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Abstract— Output feedback control using high-gain  ob- ideal differentiation feedback is presented. This is done
servers in the presence of measurement noise is con5|deredby showing that the state trajectories of the two systems

for a class of nonlinear systems. We show that the closed- 570 close. Finally, we provide some simulation results to
loop system with high-gain observer converges to a closed- . .
illustrate the analysis.

loop system with ideal differentiation as the gain of the

observer is increased. This ideal differentiation system si
developed to reference the convergence properties. Anaigal ) IIl. MOTIVATION
and simulation results are presented. Consider the system
|. INTRODUCTION Ty = (1)
In the design of output feedback control, high-gain ob- T2 = a1x1+ax2+u (2)
servers have gained in popularity due to their ability to y = z14v (3)

accurately estimate the unmeasured states of a system while -

rejecting disturbances. An observer design to estimate t{&€ System can be stabilized by the state feedback control
derivatives of the output togther with a .globally bounded w = —byy — byms (4)
state feedback control were introduced in [5]. They were

used to prove a separation principle for the stabilizatiowhereb, andb, are chosen such that the roots of

of a class of nonlinear systems in [2]. Recently, high- 2 (p, — by — 5

gain observers and their asymptotic properties have been 4 (b2 —a)s+ (b —ar) ©)
studied when actuator and sensor dynamics, differentdesijave negative real parts. In output feedback we use the
techniques, and varying discretization methods have beénear high-gain observer

considered [7], [3], [4]. It is in this spirit, that we contia

this study by investigating the convergence properties of N . a1 .

the high-gain observer in the presence of measurement o= a2 ?(y—xl) ©)
noise. Because feedback and state estimation based on the by = %(U — 1) @)
measurement of the output of a system are inherently noisy, g2 ™

it is important to have an understanding of the behavior afnd implement the control as

the output feedback controller with respect to the noise as i —boi 8
the observer parameters are varied. In this note we consider R (®)
a class of nonlinear systems and investigate the limitingy the observer (6)-(7), the measurement naise multi-
effect of increasing the observer gain on the trajectorigslied by a gain of the orde®(1/<2). This gives the impres-
of the closed-loop system in the presence of measuremagidn that as we decreasehe effect of noise will blow up.
noise. We begin by motivating the discussion using linearhis is not the case, however, as the following calculations
systems and transfer function analysis. We then introduggiow. The transfer function from the measurement noise
the nonlinear system structure and develop a referentethe stater is given by

system based on ideal differentiation of the measured outpu

from which we can compare the convergence properties Numa { -1 ] (9)

of the high-gain observer. Analysis of the convergence of Deny [ —s

the trajectories of the closed loop system under high-gain
observer feedback to the trajectories of the system under

Numy = [b1(ea1s + az) + baaas]

Deny = (5% — ags — a1)[(e5)? + 165 + an)+
This work was supported in part by the National Science Fatiod
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which is a proper transfer function that approaches [1l. SYSTEM DESCRIPTION

(bas + b1) [ -1 ] (10) We consider the SISO nonlinear system
52+ (by — az)s + (bl- —ay) -—s | i = Av+ Bla(@)+ b@)u] (17)
ase — 0. The transfer function (10) is nothing but the y = Cr+uw (18)

transfer function fromv to z under the feedback control
wherew is the control inputz € R™ is the state, and;
u = —biy — boy (11) is the measurement noise. Thex n matrix A, then x 1

We call the closed-loop system under (11) the ideal diffelr—namx B, and thel x n matrix C are given by

entiation system. It determines the limiting behavior o th 0 1 0 0
closed-loop system under the high-gain observer as0. 0 0 1 0 0
The foregoing analysis does not take into consideration A= | : | ,B=
that, in the high-gain observer system, the control input is :
saturated to protect the plant from peaking. The saturation 8 ' 0 0 (1) 1

function should be effective only during peaking. This is
ensured by choosing the control saturation level higher tha
mazx|—byx1 — byxo| where the maximum is calculated over C=[10 -+ 0]
a compact set of interest for the closed-loop system undfr

