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Abstract— The reduced-order, H∞ filtering problem for
discrete-time, linear, time-varying systems is considered.
A solution is obtained by converting the reduced-order,
filtering problem into a full-order, filtering problem with the
same dimension as the reduced-order filter. The resulting
filter is unbiased and has a unique realization for each
set of design parameters. Furthermore, it is shown that
the previously proposed solution is independent of the H∞
design parameters and, therefore, does not represent a
solution to the problem.

I. INTRODUCTION

The H∞ filtering problem has been studied exten-
sively due to the robustness of H∞ filters to modeling
error and disturbances with unknown statistics [1], [2].
In many filtering applications, estimates are generated
in real-time from measurements and, as a result, there
has been considerable interest in filtering algorithms
that are computational efficient. One solution has been
to use a reduced-order filter [3], [4], [5]. In this paper,
the reduced-order H∞ filtering problem is considered
for discrete-time, linear, time-varying (LTV) systems
on a finite horizon.

Much of the previous work on the reduced-order
H∞ filtering problem has focused on the solution
for continuous-time, linear, time-invariant (LTI) sys-
tems [5], [6]. More recently, these results has been
extended to stochastic systems [7] and a class of bilinear
systems [8]. In [4], solutions for the finite and infinite
horizon, reduced-order H∞ filtering problems have been
suggested for continuous-time, LTI systems using an
approach developed to solve the reduced-order H2

filtering problem [3]. The nature of the solution admits
a generalization to LTV systems and motivates the
solution approach considered in this paper. For discrete-
time, LTV systems, a solution of the reduced-order H∞
filtering problem has been proposed in [9], [10], [11]
where the state dimension of the reduced-order filter
is minimized. However, it is shown in the appendix to
this paper that the solution of the proposed filtering
problem is independent of the design parameters used in
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the formulation of the H∞ filtering problem. Therefore,
the reduced-order H∞ filtering problem for discrete-
time, LTV systems remains an open question.

In this paper, the solution of the reduced-order H∞
filtering problem for discrete-time, LTV systems on a
finite horizon is presented. The state dimension of the
reduced-order filter is treated as a design parameter and
is bounded above by the number of states (or linear
combination thereof) to be estimated and below by the
plant state dimension minus the number of measure-
ments. The difference between the current work and
the results in [9], [10], [11] is that the state dimension
of the reduced-order filter is assumed to be strictly
greater than its minimum allowable value, the plant
state dimension minus the number of measurements.

The solution strategy for the reduced-order H∞
filtering problem is motivated by the results in [4]. In
reduced-order filtering, an unbiased filter is important
because it ensures that the estimation error is zero if
the initial estimate is correct and there are no distur-
bances acting on the system [3], [4]. The unbiasedness
requirement manifests itself as a set of constraints on
the coefficient matrices of the filter realization. If the
dimension of the reduced-order filter is greater than the
minimum allowable value, the unbiasedness constraints
do not have a unique solution. Using the extra degree of
freedom in the solution of the unbiasedness constraints,
the reduced-order H∞ filtering problem is converted
into a full-order H∞ filtering problem with the same
dimension as the reduced-order filter. The solution of
the reduced-order H∞ filtering problem is obtained by
applying the full-order H∞ filtering results from [12].

The remainder of the paper is organized as follows.
Section II describes the details of the reduced-order
H∞ filtering problem. Section III contains a summary
of relevant results from the solution of the full-order
H∞ filtering problem. The reduced-order filter and the
unbiasedness constraints are presented in Section IV.
The solution of the reduced-order H∞ filtering problem
is presented in Section V. Conclusions and directions
for future research are described in Section VI. An
examination of the reduced-order H∞ filtering results



from [9], [10], [11] is provided in the appendix.

