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Abstract— Output feedback control using high-gain ob-
servers in the presence of measurement noise is considered
for a class of nonlinear systems. We show that the closed-
loop system with high-gain observer converges to a closed-
loop system with ideal differentiation as the gain of the
observer is increased. This ideal differentiation system is
developed to reference the convergence properties. Analytical
and simulation results are presented.

I. I NTRODUCTION

In the design of output feedback control, high-gain ob-
servers have gained in popularity due to their ability to
accurately estimate the unmeasured states of a system while
rejecting disturbances. An observer design to estimate the
derivatives of the output together with a globally bounded
state feedback control were introduced in [5]. They were
used to prove a separation principle for the stabilization
of a class of nonlinear systems in [2]. Recently, high-
gain observers and their asymptotic properties have been
studied when actuator and sensor dynamics, different design
techniques, and varying discretization methods have been
considered [7], [3], [4]. It is in this spirit, that we continue
this study by investigating the convergence properties of
the high-gain observer in the presence of measurement
noise. Because feedback and state estimation based on the
measurement of the output of a system are inherently noisy,
it is important to have an understanding of the behavior of
the output feedback controller with respect to the noise as
the observer parameters are varied. In this note we consider
a class of nonlinear systems and investigate the limiting
effect of increasing the observer gain on the trajectories
of the closed-loop system in the presence of measurement
noise. We begin by motivating the discussion using linear
systems and transfer function analysis. We then introduce
the nonlinear system structure and develop a reference
system based on ideal differentiation of the measured output
from which we can compare the convergence properties
of the high-gain observer. Analysis of the convergence of
the trajectories of the closed loop system under high-gain
observer feedback to the trajectories of the system under
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ideal differentiation feedback is presented. This is done
by showing that the state trajectories of the two systems
are close. Finally, we provide some simulation results to
illustrate the analysis.

II. M OTIVATION

Consider the system

ẋ1 = x2 (1)

ẋ2 = a1x1 + a2x2 + u (2)

y = x1 + v (3)

The system can be stabilized by the state feedback control

u = −b1x1 − b2x2 (4)

whereb1 andb2 are chosen such that the roots of

s2 + (b2 − a2)s + (b1 − a1) (5)

have negative real parts. In output feedback we use the
linear high-gain observer

˙̂x1 = x̂2 +
α1

ε
(y − x̂1) (6)

˙̂x2 =
α2

ε2
(y − x̂1) (7)

and implement the control as

u = −b1x̂1 − b2x̂2 (8)

In the observer (6)-(7), the measurement noisev is multi-
plied by a gain of the orderO(1/ε2). This gives the impres-
sion that as we decreaseε the effect of noise will blow up.
This is not the case, however, as the following calculations
show. The transfer function from the measurement noisev
to the statex is given by

Num1

Den1

[

−1
−s

]

(9)

Num1 = [b1(εα1s + α2) + b2α2s]

Den1 = (s2 − a2s − a1)[(εs)
2 + α1εs + α2]+

[b1(εα1s + α2) + α2b2s]



which is a proper transfer function that approaches

(b2s + b1)

s2 + (b2 − a2)s + (b1 − a1)

[

−1
−s

]

(10)

as ε → 0. The transfer function (10) is nothing but the
transfer function fromv to x under the feedback control

u = −b1y − b2ẏ (11)

We call the closed-loop system under (11) the ideal differ-
entiation system. It determines the limiting behavior of the
closed-loop system under the high-gain observer asε → 0.

