−1

and thew-domain PID controller

B(w)

A(w)
=

kiw
2 + 2(kp + ki)w + 2kp + ki + 4kd

2w + 2
.

The correspondingw-domain closed loop characteristic
polynomial becomes:

δ(w, kp, ki, kd) = (2w + 2)D(w) + (kiw
2

+2(kp + ki)w + 2kp + ki

+4kd)N(w) (16)

and Hurwitz stability of this polynomial is equivalent to
stability of the original discrete time system.

Following [3] we proceed as in the last section and
multiply (16) by the factorN(−w) to obtain

δ∗(w, kp, ki, kd) = N(−w)δ(w, kp, ki, kd).

By using the substitution

ki = ks − kp (17)

we can write

δ∗(w, kp, kd, ks) = δ′e(w
2, kp, kd, ks) + wδ′o(w

2, ks)

= [kpδ
′
ep(w

2) + ksδ
′
es(w

2)

+kdδ
′
ed(w

2) + δ′ec(w
2)]

+w[ksδ
′
os(w

2) + δ′oc(w
2)] (18)

where,

δ′ep(w
2) = (1 − w2)(N2

e − w2N2
o )

δ′es(w
2) = (1 + w2)(N2

e − w2N2
o )

δ′ed(w
2) = 4(N2

e − w2N2
o )

δ′ec(w
2) = 2(NeDe + w2NeDo − w2NoDe

−w2NoDo)

δ′os(w
2) = 2(N2

e − w2N2
o )

δ′oc(w
2) = 2(NeDe + NeDo − NoDe

−w2NoDo) (19)

From (18), it is clear that we can now proceed as in the
previous section, i.e. fixks, then use linear programming
to solve for the stabilizing values ofkp and kd. In other
words, the entire development in the last section can
be repeated by replacingδ(s, kp, ki, kd)N

∗(s) in (2) by
δ∗(w, kp, kd, ks) and proceeding as before. However, this
procedure will yield the stabilizing parameters only in the
space of(kp, kd, ks). In order to recover the stabilizing



parameters in the original(kp, ki, kd) space, we need to
go through the inverse linear transformation.

Example 3.1:Consider a PID controller to stabilize the
discrete-time systemNz(z)

Dz(z) where

Nz(z) = z + 1

Dz(z) = z2 − 1.5z + 0.5. (20)

Using the bilinear transformation, we obtain thew-domain
plant N(w)

D(w) where

N(w) = 2w2 − 2w

D(w) = w + 3. (21)

Fig. 4 shows the stabilizing regions in the space of
(kp,kd,ks) determined using the procedure outlined above.
After going through the inverse linear transformation we
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Fig. 4. The stabilizing region in the space of (kp,kd,ks).

obtained the stabilizing regions in the space of (kp,ki,kd).
This region is shown in Fig. 5.
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IV. PID CONTROLLERS FORCONTINUOUS-TIME FIRST

ORDER SYSTEMS WITH TIME DELAY

In this section, we consider the feedback system of Fig. 1
where the plantG(s) is described by

G(s) =
k

1 + Ts
e−Ls. (22)

Herek represents the steady-state gain of the plant,L the
time delay, andT the time constant of the plant. As before,
the controller is of the PID type,i.e.,

C(s) = kp +
ki

s
+ kds .

The objective is to determine the set of controller parameters
(kp,ki,kd) for which the closed-loop system is stable. A
complete solution to this problem has been presented in
[4]. We provide a brief summary of these results.

[A] Open-loop Stable Plant
In this caseT > 0. Furthermore, we make the standing
assumption thatk > 0 and L > 0. The next theorem
presents the complete set of stabilizing PID controllers for
an open-loop stable plant described by (22).