II. PROBLEM STATEMENT

In this paper, a linear, time-varying discrete-time
plant of the form

x(k + 1) = A(k) x(k) + B(k) w(k), x(0) = x0

y(k) = C(k) x(k) + D(k) w(k)
z(k) = E1(k) x(k) + E2(k) w(k) (2.1)

is considered for k = 0, . . . , N where x is the n×1 vector
of state variables, w is the q × 1 vector of exogenous
inputs, disturbances, and noise, y is the p × 1 vector
of measured quantities, and z is the m × 1 vector of
quantities to be estimated. The following assumptions
are made about the realization in (2.1) for k = 0, . . . , N .

1) All matrices are bounded.
2) D(k) D∗(k) > 0
3) rank C(k) = p
4) rank E1(k) = m

5) rank
[

E1(k)
C(k)

]
= n

where ∗ indicates the conjugate transpose of a ma-
trix. Note that Assumptions 1 and 2 are standard,
Assumptions 3 and 4 are reasonable and simplify the
solution of the problem, and Assumption 5 is necessary
for a general solution to the problem. Furthermore,
Assumption 5 implies that m + p ≥ n.

Given a tolerance γ > 0 and an initial estimation
error weight R > 0, the objective of the H∞ filtering
problem is to obtain a filter ẑ = Fy that produces
estimates satisfying

sup
[w es(0)] 6=0

‖ẑ(k) − z(k)‖2
2,[0,N ]

‖w‖2
2,[0,N ] + e∗s(0) Res(0)

< γ2 (2.2)

where es(0) is the difference between the initial state of
the filter and true initial state and

‖f‖2
2,[0,N ] :=

N∑

k=0

f∗(k) f(k) (2.3)

Note that the formulation of the H∞ problem (2.2) is
independent of the order of the filter.

III. FULL-ORDER H∞ FILTERING PROBLEM

The solution of the reduced-order H∞ filtering prob-
lem for the plant in (2.1) will be obtained by applying a
full-order H∞ filtering results to a related plant with the
same dimension as the reduced-order filter. Accordingly,
selected full-order H∞ filtering results are summarized
below.

For the plant in (2.1), consider the full-order filter

x̂(k + 1) = A(k) x̂(k) + K(k) (y(k) − C(k) x̂(k))
ẑ(k) = E1(k) x̂(k) + J(k) (y(k) − C(k) x̂(k))
x̂(0) = x̂0 (3.1)

where the gains K(k) and J(k) are determined from
the solution of the H∞ filtering problem (2.2). The
solution of the full-order H∞ filtering problem has been
presented in [12] and is summarized in the following
theorem.

Theorem 1: Given the plant in (2.1), a tolerance γ >
0, and an initial estimation error weight R > 0, the H∞
filtering problem (2.2) has a solution if and only if

S3(k) > 0
(
S1(k) − S2(k) S3(k)−1 S∗

2 (k)
)−1

< 0 (3.2)

where

S(k) =
[

S1(k) S2(k)
S∗

2 (k) S3(k)

]

=
[

−γ2 I + E2(k) E∗
2(k) + E1(k) Q(k) E∗

1(k)
−D(k) E∗

2 (k) − C(k) Q(k) E∗
1(k)

−E2(k) D∗(k) − E1(k) Q(k) C∗(k)
D(k) D∗(k) + C(k) Q(k) C∗(k)

]
(3.3)

and Q(k) is the solution of the Riccati equation

Q(k + 1) = A(k) Q(k) A∗(k) + B(k) B∗(k)
−M (k) S−1(k) M∗(k)

Q(0) = R−1 (3.4)

with

M (k) =
[

M1(k) M2(k)
]

= [−B(k) E∗
2 (k) − A(k) Q(k) E∗

1(k)
B(k) D∗(k) + A(k) Q(k) C∗(k)] (3.5)

Furthermore, if a solution exists, one such filter has as
a realization as in (3.1) with

K(k) = M2(k) S−1
3 (k)

J(k) = −S2(k) S−1
3 (k) (3.6)