The foregoing analysis does not take into consideration
that, in the high-gain observer system, the control input is
saturated to protect the plant from peaking. The saturation
function should be effective only during peaking. This is
ensured by choosing the control saturation level higher than
max|−b1x1−b2x2| where the maximum is calculated over
a compact set of interest for the closed-loop system under
(noise-free) state feedback. How will the presence of noise
affect the control saturation? To answer this question, let
us consider the transfer function from the noisev to the
control u, which is given by

Num2

Den2
(12)

Num2 = −(s2 − a2s − a1)[b1(εα1s + α2) + α2b2s]

Den2 = (s2 − a2s − a1)[(εs)
2 + α1εs + α2]

+b1(εα1s + α2) + α2b2s

for the observer-based system and by

−(s2 − a2s − a1)(b2s + b1)

s2 + (b2 − a2)s + (b1 − a1)
(13)

for the ideal differentiation system. It is clear that (12)
approaches (13) asε → 0. However, (13) is an improper
transfer function. To ensure thatu does not saturate we must
limit the class of signalsv. We are interested in investigating
wide-band noise. So, supposev is the output of a linear
system whose transfer function is

K

(µs)2 + β1µs + β2
(14)

and whose input is a bounded signalw. The constantsβ1,
β2 andµ are positive and the bandwidth ofv will be of the
order of1/µ for a white (or almost white) input signalw.
The transfer function
(

−(s2 − a2s − a1)(b2s + b1)

(s2 + (b2 − a2)s + (b1 − a1))

) (

K

(µs)2 + β2µs + β1)

)

(15)
from w to u has an impulse response of the order of
1/µ2. For the problem to be well formulated, we take
K = µ2. When the plant has relative degreen, the foregoing
discussion shows that the appropriate noise model is

µn

(µs)n + · · · + βn−1(µs) + βn

(16)

III. SYSTEM DESCRIPTION

We consider the SISO nonlinear system

ẋ = Ax + B[a(x) + b(x)u] (17)

y = Cx + v1 (18)

whereu is the control input,x ∈ Rn is the state, andv1

is the measurement noise. Then × n matrix A, then × 1
matrix B, and the1 × n matrix C are given by

A =















0 1 · · · · · · 0
0 0 1 · · · 0
...

...
0 · · · · · · 0 1
0 0 · · · · · · 0















, B =











0
0
...
1











C =
[

1 0 · · · · · · 0
]

For convenience, we do not include zero dynamics in the
model (17)-(18), but it is expected that zero dynamics will
not alter our conclusions. It can easily be seen that when
v1 = 0 the states of the system are successive derivates of
the output y. The output feedback controller is designed by
first considering a state feedback controller

u = γ(x) (19)

that meets the performance objectives. The output feedback
controller is implemented using the observer

˙̂x = Ax̂ + B[â(x̂) + b̂(x̂)u] + H(y − Cx̂) (20)

where the observer gain is designed as

HT =
[

α1

ε
α2

ε2 · · · αn

εn

]

ε is a small positive parameter,̂a(x̂) and b̂(x̂) are the
nominal models ofa(x) andb(x), and the positive constants
αi are chosen such that the roots of the polynomial

sn + α1s
n−1 + · · · + αn−1s + αn = 0 (21)

have negative real parts. It is shown in [5] that the state
estimation error will reduce to anO(ε) quantity after
a short transient period. During this period the estimate
may experience a peaking phenomenon described in [5].
To overcome peaking, the control is saturated outside a
compact region of interest so thatu = γ(x) is a globally
bounded function ofx. To facilitate the study of high
gain observers in the presence of measurement noise we
introduce a reference system based on ideal differentiation
of the measured output. The control of such a system takes
the form

u = γ(y, ẏ, ÿ, · · · , y(n−1)) (22)

Suppose the noise signalv1 is the output of a linear system
driven by a bounded inputw. The system is

v1 =
µn

(µs)n + β1(µs)n−1 + · · · + βn−1µs + βn

w (23)



whereµ is a positive constant and the roots of

(µs)n + β1(µs)n−1 + · · · + βn−1µs + βn (24)

have negative real parts. The constantµ parametrizes the
bandwidth of the noise, which is of the order of1/µ. For
wide band noise,µ will be small. In the ideal differentiation
system, the controlu depends on derivatives ofv1 up to the
(n − 1)th derivative. To ensure thatu will be bounded as
µ → 0, we take the numerator of (23) to beµn.