(noise-free) state feedback. How will the presence of noi gl convenience, we do not include zero dynamics in the

affect the control saturation? To answer this question, Iér[mdel (17)-(18), but i_t Is expected th_at zero dynamics wil
us consider the transfer function from the noisdo the not alter our conclusions. It can easily be seen that when
control u, which is given by v1 = 0 the states of the system are successive derivates of

the output y. The output feedback controller is designed by

Nume (12) first considering a state feedback controller
Densg
Numgy = —(52 — ags — a1)[b1(ea15 + az) 4 aobas] u=y(x) (19)
Dengy = (5% — azs — a1)[(es)? + a1es + ay] that meets the performance objectives. The output feedback

b1 (cans + az) + anbs controller is implemented using the observer
1 1 2 202

for the observer-based system and by i = A& + Bla(#) + b(2)u] + H(y — Cz)  (20)

2
— (5" — azs — a1)(bas + by) (13) where the observer gain is designed as
82 + (b2 — CLQ)S + (b1 — al)

for the ideal differentiation system. It is clear that (12)

approaches (13) as — 0. However, (13) is an improper . js a small positive parameteé(i) and b(i) are the
transfer function. To ensure thatoes not saturate we must nominal models ofi(z) andb(z), and the positive constants

limit the class of signals. We are interested in investigating o, are chosen such that the roots of the polynomial
wide-band noise. So, supposeis the output of a linear

S -1 _
system whose transfer function is s"+as" 4 Fan_1s+an =0 (21)

HT =2 % o]

K (14) have negative real parts. It is shown in [5] that the state

(18)? + Brps + B2 estimation error will reduce to am(e) quantity after
and whose input is a bounded signal The constantg,, @ Short transient period. During this period the estimate
3, and . are positive and the bandwidth ofwill be of the May experience a peaking phenomenon described in [S].
order of 1/ for a white (or almost white) input signa. 10 Overcome peaking, the control is saturated outside a

The transfer function compact regioq of interest so Fhat: ~v(z) is a global_ly
(5% — ags — a1)(bas + by) K bounded function ofz. To facilitate the study of high

( 510 2 ! Z ! > < R 3 gain observers in the presence of measurement noise we
(57 + (b — a2)s + (b1 — a1)) /) \ (u5)? + Bopus + a introduce a reference system based on ideal differentiatio

from w to u has an impulse response of the order off the measured output. The control of such a system takes

1/u2. For the problem to be well formulated, we takethe form o (1)
K = u2. When the plant has relative degreghe foregoing w="y, 9,4 y""") (22)
discussion shows that the appropriate noise model is  syppose the noise signai is the output of a linear system
n driven by a bounded input. The system is
1
(16) .

= w
()™ + Br(ps) =t + -+ Bn1ps + B
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wherey is a positive constant and the roots of

(Ms)n + 51 (:us)n_l + 4+ ﬁn—l,us + 571 (24)

have negative real parts. The constanparametrizes the
bandwidth of the noise, which is of the order bfu. For
wide band noisey will be small. In the ideal differentiation
system, the contral depends on derivatives of up to the
(n — 1)th derivative. To ensure that will be bounded as
© — 0, we take the numerator of (23) to hé&.

Let

. — def
v = [1}1,’01,’01,"',’05” 1)] = [vl"

-]

be a vector with elements consistingigfand its successive

(25)

with a region of attraction that includes a doméain C R"
Furthermorez = 0 is locally exponentially stable.

Under the above assumptions we can show that the tra-
jectories of the closed-loop system under high-gain oleserv
feedback approach the trajectories of the ideal diffegenti
tion system as tends to zero. The idea behind the analysis
is to represent the system in the singularly perturbed form
by rescaling the error between the observer states and the
derivatives of the output, much as in the proof given in [6].
These rescaled errors are given by

:ci—:Ei—i-vi

derivatives. The closed-loop system under ideal difféaent Hence,

tion is

& = Az + Bla(z) + b(x)y(z + v)] def f(z,v)  (26)

The ideal differentiation system provides us with a refeeen
system that has some intuitive appeal, and that we can use
to study the convergence properties of the output feedback

high-gain observer as the parametds decreased.