In the sequel, a connection will be made between the
estimation error equations for the reduced-order filter
and those for a full-order filter. For the full-order filter,
the equations governing the estimation error are

es(k + 1) = (A(k) − K(k) C(k)) es(k)
+(K(k) D(k) − B(k)) w(k)

ez(k) = (E1(k) − J(k) C(k)) es(k)
+(J(k) D(k) − E2(k)) w(k) (3.7)

where es(k) := x̂(k)−x(k) and ez(k) := ẑ(k)−z(k). For
the comparison in Section V, it is convenient to write
the error equations in the form

es(k + 1) = A(k) es(k) − B(k) w(k)
+K(k) (−C(k) es(k) + D(k) w(k))

ez(k) = E1(k) es(k) − E2(k) w(k)
+J(k) (D(k) w(k) − C(k) es(k)) (3.8)



IV. REDUCED-ORDER FILTERING

A general reduced-order filter has a realization

ξ(k + 1) = F (k) ξ(k) + K(k) y(k), ξ(0) = ξ0

ẑ(k) = H(k) ξ(k) + J(k) y(k) (4.1)

where ξ(k) is a v×1 estimate of the quantity T (k) x(k)
and v satisfies m ≥ v ≥ n − p. Note that if filter
dimension is minimized (i.e., v = n−p), the filter in (4.1)
coincides with the reduced-order filter considered in [9],
[10], [11].

The matrix function T (k) is specified as part of the
filter design and the only requirements are

rank T (k) = v

rank
[

T (k)
C(k)

]
= n (4.2)

If v = m, it is natural to choose T (k) = E1(k) for
k = 0, . . . , N . In this case, ξ(k) = ẑ(k) for k = 0, . . . , N
and the output equation in (4.1) is not needed.

For the reduced-order filter (4.1), the equations gov-
erning the estimation error are

es(k + 1) = F (k) es(k)
+ (K(k) D(k) − T (k + 1) B(k)) w(k)
+Ξ1(k) x(k)

ez(k) = H(k) es(k) + (J(k) D(k) − E2(k)) w(k)
+Ξ2(k) x(k) (4.3)

where es(k) := ξ(k) − T (k) x(k) and

Ξ1(k) := F (k) T (k) + K(k) C(k)
−T (k + 1) A(k)

Ξ2(k) := H(k) T (k) + J(k) C(k) − E1(k) (4.4)

To ensure the estimation error is identically zero if
es(0) = 0 and ‖w‖2,[0,N ] = 0 (i.e., the filter is unbiased),
the terms in (4.3) involving the plant state x(k) must
be removed. The resulting unbiasedness constraints can
be expressed as

[
Ξ1(k)
Ξ2(k)

]
=

[
0
0

]
(4.5)

The definition of T (k) in (4.2) ensures that (4.5) has a
solution. If v = n−p, the unbiasedness constraints (4.5)
have a unique solution for any T (k) satisfying (4.2). In
the appendix, it is shown that the realization of the
reduced-order H∞ filter in [9], [10], [11] is the unique
solution of (4.5) for a given T (k) and, therefore, are
independent of the solution of the H∞ problem (2.2).
If v = m = n − p, the coefficient matrices of the filter
are completely specified since T (k) = E1(k).

In the sequel, it is assumed that reduced-order filter
dimension v satisfies v > n − p and, in this case, there

exist matrix functions Γ(k) and Ω(k) with dimensions
r × v and r × p, respectively, such that

[
Γ(k) Ω(k)

] [
T (k)
C(k)

]
=

[
0
0

]
(4.6)

where r := v + p − n. Furthermore, the rank condition
in (4.2) ensures that Γ(k) and Ω(k) can be chosen so
that

rank
[

Γ(k) Ω(k)
]

= r (4.7)

The following lemma shows that Ω(k) has full row rank.
Note that r ≤ p if v ≤ n.