Let

v = [v1, v̇1, v̈1, · · · , v
(n−1)
1 ]

def
= [v1 · · · vn] (25)

be a vector with elements consisting ofv1 and its successive
derivatives. The closed-loop system under ideal differentia-
tion is

ẋ = Ax + B[a(x) + b(x)γ(x + v)]
def
= f(x, v) (26)

The ideal differentiation system provides us with a reference
system that has some intuitive appeal, and that we can use
to study the convergence properties of the output feedback
high-gain observer as the parameterε is decreased.

IV. T RAJECTORYCONVERGENCE

We start by stating our assumptions.
Assumption 1: The measurement noise is generated by

the exogenous system (23), wherew is a bounded input.
Let

µ ˙̄v1 = v̄2

µ ˙̄v2 = v̄3

...

µ ˙̄vn = v̄n+1

v1 = µn−1v̄1

be a state-space realization of (23), wherev̄n+1 = −βnv̄1−
βn−1v̄2−· · ·−β1v̄n +µw. Written in a more compact form
we have

µ ˙̄v = A1v̄ + µBw (27)

whereA1 is a Hurwitz matrix. We takēv(0) = 0.
The elements of the vectorsv and v̄ are related through

v̄i =
v
(i−1)
1

µn−i
for i = 1 · · ·n (28)

It can be shown that‖v̄‖ ≤ µKv for someKv > 0.
Assumption 2: The functionf(x, y) and its first partial

derivatives with respect tox are locally lipschitz in their
arguments and the functionγ(x) is globally bounded inx.

Assumption 3: For everyµ ∈ (0, µ∗] the ideal differen-
tiator system has a steady-state solutionx̄r(t, µ) which has
following properties uniformly inµ for all µ ∈ (0, µ∗]:
1. x̄r is bounded
2. for z = xr − x̄r , the origin z = 0 is a uniformly
asymptotically stable equilibrium point of the system

ż = f(z + x̄r, v) − f(x̄r, v)
def
= F (z, x̄r, v) (29)

with a region of attraction that includes a domainRz ⊂ Rn

Furthermore,z = 0 is locally exponentially stable.
Under the above assumptions we can show that the tra-

jectories of the closed-loop system under high-gain observer
feedback approach the trajectories of the ideal differentia-
tion system asε tends to zero. The idea behind the analysis
is to represent the system in the singularly perturbed form
by rescaling the error between the observer states and the
derivatives of the output, much as in the proof given in [6].
These rescaled errors are given by

ξi =
xi − x̂i + vi

εn−i
, for i = 1 · · ·n (30)

Hence,
x − x̂ + v = Dξ (31)

where D = diag[1, ε, · · · , εn−1]. The rescaled system
appears as

εξ̇1 = −α1ξ1 + ξ2

εξ̇2 = −α2ξ1 + ξ3

...

εξ̇n = −αnξ1 + εδ(x, x̂) +
ε

µ
v̄n+1

where

δ(x, x̂) = a(x) − â(x̂) +
[

b(x) − b̂(x̂)
]

γ(x̂) (32)

In view of these equations the closed-loop system under
the observer is given by

ẋ = f(x, v − Dξ) (33)

εξ̇ = A0ξ + εBδ(x, x̂) +
ε

µ
Bv̄n+1 (34)

where

A0 =















−α1 1 · · · · · · 0
−α2 0 1 · · · 0

...
...

−αn−1 · · · · · · 0 1
−αn 0 · · · · · · 0















We can see that settingε equal to zero results in the closed-
loop system under ideal differentiation. This result is stated
formally in the following theorem.
Theorem: Consider the closed-loop system under the high-
gain observer (33)-(34)and the ideal differentiation system
(26) and denote their solutions by x and xr, respectively.
Suppose Assumptions 1-3 hold and x(t0) = xr(t0). Let
Q ⊂ Rn and Ω ⊂ Rz be compact sets. Given ν > 0 there
exists ε∗, dependent on µ∗ but independent of µ, such that
for all 0 < ε ≤ ε∗, 0 < µ ≤ µ∗, z(t0) ∈ Ω, and x̂(t0) ∈ Q

‖x(t) − xr(t)‖ ≤ ν (35)

for all t ∈ [t0,∞).