IV. TRAJECTORYCONVERGENCE
We start by stating our assumptions.

& = : , for i=1---n (30)
En—z
x—3+v=DE (32)

where D = diag[l,e,---,e""!]. The rescaled system
appears as

e = —ab&+&

ey = —aé1 +&3

. ' " 6 _
€€ = —apé ted(x, )+ ;vn+1

Assumption 1: The measurement noise is generated byhere

the exogenous system (23), wherds a bounded input.
Let

,Ui71 = U2
1102 U3
/M.jn Un+1
vy = v lo
be a state-space realization of (23), whefe, = — (5,01 —
Bn_102 — - - - — B1U, + pw. Written in @ more compact form

we have

pv = A19 + pBw (27)

where A, is a Hurwitz matrix. We takes(0) = 0.
The elements of the vectorsand v are related through
(i-1)
Uy = ke — for i=1--n
Iu’ﬂ K3
It can be shown thaltv|| < uK, for somekK, > 0.
Assumption 2: The function f(x,y) and its first partial
derivatives with respect ta are locally lipschitz in their
arguments and the functiop(x) is globally bounded inc.
Assumption 3: For everyu € (0, 1*] the ideal differen-
tiator system has a steady-state solutio(¥, ) which has
following properties uniformly ing for all u € (0, p*]:
1. z, is bounded
2. for z = x, — z,, the originz = 0 is a uniformly
asymptotically stable equilibrium point of the system

i=f(z+ 3p,0) — f(@r,0) 2 F(z,2,,v)

(28)

(29)

6(z, @) = a(2) — (@) + [b(2) = b(@&)| 1(@)  (32)

In view of these equations the closed-loop system under
the observer is given by

&= f(x,v - DE) (33)
€ = Ao + eBS(x,7) + =By (34)
I
where
—a 1 v o 0
—as 0 1 - 0
do=| :
—p_q - - 0 1
—ay, 0 - -+ 0

We can see that settingequal to zero results in the closed-
loop system under ideal differentiation. This result idesda
formally in the following theorem.

Theorem: Consider the closed-loop system under the high-
gain observer (33)-(34)and the ideal differentiation system
(26) and denote their solutions by x and z,., respectively.
Suppose Assumptions 1-3 hold and z(ty) = z,(to). Let

@ C R™ and Q C R, be compact sets. Given v > 0 there
exists ¢*, dependent on p* but independent of 4, such that
forall 0 <e<e* 0<p<p* z(th) €, and () € Q

() =z ()] < v (35)

for all ¢ € [to, 00).
4116



Proof:
Let n = x — Z, and rewrite the equations (33)-(34) as

7'7:F(n,fr,v)—l—f(:z:,v—Df)—f(a:,v) (36)

ov
o BT (a7)

in some neighborhood af = 0, for some positive constants
¢;. The errore(t) = z(t) — z,.(t) satisfies

€ = Aot + eBS(2, %) + = B 37)
K ée=F(e(t),z(t),v(t)) + Ay + Ag (48)
wheren(to) = x(to) — Zr(to) = zr(to) — 2, (to) = 2(t0) € \yhere
Q. Note that
Ay = fle+ v — DE) — fle+ay, 49
el < Bullonll + -+ Bulloa] + e (38) 1= fletonv =D~ fletany) - (49)

Sincew is bounded and from (27) is O(u), ||Un+1|l = B B
O(n). Therefore(1/u)v,.1 on the right-hand side of (37) A2 = f(Zr,v) = fle+Zr,v) = f(zr,v)+ f(etz,,v) (50)

is bounded, uniformly inu. Consider the syste_rri = The error terms\; and A, satisfy the bounds
F(z,z,,v) and letR be any connected subset of its region
of att.ractlon. By Corollary (6.*1) of _[1], there is a Lyapunov AL < Ky €] (51)
functionV (z), dependent om* but independent of;,, such
that
ar(wo(2)) < V(2) < az(wo(2)) (39) [A2]] < Kalle]|* + Ksl|z] [le]l (52)
1% ~ for some positive constant&;. Equation (48) is viewed
EF(Zth“) < —ag(wo(2)) (40) asa perturbation of the exponentially stable systers

where a,a, are classK,, functions,as is a continuous F(e, r,v). The Lyapunov functiorV’(t, e) satisfies

positive definite functionwg(z) is positive definite, and e o7

’LUQ(Z)—»OO&SZ—>8R. o f/:——l——F(e,g’cr,v)—i——(Al—i—Ag) (53)
Choose > 0 such that the s, = {V () < ¢} satisfies ot Oe de

Q C Q. C R. Repeating arguments used in [2], it can be

shown that there exist ande; such that for all0 < ¢ < V< _ 2 K K. 24K 54

£1, the setQ). x {W (&) < pe?} is positively invariant and < —eallelFeallellKaligll+Kallel "+ Ksfl=lllle]] (54)

trajectories of (36)-(37) enter this set within a time indr  Using the fact that after some time> 71, ||£]| is O(e)