Lemma 2: Given a matrix function T (k) satisfy-
ing (4.2), there exist matrix functions Γ(k) and Ω(k)
satisfying (4.6) such that

rank Ω(k) = r (4.8)

for k = 0, . . . , N .
Proof: To prove that rank Ω(k) = r, a contradiction
argument is used. Suppose that rankΩ(k0) < r for some
k0. It follows that there exists a r×1 vector u0 6= 0 such
that u∗

0 Ω(k0) = 0. In this case, the expression in (4.6)
can be used to write

u∗
0 Ω(k0) C(k0) = −u∗

0 Γ(k0) T (k0) = 0 (4.9)

From the rank assumption in (4.7), u∗
0 Γ(k0) 6= 0. In

this case, the expression in (4.9) contradicts the rank
assumption on T (k) in (4.2) and, therefore, rankΩ(k) =
r for k = 0, . . . , N .

Given the results of Lemma 2, the matrix function
Ω(k) is chosen such that

Ω(k) Ω∗(k) = Ir (4.10)

where Ir is the r×r identity matrix. Furthermore, define
a matrix function Ω⊥(k) such that

[
Ω(k)

Ω⊥(k)

]

is unitary for all k = 0, . . . , N or, equivalently,

Ω(k)
(
Ω⊥(k)

)∗
= 0

Ω⊥(k)
(
Ω⊥(k)

)∗
= Ip−r

Ω∗(k) Ω(k) +
(
Ω⊥(k)

)∗
Ω⊥(k) = Ip (4.11)

V. MAIN RESULT
For the H∞ filtering problem in (2.2), the admissible

set of reduced-order filters have realizations that satisfy
the unbiasedness constraints (4.5). If m + p > n, the
unbiasedness constraints do not have a unique solution.
Using this extra degree of freedom, the reduced-order
H∞ filtering problem is converted into a full-order
H∞ filtering problem with the same dimension as the
reduced-order filter. The solution of the reduced-order
H∞ filtering problem is obtained by applying a full-
order H∞ filtering results [12] to a related plant with
the same dimension as the reduced-order filter.



If m+p > n, a family of admissible filter realizations
in the form of (4.1) are obtained.

Lemma 3: Given T (k) satisfying (4.2), suppose that
the matrix functions Fo(k), Ko(k), Ho(k), and Jo(k)
represent any solution of (4.5). The following matrix
functions also satisfy the unbiasedness constraints

[
F (k) K(k)
H(k) J(k)

]
=

[
Fo(k) − Ko(k) Ω∗(k) Γ(k) + ∆(k) Γ(k)
Ho(k) − Jo(k) Ω∗(k) Γ(k) + Π(k) Γ(k)

Ko(k)
(
Ω⊥(k)

)∗ Ω⊥(k) + ∆(k) Ω(k)
Jo(k)

(
Ω⊥(k)

)∗ Ω⊥(k) + Π(k) Ω(k)

]

(5.1)

where ∆(k) and Π(k) are any bounded matrix functions.

Proof: Substituting the expressions for F (k) and
K(k) in (5.1) into the left side of (4.5) and using
the relationship

(
Ω⊥(k)

)∗ Ω⊥(k) = Ip − Ω∗(k) Ω(k)
from (4.11) yields

Fo(k) T (k) + Ko(k) C(k)
+ (−Ko(k) Ω∗(k) + ∆(k)) (Γ(k) T (k) + Ω(k) C(k))

(5.2)

From the unbiasedness constraints (4.5), Fo(k) T (k) +
Ko(k) C(k) = T (k+1) A(k). Furthermore, by the defin-
ition of Γ(k) and Ω(k) in (4.6), Γ(k) T (k)+Ω(k) C(k) =
0. As a result, F (k) and K(k) in (5.1) satisfy the
first unbiasedness constraint. A similar argument can
be used to show that H(k) and J(k) in (5.1) satisfy the
second unbiasedness constraint.