Proof:
Let η = x − x̄r and rewrite the equations (33)-(34) as

η̇ = F (η, x̄r , v) + f(x, v − Dξ) − f(x, v) (36)

εξ̇ = A0ξ + εBδ(x, x̂) +
ε

µ
Bv̄n+1 (37)

whereη(t0) = x(t0)− x̄r(t0) = xr(t0)− x̄r(t0) = z(t0) ∈
Ω. Note that

‖v̄n+1‖ ≤ β1‖v̄n‖ + · · · + βn‖v̄1‖ + µ‖w‖ (38)

Sincew is bounded and from (27)̄v is O(µ), ‖v̄n+1‖ =
O(µ). Therefore,(1/µ)v̄n+1 on the right-hand side of (37)
is bounded, uniformly inµ. Consider the systeṁz =
F (z, x̄r, v) and letR be any connected subset of its region
of attraction. By Corollary (6.1) of [1], there is a Lyapunov
functionV (z), dependent onµ∗ but independent ofµ, such
that

α1(w0(z)) ≤ V (z) ≤ α2(w0(z)) (39)

∂V

∂z
F (z, x̄r, v) ≤ −α3(w0(z)) (40)

whereα1,α2 are classK∞ functions,α3 is a continuous
positive definite function,w0(z) is positive definite, and
w0(z) → ∞ asz → ∂R.

Choosec > 0 such that the setΩc = {V (η) ≤ c} satisfies
Ω ⊂ Ωc ⊂ R. Repeating arguments used in [2], it can be
shown that there existρ and ε1 such that for all0 < ε ≤
ε1, the setΩc × {W (ξ) ≤ ρε2} is positively invariant and
trajectories of (36)-(37) enter this set within a time interval
[t0, T (ε) + t0], wherelimε→0T (ε) = 0.

Due to the global boundedness ofγ(x̂), ẋ is uniformly
bounded. Hence, over the period[t0, T (ε) + t0]

‖x(t) − xr(t)‖ ≤ kT (ε) (41)

for somek > 0. For t ≥ t0 + T (ε),

ẋ = f(x, v − Dξ) = f(x, v) + O(ε) (42)

while
ẋr = f(xr, v) (43)

Hence by continuous dependence of the solution on param-
eters, we see that for any finiteT1 > t0

‖x(t) − xr(t)‖ ≤ δ(ε) (44)

for all t ∈ [t0, T1], where δ(ε) is a continuous function
with limε→0δ(ε) = 0. It remains now to deal with the
interval [T1,∞). For that we employ the local exponential
stability of ż = F (z, x̄r, v), which implies the existence of
a Lyapunov function̄V (t, z) that satisfies

c1‖z‖
2 ≤ V̄ (t, z) ≤ c2‖z‖

2 (45)

∂V̄

∂t
+

∂V̄

∂z
F (z, x̄r, v) ≤ −c3‖z‖

2 (46)

∥

∥

∥

∥

∂V̄

∂z

∥

∥

∥

∥

≤ c4‖z‖ (47)

in some neighborhood ofz = 0, for some positive constants
ci. The errore(t) = x(t) − xr(t) satisfies

ė = F (e(t), x̄r(t), v(t)) + ∆1 + ∆2 (48)

where

∆1 = f(e + xr, v − Dξ) − f(e + xr, v) (49)

∆2 = f(x̄r, v)−f(e+x̄r, v)−f(xr, v)+f(e+xr, v) (50)

The error terms∆1 and∆2 satisfy the bounds

‖∆1‖ ≤ K1‖ξ‖ (51)

‖∆2‖ ≤ K2‖e‖
2 + K3‖z‖‖e‖ (52)

for some positive constantsKi. Equation (48) is viewed
as a perturbation of the exponentially stable systemė =
F (e, x̄r, v). The Lyapunov function̄V (t, e) satisfies

˙̄V =
∂V̄

∂t
+

∂V̄

∂e
F (e, x̄r, v) +

∂V̄

∂e
(∆1 + ∆2) (53)

˙̄V ≤ −c3‖e‖
2+c4‖e‖[K1‖ξ‖+K2‖e‖

2+K3‖z‖‖e‖] (54)