Theorem 4.1:The range ofkp values for which a given
open-loop stable plant, with transfer functionG(s) as in
(22), continues to have closed loop stability with a PID
controller in the loop is given by

−
1

k
< kp <

1

k

[

T

L
α1sin(α1) − cos(α1)

]

(23)

whereα1 is the solution of the equation

tan(α) = −
T

T + L
α (24)

in the interval(0, π). Forkp values outside this range, there
are no stabilizing PID controllers. The complete stabilizing
region is given by: (see Fig. 6)

1) For eachkp ∈ (− 1
k
, 1

k
), the cross-section of the

stabilizing region in the(ki, kd) space is the trapezoid
T.

2) Forkp = 1
k

, the cross-section of the stabilizing region
in the (ki, kd) space is the triangle∆.

3) For eachkp ∈
(

1
k
, ku := 1

k

[

T
L

α1sin(α1) − cos(α1)
])

the cross-section of the stabilizing region in the
(ki, kd) space is the quadrilateral Q.

The parametersmj , bj , wj , j = 1, 2 necessary for determin-
ing the boundaries of T,∆ andQ can be determined using
the following equations:

mj =
L2

z2
j

(25)

bj = −
L

kzj

[

sin(zj) +
T

L
zj cos(zj)

]

(26)

wj =
zj

kL

[

sin(zj) +
T

L
zj(cos(zj) + 1)

]

(27)



wherezj , j = 1, 2, · · · are the real, positive solutions of

kkp + cos(z) −
T

L
zsin(z) = 0 (28)

arranged in ascending order of magnitude.
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[B] Open-Loop Unstable Plant
In this caseT < 0 in (22). Furthermore, let us assume that
k > 0 andL > 0.

Theorem 4.2:A necessary and sufficient condition for
the existence of a stabilizing PID controller for the open-
loop unstable plant (22) is|T

L
| > 0.5. If this condition is

satisfied, then the range ofkp values for which a given
open-loop unstable plant, with transfer functionG(s) as in
(22), can be stabilized using a PID controller is given by

1

k

[

T

L
α1sin(α1) − cos(α1)

]

< kp < −
1

k
(29)

whereα1 is the solution of the equation

tan(α) = −
T

T + L
α (30)

in the interval (0, π). In the special case of|T
L
| = 1,

we haveα1 = π
2 . For kp values outside this range, there

are no stabilizing PID controllers. Moreover, the complete
stabilizing region is characterized by: (see Fig. 7)
For eachkp ∈

(

kl := 1
k

[

T
L

α1 sin(α1) − cos(α1)
]

,− 1
k

)

,
the cross-section of the stabilizing region in the(ki, kd)
space is the quadrilateral Q.
The parametersmj , bj and wj , j = 1, 2 necessary for de-
termining the boundary of Q are as defined in the statement
of Theorem 4.1.
In view of Theorem 4.1, we now propose an algorithm to
determine the set of stabilizing parameters for the plant (22)
with T > 0.

PID Stabilization Algorithm for Time-Delay Plants:
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Fig. 7. The stabilizing region of (ki,kd) for kl < kp < − 1
k

.

(1) Initialize kp = − 1
k

and step = 1
N+1

(

ku + 1
k

)

, where N

is the desired number of grid points.
(2) Increase kp as follows: kp = kp + step.
(3) If kp < ku then go to Step 4. Else, terminate the

algorithm.
(4) Find the roots z1 and z2 of (28).
(5) Compute the parameters mj and bj , j = 1, 2 associated

with the previously found zj by using (25) and (26).
(6) Determine the stabilizing region in the ki-kd space using

Fig. 6.
(7) Go to Step 2.

A similar algorithm can be written down for the case of
an open-loop unstable plant by using Theorem 4.2.

We next present an example that illustrates the use of the
above algorithm to determine stabilizing PID parameters.

Example 4.1:Consider the PID stabilization problem for
a plant described by the differential equation

dy(t)

dt
= −0.5y(t) + 0.5u(t − 4) .

This process can also be described by the transfer function
G(s) in (22) with the following parameters:k = 1, T = 2
sec, andL = 4 sec. Since the system is open-loop stable we
use Theorem 4.1 to find the range ofkp values for which
a solution to the PID stabilization problem exists. We first
compute the parameterα1 ∈ (0, π) satisfying the following
equation

tan(α) = −0.3333α .