[to, T'(e) + to], wherelim._oT(g) = 0. and||z(t)|| satisfies
Due to the global boundedness 9fz), ¢ is uniformly
bounded. Hence, over the peri¢id, T'(c) + to] I2(t)|| < K.||z(Ty)||e ™) | t>Ty  (55)
|2(t) — 2. ()] < ET(e) (41) for some positive constanfs. and~, independent ofi, it
can be shown that, givem > 0 there exitszs, such that
for somek > 0. Fort¢ > to + T'(¢),
|lz(®) =z @®)|| <11 ¥V t> Ty (56)
#=flav=DE) = fla,v) +O6) “42) VY 0 < e < 5. From equations (41), (44), and (56) we
while can see that givem > 0 there exists=* such that for all
Zr = f(xp,v) (43) O0<e<er,

le(®)ll < v (57)

Hence by continuous dependence of the solution on param-
eters, we see that for any finil® > ¢, V. SIMULATION RESULTS

Example: To illustrate the above analytical results, we
t) —z,.(t)|| < 44 . . ’
l2(8) = 2 (B)l] < o(e) (44) consider the following example of the pendulum system
for all ¢t € [to,T1], whered(e) is a continuous function

with lim._0d(¢) = 0. It remains now to deal with the 0 = w (58)

interval [T}, oo). For that we employ the local exponential W = —9.3429sin(0) — 0.1333w + 6.0469u  (59)
stability of 2 = F(z, Z,, v), which implies the existence of we simulated the observer based and ideal differentiation
a Lyapunov functionV/(¢, z) that satisfies systems for comparison. The high-gain observer for this
- ) system takes the form
alzll” < V(E,2) < e ]| (45) N 9 X
0 = o+=(0-0+v) (60)

ov. oV 9 : 1 R

T - < _ —  —(p_

5 + P F(z,z,,v) < —cs||z]| (46) w = (0—06+v) (61)
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Fig. 1. Plot of the pendulum trajectories(d,w) (solid) and (6, ,w) 10 - ? 8 " 1 1 v 1 1 2

(dotted) vs. time with & = 0.01 , s = 0.05 Fig. 2. Plot of the error (6 — 6;) vs. time with x = 0.05, € = 0.05

(dotted) and 0.005 (solid)

The control used is

u = —4S(lt((9 — 7+ ’Ul) + w + UZ)) (62) 0015

This controller is used to stabilize the system (4t =
m,w = 0). The parameter values for the noise system are
01 = 2, B2 = 3. The noise inputw is taken to be a
uniformly distributed noise with values ifp-10, 10]. The 0005
observer parameters arg = 2 and a; = 1. The initial
conditions aref, (0) = 6(0) = =, w,(0) = w(0) = §(0) =
w(0) = 0. The trajectories for the observer system and ideal  °
differentiation system are shown in Figure 1 for= 0.01
andp = 0.05. The trajectorie® and#, approachr while
w andw, approach 0. Figure 2 provides a closer look at the
steady-state trajectory error by plottiig- 6, for ¢ = 0.05,
0.005 and i = 0.05. Figure 3 displays the corresponding o — %+ 5 & & = o
errorsw — w,.. These plots show a reduction in the error
ase is decreased. Figure 4 shows a plot of the error of thigg: 3. Plot of the error (w — wy) vs. time with y = 0.05, ¢ = 0.05
(dotted) and £ = 0.005 (solid)
system statefz — x| at steady-state versus the parameter
e for p =1,0.1,0.01, and0.001. We choose to examine the
steady-state error only and ignore the effect of peaking to oo
illustrate the result. Of course, the error during peakiisg a
decreases as decreases. The general trend in this figure
indicates that the error decreasescadecreases and as
decreases.

-0.005

0.05

VI. CONCLUSIONS

We have studied the use of high-gain observers in output oo
feedback control of nonlinear systems in the presence of
measurement noise. The technical challenge in our analysis .
was to prove the trajectory convergence property as the ob-
server parametertends to zero uniformly in the parameter
1 that parametrizes the noise bandwidth. It is true that in our
problem formulation we had to limit the noise amplitude to B — . : :
O(p™), but we argued that such limitation is needed in the - B 10° 0°
ideal differentiation system to have a well-behaved cdntrg. .

. L Fig, 4. Plot of the error (||z — z||) vs. e with x = 1,0.1,0.01, and
signal. We have seen that as the observer gain is mcrea%q%l
the trajectories of the closed-loop system approach those

0.01-
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