Using the fact that after some timet ≥ T1, ‖ξ‖ is O(ε)
and‖z(t)‖ satisfies

‖z(t)‖ ≤ Kz‖z(T1)‖e
−γ(t−T1) , t ≥ T1 (55)

for some positive constantsKz andγ, independent ofµ, it
can be shown that, givenν1 > 0 there exitsε2 such that

‖x(t) − xr(t)‖ ≤ ν1 ∀ t ≥ T1 (56)

∀ 0 < ε ≤ ε2. From equations (41), (44), and (56) we
can see that givenν > 0 there existsε∗ such that for all
0 < ε < ε∗,

‖e(t)‖ ≤ ν (57)

V. SIMULATION RESULTS

Example: To illustrate the above analytical results, we
consider the following example of the pendulum system

θ̇ = ω (58)

ω̇ = −9.3429sin(θ)− 0.1333ω + 6.0469u (59)

We simulated the observer based and ideal differentiation
systems for comparison. The high-gain observer for this
system takes the form

˙̂
θ = ω̂ +

2

ε
(θ − θ̂ + v) (60)

˙̂ω =
1

ε2
(θ − θ̂ + v) (61)
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Fig. 1. Plot of the pendulum trajectories(θ,ω) (solid) and (θr ,ωr)
(dotted) vs. time with ε = 0.01 , µ = 0.05

The control used is

u = −4sat((θ − π + v1) + ω + v2)) (62)

This controller is used to stabilize the system at(θ =
π, ω = 0). The parameter values for the noise system are
β1 = 2, β2 = 3. The noise inputw is taken to be a
uniformly distributed noise with values in[−10, 10]. The
observer parameters areα1 = 2 and α2 = 1. The initial
conditions areθr(0) = θ(0) = π

4 , ωr(0) = ω(0) = θ̂(0) =
ω̂(0) = 0. The trajectories for the observer system and ideal
differentiation system are shown in Figure 1 forε = 0.01
andµ = 0.05. The trajectoriesθ andθr approachπ while
ω andωr approach 0. Figure 2 provides a closer look at the
steady-state trajectory error by plottingθ−θr for ε = 0.05,
0.005 and µ = 0.05. Figure 3 displays the corresponding
errorsω − ωr. These plots show a reduction in the error
asε is decreased. Figure 4 shows a plot of the error of the
system states‖x−xr‖2 at steady-state versus the parameter
ε for µ = 1, 0.1, 0.01, and0.001. We choose to examine the
steady-state error only and ignore the effect of peaking to
illustrate the result. Of course, the error during peaking also
decreases asε decreases. The general trend in this figure
indicates that the error decreases asε decreases and asµ
decreases.

VI. CONCLUSIONS

We have studied the use of high-gain observers in output
feedback control of nonlinear systems in the presence of
measurement noise. The technical challenge in our analysis
was to prove the trajectory convergence property as the ob-
server parameterε tends to zero uniformly in the parameter
µ that parametrizes the noise bandwidth. It is true that in our
problem formulation we had to limit the noise amplitude to
O(µn), but we argued that such limitation is needed in the
ideal differentiation system to have a well-behaved control
signal. We have seen that as the observer gain is increased
the trajectories of the closed-loop system approach those
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Fig. 2. Plot of the error (θ − θr) vs. time with µ = 0.05, ε = 0.05
(dotted) and 0.005 (solid)
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Fig. 3. Plot of the error (ω − ωr) vs. time with µ = 0.05, ε = 0.05
(dotted) and ε = 0.005 (solid)
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Fig. 4. Plot of the error (‖x − xr‖) vs. ε with µ = 1, 0.1, 0.01, and
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of the ideal differentiation system in which the derivatives
of the output are fed back. Obviously, measurement noise
and differentiation of such noise is undesirable in feedback
systems, but the results provide information about the
limiting case asε → 0. We note that the performance of
the high-gain observer system will be better for finiteε > 0
because in that case the observer acts as a low pass filter,
but the point of the paper is to argue that as we pushε
smaller we will not do worse than the ideal differentiation
case.
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