Solving this equation we obtainα1 = 2.4557. Thus, from
(23) the range ofkp values is given by

−1 < kp < 1.5515 .

We now sweep over the above range ofkp values and
determine the stabilizing set of(ki, kd) values at each stage
using the previous algorithm. These regions are sketched in
Fig. 8.
Any PID gains selected from these regions will result
in closed-loop stability and any gains outside will result
in instability. Now, consider the following performance
specifications:
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Fig. 8. The stabilizing region of (kp,ki,kd) values for the PID controller
in Example 4.1.

1) Settling time≤ 60 secs;
2) Overshoot≤ 20%.

We can obtain the transient responses of the closed-loop
system for the (kp,ki,kd) values inside the regions depicted
in Fig.8. In general we also need some tolerance around the
controller parameters, that is we want the controller to be
controller-robust or non-fragile [8]. Thus we only consider
PID gains lying inside the following box defined in the
parameter space:

0.1 ≤ kp ≤ 1 , 0.1 ≤ ki ≤ 0.3 and 0.5 ≤ kd ≤ 1.5 .

By searching over this box, several (kp,ki,kd) values are
found to meet the desired performance specifications. We
arbitrarily set the controller parameters to:kp = 0.3444,
ki = 0.1667, kd = 0.8333. Fig. 9 shows the step response of
the resulting closed-loop system. It is clear from the figure
that the closed-loop system is stable, the outputy(t) tracks
the step input signal and the performance specifications are
met. The figure also shows the responses of the closed-loop
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Fig. 9. Time response of the closed-loop system for Example 4.1.

systems for the case of a PID controller designed using
the Cohen-Coon method(kp = 0.9180, ki = 0.1456, kd =

0.9845) and the Ziegler-Nichols method(kp = 0.6, ki =
0.075, kd = 1.2) Notice that in these cases also the system
is stable and achieves setpoint following. However, the
responses are much more oscillatory. 4

Although the design presented above is essentially an
optimization search by gridding, nevertheless the fact that
the algorithm of this section can be used to confine the
search to the stabilizing set makes the design problem orders
of magnitude easier.

V. PID CONTROLLER DESIGN

The PID stabilization algorithms presented in the last
three sections can be used to determine the entire set of
stabilizing PID controllers. Hence, in principle, they can
be used to facilitate PID design; indeed, by confining the
search for the PID parameters to the stabilizing regions, it
is possible to optimize different performance indices while
ensuring that the stability constraint is always satisfied.
This, however, constitutes a numerical design approach and
Example 4.1 does illustrate this point. In certain situations,
nevertheless, it is possible to do better than mere numerical
optimization and this section is devoted to a discussion of
such situations that have arisen so far in our research.

In many situations control system performance can be
specified by a frequency domain inequality or equivalently
an H∞ norm constraint on a closed loop transfer function
G(s) = N(s)

D(s) :
‖G(s)‖∞ < γ.

It has been shown in [10] that the above condition is
equivalent to Hurwitz stability of the complex polynomial
family:

γD(s) + ejθN(s), θ ∈ [0, 2π].

In our PID design problem the polynomialsD(s), N(s)
will have the PID gains embedded in them and the set
of parameters achieving specifications is given by those
achieving simultaneously the stabilization of the complex
polynomial family as well as the real closed loop charac-
teristic polynomial. It turns out that the set of PID gains
achieving stabilization of a complex polynomial family and
therefore attaining the specifications can be found by an
extension of the algorithm given for the real case. Towards
this end, consider a complex polynomial of the form:

c(s, kp, ki, kd) =

L(s) + (kds
2 + kps + ki)M(s) (31)

whereL(s) and M(s) are given complex polynomials. In
[11], the results on PID stabilization presented in SectionII
were extended to the stabilization of (31). The algorithm,
described below, is similar to the stabilization algorithm
given for the real case and we will therefore not write the
algorithm in detail but only point out the differences in the
formulas and steps from that of the real case. We then show
through examples how, many PIDperformance or design
problems can be converted into stabilization problems of



complex polynomial families of the form of (31) and solved
using this algorithm.