Using the matrix functions in (5.1), the estimation
error equations in (4.3) can be rewritten as

es(k + 1) = (Fo(k) − Ko(k) Ω∗(k) Γ(k)) es(k)
+ (Ko(k)

(
Ω⊥(k)

)∗
Ω⊥(k) D(k)

−T (k + 1) B(k)) w(k)
+∆(k) (Γ(k) es(k) + Ω(k) D(k) w(k))

ez(k) = (Ho(k) − Jo(k) Ω∗(k) Γ(k)) es(k)
+Jo(k)

(
Ω⊥(k)

)∗
Ω⊥(k) D(k) w(k)

+Π(k) (Γ(k) es(k) + Ω(k) D(k) w(k))
(5.3)

Comparing the above error equations with error equa-
tions for the full-order filter in (3.8), it follows that the
error equations in (5.3) are equivalent to those obtained
if a full-order filter with a realization of the form in (3.1)
where K̃(k) = ∆(k) and J̃(k) = Π(k) were applied to
the v-dimensional plant




Ã(k) B̃(k)
C̃(k) D̃(k)
Ẽ1(k) Ẽ2(k)




=




Fo(k) − Ko(k) Ω∗(k) Γ(k)
−Γ(k)

Ho(k) − Jo(k) Ω∗(k) Γ(k)

B̃(k)
Ω(k) D(k)

−Jo(k)
(
Ω⊥(k)

)∗ Ω⊥(k) D(k)




(5.4)

where

B̃(k) = −Ko(k)
(
Ω⊥(k)

)∗
Ω⊥(k) D(k)

+T (k + 1) B(k) (5.5)

From the above analysis, the reduced-order H∞
filtering problem has a solution if and only if the v-
dimensional full-order H∞ filtering problem for (5.4)
has a solution. Therefore, the main result is obtained
by applying the results of Theorem 1 to the plant (5.4).

Theorem 4: Given the plant in (2.1) with E2(k) = 0
for k = 0, . . . , N , the tolerance γ > 0, the initial
error weight R > 0, and a matrix function T (k)
satisfying (4.2), the H∞ filtering problem (2.2) can be
solved by a v-dimensional, reduced-order filter where
m ≥ v > n − p if and only if

S̃3(k) > 0
(
S̃1(k) − S̃2(k) S̃3(k)−1 S̃∗

2 (k)
)−1

< 0 (5.6)

where S̃ is defined as in (3.3)-(3.5) using the coefficient
matrices in (5.4). Furthermore, if a solution exists, one
such filter has a realization

ξ(k + 1) = (Fo(k) − Ko(k) Ω∗(k) Γ(k)

+M̃2(k) S̃−1
3 (k) Γ(k)

)
ξ(k)

+
(
Ko(k)

(
Ω⊥(k)

)∗
Ω⊥(k)

+M̃2(k) S̃−1
3 (k) Ω(k)

)
y(k), ξ(0) = ξ0

ẑ(k) = (Ho(k) − Jo(k) Ω∗(k) Γ(k)

−S̃2(k) S̃−1
3 (k) Γ(k)

)
ξ(k)

+
(
Jo(k)

(
Ω⊥(k)

)∗
Ω⊥(k)

−S̃2(k) S̃−1
3 (k) Ω(k)

)
y(k) (5.7)

where M̃ is defined as in (3.5) using the coefficient ma-
trices in (5.4) and Fo(k), Ko(k), Ho(k), and Jo(k) repre-
sent any solution of the unbiasedness constraints (4.5).
Proof: Since the results of Theorem 1 are being
applied to the plant (5.4), it only remains to show that
D̃(k) D̃∗(k) > 0. Using (5.4),

D̃(k) D̃∗(k) = Ω(k) D(k) D∗(k) Ω∗(k)

where D̃(k) D̃∗(k) is a r × r matrix function. From
Lemma 2, rankΩ(k) = r for all k = 0, . . . , N . Therefore,
D̃(k) D̃∗(k) > 0 since D(k) D∗(k) > 0 by assumption.



