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Abstract— Many landmark-based navigation systems suffer
from the problem of assignment ambiguity: the navigation system
receives a measurement from a landmark, but the identity of the
landmark is not uniquely known. This uncertainty is frequently
addressed by attempting to identify the landmark which caused
the measurements. Two common approaches are the nearest
neighbour and multiple hypothesis tracking methods. However,
the nearest neighbour method is notoriously unreliable and the
multiple hypothesis method can only be implemented in real time
for a small number of hypotheses. In this paper we consider an
alternative approach for assignment ambiguity which uses the
Covariance Union (CU) algorithm. Every potential assignment is
used to generate an estimate. CU is applied to the set of estimates.
Providing the true assignment is included within the set, the
unioned estimate is guaranteed to be consistent. We provide a
theoretical development of CU, describe a method for computing
its value, and illustrate its performance in a nonlinear navigation
example.

I. INTRODUCTION

Many navigation systems use landmarks of one form or
another. It is assumed that the environment is populated by a
set of landmarks and the system is provided with a map which
specifies the locations of those landmarks. As the vehicle
moves through the environment it uses sensors mounted on
its body to detect a subset of landmarks. By matching the
observed landmarks with those in the map (assigning identities
to the observations), the navigation system can update the
estimate of the platform’s position. There are two main classes
of landmarks: those which are uniquely identifiable and those
which are not. An example of the first class is the system
described by Hu [6]. Each landmark is a barcode which can
be read by a laser scanner. An example of the second class is
the system developed by Chenavier [3]. The platform uses a
vision system to detect strong vertical features and associates
them with a floor plan or model of the environment.

Of the two classes of features, the second are of most
practical interest. The reason is that the navigation system
could use naturally occurring features in the environment such
as vertical edges [3], corners [9] or even features which have
no set structure and only have the property that they are easy to
detect and track [14]. As such, the environment does not have
to be specially prepared and it allows the vehicle to operate
in much more general environments. Potential applications
include mobile autonomous vehicles for space exploration
or navigation through a desert. However, although they are
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of greater practical interest, non-unique landmarks present a
much greater data processing challenge. Because a landmark
cannot be uniquely identified by a single observation, it can
only be matched with a map through the use of contextual
information such as previous estimates. In some cases this
presents relatively little trouble. If the error in the platform
position is small and / or the landmarks are widely separated,
innovation-based gating methods [1] are sufficient to perform
the assignment. However, in many practical cases these con-
ditions do not hold true.

A number of different algorithms for handling the problem
of assignment ambiguity have been developed. Almost all
of them attempt to identify the correct landmark and reject
information from incorrect landmarks. One of the simplest and
oldest methods is to use the nearest neighbour algorithm [1].
Given a candidate set of landmarks, the assignment is made
to the landmark with the smallest normalised innovation
(Mahalanobis distance). However, this heuristic is known to be
notoriously unreliable [10]. The major alternative is multiple
hypothesis tracking (MHT) [1]. A hypothesis is constructed for
each combination of assignments of measurements to targets
and recursive hypothesis testing is used to identify which
hypothesis is the correct one. Although the MHT method is
theoretically rigorous and robust if unlimited computational
resources are available, its tendency to demand the mainte-
nance of an exponentially increasing number of hypotheses
cannot generally be satisfied in practice [13]. To limit the
proliferation of tentative pairings a common strategy is pruning
— eliminate the hypotheses with lower probabilities and
renormalise the weights on the remaining hypotheses [5].
However, by artificially limiting the set of hypotheses, this
approach incurs a risk that the correct hypothesis may be
rejected, thus causing the associated filter to diverge.

In this paper we describe an alternative approach to as-
signment ambiguity. Rather than attempt to assign the unique
identity of a landmark, the approach is to try and find an
estimate which yields the minimum mean squared error esti-
mate with respect to all feasible landmarks. The approach is
based on the algorithm known as Covariance Union (CU) [15].
Given a set of estimates of a state, CU finds the mean
and covariance matrix which is consistent with all of the
possible updates simultaneously. Assuming that the correct
measurement-beacon assignment is included within the set,
CU is guaranteed to produce a consistent estimate.

The structure of this paper is as follows. Section II in-
troduces the notation and describes the problem. Section III
describes the CU method for accommodating observation
correlation uncertainty and Section IV describes how this
algorithm can be used for the tracking assignment problem. In
Section V an example application of the method is presented.



Section VI summarises the results of the paper and draws
conclusions.

II. PROBLEM STATEMENT

Suppose the system of interest is described by the discrete-
time nonlinear equation:

x (k) = f [x (k − 1) ,u (k − 1) ,v (k − 1) , k − 1]

where x (k) is the state vector at time step k, u (k − 1) is the
control input, v (k − 1) is the process noise, and f [·] is the
discrete time state transition equation.

The observation model for the ith landmark is:

z (k) = hi [x (k) ,u (k − 1) ,w (k) , k] ,

where z (k) is the observation vector, w (k) is the observation
noise vector and hi [·, ·, ·, ·] is the discrete time observation
equation for the ith beacon. The noise vectors v (k − 1) and
w (k) are assumed to be zero-mean and uncorrelated with
covariances Q (k) and R (k) respectively.