A. Complex PID Stabilization Algorithm

The complex PID Stabilization Algorithm is similar to
the algorithm given for the real case in Section 2 and we
need only to point out the differences in some formulas
and steps. To do that we first introduce some definitions
and notation.

Definition 5.1: Let a(s) be a given complex polynomial
of degreen:

a(s) = (a0 + jb0) + (a1 + jb1)s + · · ·

+(an−1 + jbn−1)s
n−1 + (an + jbn)sn,

an + jbn 6= 0. The real-imaginary decomposition ofa(s) is
defined as

a(s) = aR(s) + aI(s)

where

aR(s) = a0 + jb1s + a2s
2 + jb3s

3 + · · ·

aI(s) = jb0 + a1s + jb2s
2 + a3s

3 + · · · .
Now we consider a complex polynomial of the form:

c(s, kp, ki, kd) = L(s)

+(kds
2 + kps + ki)M(s) (32)

whereL(s) andM(s) are two given complex polynomials.
Write L(s) and M(s) in terms of their real-imaginary
decompositions:

L(s) = LR(s) + LI(s)

M(s) = MR(s) + MI(s)

and define
M∗(s) = MR(s) − MI(s)

and
ν(s) = c(s, kp, ki, kd)M

∗(s)

Also let n, m be the degrees ofc(s, kp, ki, kd) andM(s)
respectively. Evaluating the polynomialν(s) at s = jω, we
obtain

ν(jω) = c(jω, kp, ki, kd)M
∗(jω)

= p(ω, ki, kd) + jq(ω, kp)

where

p(ω, ki, kd) = p1(ω) + (ki − kdω
2)p2(ω) (33)

q(ω, kp) = q1(ω) + kpq2(ω) (34)

p1(ω) = LR(jω)MR(jω)

−LI(jω)MI(jω) (35)

p2(ω) = M2
R(jω) − M2

I (jω) (36)

q1(ω) =
1

j
[LI(jω)MR(jω)

−LR(jω)MI(jω)] (37)

q2(ω) = ω[M2
R(jω) − M2

I (jω)]. (38)

Let ξ denote the leading coefficient of
c(s, kp, ki, kd)M

∗(s). The procedure for determining
all stabilizing (kp, ki, kd) for which c(s, kp, ki, kd)
is Hurwitz for the givenL(s) and M(s) is identical to
the stabilization algorithm of Section 2 except for the
following steps below, labelled Step ic, in the computation
of the allowable range andadmissiblestrings.

Differences between real and complex PID Stabilization
Algorithms:

• Step 1c Compute p1(ω), p2(ω), q1(ω), q2(ω) from (35)-
(38).

• Step 2c The allowable ranges of kp are such that
q(ω, kp) has at least


























|n − (l(M(s)) − r(M(s)))| − 1 ,
if m + n is even and ξ is purely real,
or m + n is odd and ξ is purely imaginary

|n − (l(M(s)) − r(M(s)))| ,
if m + n is even and ξ is not purely real,
or m + n is odd and ξ is not purely imaginary

real, distinct finite zeros with odd multiplicities. The re-
sulting ranges of kp are the only ranges of kp for which
stabilizing (ki, kd) values may exist;

• Step 8cFor fixed kp solve for the real, distinct finite zeros
of q(ω, kp) with odd multiplicities and denote them by
ω1 < ω2 < · · · < ωl−1 and let ω0 = −∞ and
ωl = ∞;

• Step 9cThe construction of the sequences of numbers
i0, ii, i2, · · · , il is as follows:
If M∗(jωt) = 0 for some t = 0, 1, · · · , l, then define

it = 0;

else

it ∈ {−1, 1}, for all other t = 0, 1, · · · , l.