As stated, the result in Theorem 4 depends on the
particular solution (F0(k), K0(k), H0(k), and J0(k))
of the unbiasedness constraints (4.5). The following
corollary shows that the realization is unique up to the
choice of γ, R, and the matrix function T (k); that is,
the coefficient matrices in (5.7) are independent of the
choice of the matrix functions Fo(k), Ko(k), Ho(k), and
Jo(k).

Corollary 5: Given the plant in (2.1) with E2(k) =
0 for k = 0, . . . , N , the tolerance γ > 0, the initial
estimation error weight R > 0, and a matrix function
T (k) satisfying (4.2), the realization of the reduced-
order filter (5.7) in Theorem 4 is unique.
Proof: The first step in the proof is to show that
v-dimensional plant realization (5.4) is independent of
the choice of the matrix functions Fo(k), Ko(k), Ho(k),
and Jo(k). Suppose that the matrix functions F1(k),
K1(k), H1(k), and J1(k) represent another solution to
the unbiasedness constraints (4.5). It follows that

[
Fδ(k) Kδ(k)
Hδ(k) Jδ(k)

] [
T (k)
C(k)

]
=

[
0
0

]
(5.8)

where [
Fδ(k) Kδ(k)
Hδ(k) Jδ(k)

]

:=
[

F1(k) − Fo(k) K1(k) − Ko(k)
H1(k) − Ho(k) J1(k) − Jo(k)

]
(5.9)

From the definition of the left null space of[
T ∗(k) C∗(k)

]∗ in (4.6), there exist bounded, matrix
functions Θ(k) and Ξ(k) such that

[
Fδ(k) Kδ(k)
Hδ(k) Jδ(k)

]

=
[

Θ(k)
Ξ(k)

] [
Γ(k) Ω(k)

]
(5.10)

Using the definitions in (5.10), the difference

Ãδ(k) := F1(k) − K1(k) Ω∗(k) Γ(k)
− (Fo(k) − Ko(k) Ω∗(k) Γ(k))

can be rewritten as

Ãδ(k) = Fδ(k) − Kδ(k) Ω∗(k) Γ(k)
= Θ(k) Γ(k) − Θ(k) Ω(k) Ω∗(k) Γ(k)
= 0, ∀k = 0, . . . , N (5.11)

because Ω(k) Ω∗(k) = Ir for k = 0, . . . , N by
definition (4.10). Furthermore, the relationship
in (5.10) yields that the difference B̃δ(k) :=
−K1(k)

(
Ω⊥(k)

)∗ Ω⊥(k) D(k) + T (k + 1) B(k) −(
−Ko(k)

(
Ω⊥(k)

)∗ Ω⊥(k) D(k) + T (k + 1) B(k)
)

can
be rewritten as

B̃δ(k) = −Kδ(k)
(
Ω⊥(k)

)∗
Ω⊥(k) D(k)

= −Θ(k) Ω(k)
(
Ω⊥(k)

)∗
Ω⊥(k) D(k)

= 0, ∀k = 0, . . . , N (5.12)

because Ω(k)
(
Ω⊥(k)

)∗ = 0 for k = 0, . . . , N
from (4.11). A similar process can be used to show that
H1(k) − J1(k) Ω∗(k) Γ(k) = Ho(k) − Jo(k) Ω∗(k) Γ(k)
and J1(k)

(
Ω⊥(k)

)∗ Ω⊥(k) = Jo(k)
(
Ω⊥(k)

)∗ Ω⊥(k)
for k = 0, . . . , N .

From the above analysis, the realization (5.4) is
independent of the choice of the matrix functions Fo(k),
Ko(k), Ho(k), and Jo(k). Furthermore, the solution of
the Riccati equation is independent of Fo(k), Ko(k),
Ho(k), and Jo(k) because the initial condition is in-
dependent of the solution of the unbiasedness con-
straints. Therefore, the realization of the reduced-order
filter (5.7) is independent of the choice of the matrix
functions Fo(k), Ko(k), Ho(k), and Jo(k) because it is
computed from the v-dimensional plant realization (5.4)
and the solution of the Riccati equation.