A. The Kalman Filter

Using the notation from [1] the estimate of x (i) at time
step i using all observations up to time step j is x̂ (i | j) with
covariance P (i | j). The estimate (x̂ (i | j) ,P (i | j)) is said
to be consistent if

P (i | j) − E
[

{x̂ (i | j) − x (i)} {x̂ (i | j) − x (i)}
T
]

≥ 0.

The Kalman Filter (KF) proceeds according to the well-
known two-step process of prediction followed by update. The
prediction is given by

x̂ (k | k − 1) = f [x (k − 1) ,u (k − 1) ,v (k − 1) , k − 1]

P (k | k − 1) = ∇xf P (k − 1 | k − 1) ∇
T
xf

+ ∇vf Q (k − 1) ∇
T
vf

If the beacon identity i is known or can unambiguously
be determined, the update is given by standard Kalman filter
equations:

x̂ (k | k) = x̂ (k | k − 1) + W (k) ν(k) (1)

where

ν(k) = z (k) − ẑ (k | k − 1)

= z (k) − hi [x̂ (k | k − 1)] , and
(2)

W (k) = P (k | k − 1) ∇
ThiS

−1 (k) (3)

where

S (k) = ∇hi P (k | k − 1) ∇
Thi + R (k) .

B. Assignment Ambiguity

Suppose that the beacon cannot be unambiguously identified
and at time step k a set Sk of sk beacons have been identified
as being potentially feasible matches with the observation (for
example the landmarks are visible or lie within the detection
envelope of the sensor). If an observation is incorrectly asso-
ciated with a landmark in the map, the effect is to introduce
unmodelled errors into the filter. For example, suppose that
the filter assumes that the ith observation in the set matches
with landmark i whereas in fact it matches with landmark j.
Expanding (2) and using the fact that x (k) = x̂ (k | k − 1) +
x̃ (k | k − 1), the innovation is

ν(k) = w (k) + hi [x (k − 1)] − hj [x̂ (k | k − 1)]

= w (k) + hi [x̂ (k | k − 1)] + ∇hi x̃ (k | k − 1)

− hj [x̂ (k | k − 1)]

= w (k) + ∇hi x̃ (k | k − 1)

+ (hi [x̂ (k | k − 1)] − hj [x̂ (k | k − 1)]) .

Therefore, from (1) the effect of associating a measurement
with the incorrect beacon is to add the error term

W (k)
(

hi [x̂ (k | k − 1)] − hj [x̂ (k | k − 1)]
)

(4)

to the estimate.
By far the most common way to overcome this problem

is to attempt to identify the true identify of the landmark.
The nearest neighbour algorithm chooses the beacon with
the smallest normalised innovation. The normalised innovation
q(k) is given by

q(k) = ν
T (k)S−1 (k) ν(k)

where ν(k) and S (k) are calculated under the assumption that
landmark i is observed. However, this approach is notoriously
unreliable. It takes no account of the previous history of
measurements and can be readily corrupted by large noise
values within a single time step.

A more refined approach is to use multiple hypothesis
tracking (MHT) [1, 7]. For each feasible assignment of Sk to
the map, a hypothesis is created and a filter is initialised using
the previous estimate and the pattern of assignments associated
with the hypothesis. Each filter is run independently and in
parallel and the probability that a given hypothesis is correct
at any given time can be calculated from the likelihood. For
example, under the assumption that the state and observation
errors are Gaussian, the likelihood that an observation is
associated with landmark i is

pi(k) =
1

(2π)m/2|S (k) |
exp

{

1

2
ν

T (k)S−1 (k) ν(k)

}

where m is the dimension of the observations. For mul-
tiple measurements the joint probability can be calculated.
Given the set of hypothesised estimates, a single statistically
summarised estimate can be formed by weighting them as



follows [2]:

x̂ (k | k) =

sk
∑

i=1

pi(k)x̂i (k | k)

P (k | k) =

sk
∑

i=1

pi(k) [Pi (k | k) +

{x̂ (k | k) − x̂i (k | k)} {x̂ (k | k) − x̂i (k | k)}
T
]

However, there are two difficulties with MHT. The first is
that the number of hypotheses is potentially unlimited. Sup-
pose that, at each time step, there are p possible hypotheses.
After k time steps there will be pk hypotheses which must be
maintained. Therefore, various computational techniques, such
as pruning, must be used to reduce the number of hypotheses.
However, as explained above there is a chance that the correct
assignment might be rejected. Because each filter assumes that
it has the correct gating, it does not include the error term from
(4) and so it will become inconsistent. This can often lead to
catastrophic filter failure.

A suboptimal, but more practical, alternative to MHT is
offered by the Covariance Union (CU) data fusion algo-
rithm [15]. The rationale behind CU is to calculate a single
estimate that is consistent with all possible assignments.
However, it is unclear how much performance is sacrified in
order to achieve consistency. The main purpose of this paper is
to generate some initial results by inserting CU into a simulator
and comparing its output with that from a variety of baseline
solutions over multiple time-steps of a nonlinear navigation
problem.