With i0, i1, · · · defined in this way, define the set A(kp) as

A(kp) =











































{{i0, i1, · · · , il}} ,
if m + n is even and ξ is purely real,
or m + n is odd and ξ is purely
imaginary

{{i1, i2, · · · , il−1}} ,
if m + n is even and ξ is not purely
real, or m + n is odd and ξ is not
purely imaginary

• Step 10cDetermine the admissible strings I ∈ A(kp)

such that the following equality holds:

n − (l(M(s)) − r(M(s))) =






































1
2
{i0 · (−1)l−1 + 2

∑l−1

r=1
ir · (−1)l−1−r

−il} · sgn[q(∞, kp)]
if m + n is even and ξ is purely real,
or m + n is odd and ξ is purely imaginary

1
2
{2

∑l−1

r=1
ir · (−1)l−1−r} · sgn[q(∞, kp)]

if m + n is even and ξ is not purely real,
or m + n is odd and ξ is not purely imaginary

(39)

We now give some application examples of PID perfor-
mance using the complex stabilization algorithm.



B. Synthesis ofH∞ PID controllers

First, let us consider the problem of synthesizing PID
controllers for which the closed-loop system is internally
stable and theH∞-norm of a certain closed loop transfer
function is less than a prescribed level. In particular, the
following closed-loop transfer functions are considered:

• The sensitivity function:

S(s) =
1

1 + C(s)G(s)
. (40)

• The complementary sensitivity function:

T (s) =
C(s)G(s)

1 + C(s)G(s)
. (41)

• The input sensitivity function:

U(s) =
C(s)

1 + C(s)G(s)
. (42)

As shown in [9], various performance and robustness
specifications can be captured by using theH∞-norm of
weighted versions of the transfer functions (40)-(42). It can
be verified that whenC(s) is a PID controller, the transfer
functions (40)-(42) can all be represented in the following
general form:

Tcl(s, kp, ki, kd) =
A(s) + (kds

2 + kps + ki)B(s)

sD(s) + (kds2 + kps + ki)N(s)

(43)

whereA(s) and B(s) are some real polynomials. For the
transfer functionTcl(s, kp, ki, kd) and a given number
γ > 0, the standardH∞ performance specification usually
takes the form:

‖W (s)Tcl(s, kp, ki, kd)‖∞ < γ (44)

where W (s) is a stable frequency-dependent weighting
function that is selected to capture the desired design
objectives at hand. Suppose the weighting functionW (s) =
Wn(s)
Wd(s) , where Wn(s) and Wd(s) are coprime polyno-
mials and Wd(s) is Hurwitz. Define the polynomials
δ(s, kp, ki, kd) andφ(s, kp, ki, kd, γ, θ) as follows:

δ(s, kp, ki, kd)
∆
= sD(s) + (ki + kps + kds

2)N(s)

and

φ(s, kp, ki, kd, γ, θ)
∆
=

[sWd(s)D(s) + 1
γ
ejθWn(s)A(s)]

+(kds
2 + kps + ki)[Wd(s)N(s)

+ 1
γ
ejθWn(s)B(s)].

Then as shown in [11], we can establish the following
relationship betweenH∞ synthesis using PID controllers
and simultaneous stabilization of a complex polynomial
family:
For a givenγ > 0, there exist PID gain values(kd, kp, ki)
such that‖W (s)Tcl(s, kp, ki, kd)‖∞ < γ if and only if
the following conditions hold:

(1) δ(s, kp, ki, kd) is Hurwitz;
(2) φ(s, kp, ki, kd, γ, θ) is Hurwitz for all θ in
[0, 2π);

(3) |W (∞)Tcl(∞, kp, ki, kd)| < γ.

The above equivalence can be used to determine stabilizing
(kp, ki, kd) values such that theH∞-norm of a certain
closed-loop transfer function is less than a prescribed level.
This is illustrated using the following example.

Example 5.1:Consider the plantG(s) = N(s)
D(s) where

N(s) = s − 1

D(s) = s2 + 0.8s − 0.2

and the PID controller

C(s) =
kds

2 + kps + ki

s
.