VI. Conclusion

In this paper, the reduced-order H∞ filtering problem
is solved for discrete-time, linear, time-varying (LTV)
systems on a finite horizon. The resulting filter is unbi-
ased and has a unique realization for each set of design
parameters. The state dimension of the reduced-order
filter is treated as a design parameter and is less than
or equal to the number of states (or linear combination
thereof) to be estimated and greater than the plant
state dimension minus the number of measurements.
In this case, the unbiasedness constraints do not have
a unique solution and this extra degree of freedom is
used to convert the reduced-order H∞ filtering problem
into a full-order H∞ filtering problem with the same
dimension as the reduced-order filter. The solution of
the reduced-order H∞ filtering problem is obtained by
applying the full-order H∞ filtering results.

In future work, the results of this paper will be
extended to the infinite horizon. Furthermore, the effect
of the filter order and the choice of states to be
estimated in the reduced-order filter on the performance
of the filter will be examined.

Appendix

In [9], [10], [11], a reduced-order H∞ filter with
minimum dimension (i.e. v = n − p) was derived. The
analysis in Section IV shows that the realization is
uniquely determined from the state estimation matrix
function T (k). In this appendix, it is shown that the
realization in [9], [10], [11] satisfies this property and,
therefore, is independent of the design parameters used
in the formulation of the H∞ filtering problem (2.2).

The reduced-order filter proposed in [9], [10], [11] has
a realization

ξ(k + 1) = F (k) ξ(k) + K(k) y(k) + G(k) ẑ(k)
ξ(0) = ξ0

ẑ(k) = H(k) ξ(k) + J(k) y(k) (A.1)



This realization can be put in the form of (4.1) by
substituting the expression for ẑ(k) into the filter state
equation yielding

ξ(k + 1) = (F (k) + G(k) H(k)) ξ(k)
+ (K(k) + G(k) J(k)) y(k), ξ(0) = ξ0

ẑ(k) = H(k) ξ(k) + J(k) y(k) (A.2)

As a result, the term F (k) + G(k) H(k) takes the place
of F (k) in the unbiasedness constraint (4.5) and K(k)+
G(k) J(k) takes the place of K(k).

If the reduced-order filter dimension is minimized
(i.e., v = n − p), the n × n matrix function

[
T (k)
C(k)

]
(A.3)

is invertible for k = 0, . . . , N because the definition of
T (k) in (4.2) ensures that the matrix in (A.3) has full
rank. Using the definition of the coefficient matrices
in (A.2) in [9], [10], [11], the following result shows that
F (k) + G(k) H(k), K(k) + G(k) J(k), H(k), and J(k)
are independent of the design parameters used in the
formulation of the H∞ filtering problem (2.2).

Lemma A.1: Suppose that the n×n matrix function
in (A.3) is invertible for k = 0, . . . , N . Then, the
coefficient matrix functions F (k) + G(k) H(k), K(k) +
G(k) J(k), H(k), and J(k) defined in [9], [10], [11] are
given by

F (k) + G(k) H(k) = T (k + 1) A(k) Γ1(k)
K(k) + G(k) J(k) = T (k + 1) A(k) Γ2(k)

H(k) = E1(k) Γ1(k)
J(k) = E1(k) Γ2(k) (A.4)

for k = 0, . . . , N where Γ1(k) and Γ2(k) are defined as

[
Γ1(k) Γ2(k)

]
:=

[
T (k)
C(k)

]−1

(A.5)

Proof: The proof utilizes the unbiasedness con-
straints (4.5) and the definitions of Γ1(k) and Γ2(k).

From the results of Lemma A.1, the realization of
the filter in [9], [10], [11] is uniquely determined by
the plant data in (2.1) and the matrix function T (k).
Therefore, the realization of the filter is independent of
the design parameters used in the formulation of the
H∞ problem (2.2). Finally, if m = n − p, the filter
realization is completely determined because T (k) =
E1(k) for k = 0, . . . , N .
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