In this example, we consider the problem of de-
termining all stabilizing PID gain values for which
‖W (s)T (s, kp, ki, kd)‖∞ < 1, whereT (s, kp, ki, kd)
is the complementary sensitivity function:

T (s, kp, ki, kd) =
(kds

2 + kps + ki)(s − 1)

s(s2 + 0.8s − 0.2) + (kds2 + kps + ki)(s − 1)

and the weightW (s) is chosen as a high pass transfer
function:

W (s) =
s + 0.1

s + 1
.

We know that (kp, ki, kd) values meeting theH∞

performance constraint exist if and only if the following
conditions hold:

(1) δ(s, kp, ki, kd) = s(s2+0.8s−0.2)+(kds
2+

kps + ki)(s − 1) is Hurwitz;
(2) φ(s, kp, ki, kd, 1, θ) = s(s+1)(s2 +0.8s−
0.2)+ (kds

2 + kps+ ki)[(s+1)(s− 1)+ ejθ(s+
0.1)(s − 1)] is Hurwitz for all θ in [0, 2π);

(3) |W (∞)T (∞, kp, ki, kd)| = | kd

kd+1 | < 1.

The set of all(kp, ki, kd) values for which theH∞ per-
formance specifications are met are precisely the values of
kp, ki, kd for which conditions (1),(2) and (3) are satisfied.
To search for such values of(kp, ki, kd), we fix kp and
determine all the values of(ki, kd) for which conditions
(1),(2) and (3) hold.

For the condition (1), with a fixedkp, for instancekp =
−0.35, by settingL(s) = s(s2 + 0.8s − 0.2) andM(s) =
s − 1, and using the algorithm of Section 2, we obtain the
set of (ki, kd) values for which the closed-loop system is
stable. This set is denoted byS(1, −0.35) and is sketched in
Fig. 10. Now fixingkp = −0.35 and any fixedθ ∈ [0, 2π),
by settingL(s) = s(s+1)(s2 +0.8s−0.2) andM(s, θ) =
(s+1)(s− 1)+ ejθ(s+0.1)(s− 1) and using the complex
stabilization algorithm of Section V-A again we can solve a
linear programming problem to determine the set of(ki, kd)
values. Let this set be denoted byS(2, −0.35, θ). By keeping
kp fixed, sweeping overθ ∈ [0, 2π), and using the complex
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Fig. 10. The setS(1, −0.35).

stabilization algorithm of Section V-A at each stage, we can
determine the set of(ki, kd) values for which condition (2)
is satisfied. This set is denoted byS(2, −0.35) and is given
by

S(2, −0.35) = ∩θ∈[0, 2π)S(2, −0.35, θ).

The setS(2, −0.35) is sketched in Fig. 11. LetS(3, −0.35) be
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Fig. 11. The setS(2, −0.35) = ∩θ∈[0, 2π)S(2, −0.35, θ).

the set of(ki, kd) values satisfying condition (3) and this
set is given by

S(3, −0.35) = {(ki, kd)| ki ∈ R, kd > −0.5}.

Then forkp = −0.35, the set of(ki, kd) values for which
‖W (s)T (s, kp, ki, kd)‖∞ < 1 is denoted byS(−0.35) and
is given by

S(−0.35) = ∩i=1,2,3S(i, −0.35).

In this case, we haveS(−0.35) = S(2, −0.35). Now, using
root loci [2], it was determined that a necessary condi-
tion for the existence of stabilizing(ki, kd) values is that

kp ∈ (−0.5566, −0.2197). Then, by sweeping overkp ∈
(−0.5566, −0.2197), and repeating the above procedure,
we obtained the stabilizing set of(kp, ki, kd) values for
which ‖W (s)T (s, kp, ki, kd)‖∞ < 1. This set is sketched
in Fig. 12.
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Fig. 12. The set of stabilizing(kp, ki, kd) values for which
‖W (s)T (s, kp, ki, kd)‖∞ < 1.

C. PID Controller Design for Robust Performance

This subsection is devoted to the problem of synthesizing
PID controllers for robust performance. In particular, we
focus on the following robust performance specification [9]:

‖|W1(s)S(s)| + |W2(s)T (s)|‖∞ < 1, (45)

whereW1(s) = NW1(s)
DW1(s)

and W2(s) = NW2(s)
DW2(s)

are stable
weighting functions, andS(s) andT (s) are the sensitivity
and the complementary sensitivity functions respectively.
As before, letδ(s, kp, ki, kd) denote the closed loop char-
acteristic polynomial

δ(s, kp, ki, kd)
∆
= sD(s) + (ki + kps + kds

2)N(s).

We define the complex polynomialψ(s, kp, ki, kd, θ, φ) by

ψ(s, kp, ki, kd, θ, φ)
∆
=

sDW1(s)DW2(s)D(s) + ejθsNW1(s)DW2(s)D(s)
+(kds

2 + kps + ki)[DW1(s)DW2(s)N(s)
+ejφDW1(s)NW2(s)N(s)].

As shown in [12], the problem of synthesizing PID con-
trollers for robust performance can be converted into the
problem of determining values of(kp, ki, kd) for which
the following conditions hold:

(1) δ(s, kp, ki, kd) is Hurwitz;
(2) ψ(s, kp, ki, kd, θ, φ) is Hurwitz for all θ ∈
[0, 2π) and for allφ ∈ [0, 2π);

(3) |W1(∞)S(∞)| + |W2(∞)T (∞)| < 1.

The following example shows how the above conditions can
be used to determine the set of stabilizing gains(kp, ki, kd)
for which the robust performance specification (45) is met.



Example 5.2:Consider the plantG(s) = N(s)
D(s) where

N(s) = s − 15

D(s) = s2 + s − 1.

Then the sensitivity function and complementary sensitivity
function are:
S(s, kp, ki, kd) =

s(s2 + s − 1)

s(s2 + s − 1) + (kds2 + kps + ki)(s − 15)
,

T (s, kp, ki, kd) =
(kds

2 + kps + ki)(s − 15)

s(s2 + s − 1) + (kds2 + kps + ki)(s − 15)
.

The weighting functions are chosen as:W1(s) = 0.2
s+0.2 and

W2(s) = s+0.1
s+1 . We know that stabilizing(kp, ki, kd)

values meeting the performance specification (45) exist if
and only if the following conditions hold:

(1) δ(s, kp, ki, kd) = s(s2 + s − 1) + (kds
2 +

kps + ki)(s − 15) is Hurwitz;
(2) ψ(s, kp, ki, kd, θ, φ) = s(s + 0.2)(s +
1)(s2 + s − 1) + ejθs(0.2)(s + 1)(s2 + s − 1) +
(kds

2 + kps + ki)[(s + 0.2)(s + 1)(s − 15) +
ejφ(s + 0.2)(s + 0.1)(s − 15)] is Hurwitz for all
θ ∈ [0, 2π) and for allφ ∈ [0, 2π);

(3) |W1(∞)S(∞, kp, ki, kd)|+
|W2(∞)T (∞, kp, ki, kd)| = | kd

kd+1 | < 1.

The procedure for determining the set of(kp, ki, kd)
values satisfying conditions (1), (2) and (3) is similar
to that presented in the previous exampled. First using
root loci [2], it was determined that a necessary con-
dition for the existence of stabilizing(ki, kd) values is
that kp ∈ (−0.5079, −0.1155). For any fixed kp ∈
(−0.5079, −0.1155), we use the algorithm of Section V-A
to determine the set of(ki, kd) values satisfying conditions
(1) and (2). The condition (3) gives that the admissible set
of (ki, kd) is {(ki, kd)| ki ∈ R, kd > −0.5}. Then for a
fixed kp, we obtain the set of all(ki, kd) values for which
‖|W1(s)S(s, kp, ki, kd)|+ |W2(s)T (s, kp, ki, kd)|‖∞ <

1 by taking the intersection of the set of(ki, kd) values
satisfying conditions (1), (2) and (3). Thus by sweeping over
kp ∈ (−0.5079, −0.1155), and repeating the above proce-
dure, we obtain the set of(kp, ki, kd) values for which
‖|W1(s)S(s, kp, ki, kd)|+ |W2(s)T (s, kp, ki, kd)|‖∞ <

1. This set is sketched in Fig. 13.

D. PID Controller Design with Guaranteed Gain and
Phase Margins

In this subsection, we consider the problem of designing
PID controllers that achieve pre-specified gain and phase
margins for a given plant. Towards this end, let for example
Am and θm denote the desired upper gain and phase
margins respectively. From the definitions of the upper gain
and phase margins, it follows that the PID gain values
(kp, ki, kd) achieving gain marginAm and phase margin
θm must satisfy the following conditions:
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Fig. 13. The set of (kp, ki, kd) values for which
‖|W1(s)S(s, kp, ki, kd)| + |W2(s)T (s, kp, ki, kd)|‖∞ < 1.

(1) sD(s) + A(kds
2 + kps + ki)N(s) is Hurwitz

for all A ∈ [1, Am]; and
(2) sD(s)+e−jθ(kds

2+kps+ki)N(s) is Hurwitz
for all θ ∈ [0, θm].

Thus the problem to be solved is reduced to the problem of
simultaneous stabilization of two families of polynomials.
The algorithm of Section V-A can now be used to solve
these simultaneous stabilization problems. The following
example illustrates the procedure.

Example 5.3:Consider the plantG(s) = N(s)
D(s) where

N(s) = 2s − 1

D(s) = s4 + 3s3 + 4s2 + 7s + 9.

In this example, we consider the problem of determining
all (kp, ki, kd) gain values that provide a gain margin
Am ≥ 3.0 and a phase marginθm ≥ 40◦. A given set of
(kp, ki, kd) values will meet these specifications if and only
if the following conditions hold:

(1) s(s4 + 3s3 + 4s2 + 7s + 9) + A(kds
2 + kps +

ki)(2s − 1) is Hurwitz for all A ∈ [1, 3.0];
(2) s(s4 +3s3 +4s2 +7s+9)+e−jθ(kds

2 +kps+
ki)(2s − 1) is Hurwitz for all θ ∈ [0◦, 40◦].

Again, the procedure for determining the set of(kp, ki, kd)
values is similar to that presented in Section V-B and,
therefore, a detailed description is omitted. The resulting
set is sketched in Fig. 14.

VI. CONCLUDING REMARKS

In this paper, we have presented algorithms for determin-
ing the set of all PID controllers that stabilize 1) continuous-
time rational plants of arbitrary order; 2) discrete-time ra-
tional plants of arbitrary order; and 3) continuous-time first
order plants with delay. In addition, we showed how some of
these algorithms and their extensions can be used to tackle
important problems in industrial PID design. The stabilizing
sets are neither convex nor even connected in general;
nevertheless there is considerable structure available for
both computation and design in particular due to the fact
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Fig. 14. The set of(kp, ki, kd) values for which the resulting closed
loop system achieves a gain marginAm ≥ 3.0 and a phase marginθm ≥
40◦.

that the regions are bounded by straight lines in theki-kd

space for fixedkp in both, the real and complex cases. This
facilitates the complete determination of both stabilizing
regions and performance attainment regions and intersecting
them, and this feature along with the 2D and 3D graphical
displays of these sets should appeal to control designers.
In addition to the performance criteria discussed here it is
possible to achieve prescribed offset of root locations from
the imaginary axis as shown in [13].

The presentation here was motivated by our desire to
bring these algorithms to the notice of the industrial control
community, whose members, we believe, stand to benefit
the most from these results. More motivated development
of these algorithms, along with the associated mathematical
machinery, can be found in [2], [3], [4], [11], [12], [13].
For an alternative approach digital PID controller design
the reader is referred to the recent paper [14].
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