III. COVARIANCE UNION (CU)

CU considers the following problem: suppose a filtering
algorithm is provided with two observations with means and
covariances (m1,M1) and (m2,M2) respectively. It is known
that one observation corresponds to a correct association, and
the other to an incorrect association. However, the identity of
the consistent estimate is unknown and cannot be determined.
In this circumstance, the only way the KF can be guaranteed to
give a consistent estimate is if it updates with an observation
which is consistent with respect to both measurements1. This
unioned estimate has a mean and covariance (u,U) and obeys
the property

U ≥ M1 + (u − m1) (u − m1)
T (5)

U ≥ M2 + (u − m2) (u − m2)
T (6)

where some measure of the size of U (e.g., determinant)
is minimized. Such a unioned estimate can be constructed
by applying convex or semidefinite optimization methods.
Given this Covariance Union (CU) of the two measurements,
the KF can be applied directly to update the prediction

1This is direct consequence of the result by Nishimura [11]. Nishimura
considered the problem of modelling errors and showed that, even if the
process and observation models contain errors, a consistent estimate can
be achieved by increasing the process and observation noise by a sufficient
amount.
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(b) Non-coincident means.

Fig. 1. Illustration of CU for estimates with coincident and non-coincident
means. The original means and covariances are shown as dashed ellipses with
circles. The minimum determinant union is shown as a solid ellipse with mean
denoted by a cross.

(x̂ (k | k − 1) ,P (k | k − 1)) with the CU-derived observa-
tion (u,U). In other words, the above equations simply say
that if the estimate (m1,M1) is consistent, then the translation
of the vector m1 to u will require its covariance to be enlarged
by the addition of a matrix at least as large as the outer product
of (u − m1) in order to be consistent. The same reasoning
applies if the estimate (m2,M2), is consistent. Covariance
Union therefore determines the smallest covariance U that is
large enough to guarantee consistency regardless of which of
the two given estimates is consistent.

Fig. 1 shows the CU estimate of two pairs of estimates
which were calculated using the algorithm described in the
appendix. In the first example the means are coincident and



the results are

m1 =

(

0
0

)

M1 =

[

10 −10
−10 20

]

m2 =

(

0
0

)

M2 =

[

20 10
10 80

]

u =

(

0
0

)

U =

[

20.97 −1.08
−1.08 207.25

]

In this case u tightly encloses both M1 and M2. In the second
example the means are not coincident and

m1 =

(

0
0

)

M1 =

[

10 −10
−10 20

]

m2 =

(

15
1.5

)

M2 =

[

20 10
10 80

]

u =

(

7.93
0.79

)

U =

[

72.89 −3.71
−3.71 200.63

]

The covariance matrix does not enclose the covariance ma-
trices of the two estimates. This illustrates that CU does not
assume that the estimates are bounded and the results from set
membership theory (such as those described in [12]) do not
apply when the means are not coincident.

Although general optimization algorithms can be applied
to compute CU results, greater computational efficiency may
be achieved by transforming the CU conditions, e.g., for
more direct application of specialized convex optimization
algorithms. Using the substitution, u = ωm1 + (1 − ω)m2,
for 0 ≤ ω ≤ 1, the CU conditions for two estimates can be
specialized to:

U ≥ M1 + (1 − ω)2(m1 − m2)(m1 − m2)
T

U ≥ M2 + ω2(m1 − m2)(m1 − m2)
T

where it is assumed that the optimal vector u is a convex
combination of the given mean vectors. It turns out that this
assumption is valid for the minimization of the determinant
(or any matrix norm) of U because the addition of any vector
component that is orthogonal to ωm1 +(1−ω)m2 introduces
an additional nonzero component to the covariance U.

More generally, for any set of n measurements in the same
coordinate frame, e.g., (m1,m1), (m2,M2), ..., (mn,Mn),
in which one or more elements of the set is a measurement of
a system of interest, whose state is maintained as the estimate
(x,P), it is possible to construct a unioned measurement
(u,U) that is consistent with respect to each element of the
set of measurements. In particular, (u,U) is defined by the
following constraints:

U ≥ m1 + (u − m1)(u − m1)
T

U ≥ M2 + (u − m2)(u − m2)
T

...

U ≥ Mn + (u − mn)(u − mn)T

This unioned estimate (u,U) can then be used to update the
system estimate (x,P). The updated estimate is guaranteed to
be consistent as long as the estimate (x,P) and at least one

element of the set of measurements are consistent with respect
to the system of interest.

In fact it is possible to extract a little more accuracy from the
CU method by applying it to the separate estimates obtained
from updating the system state with each measurement. The
unioned estimate is guaranteed to be consistent because one
of these updates is itself consistent, and its covariance may
be relatively smaller because the set of estimates to which it
is applied will tend to have smaller covariances and smaller
deviations in their means due to the updates.

IV. RESOLVING BEACON AMBIGUITY WITH CU

In the navigation context, CU is triggered by the presence of
more than one beacon measurement falling inside the system’s
validation gate. Specifically, the Mahalanobis distance is calcu-
lated between each measurement and the system state. If more
than one distance value is smaller than some pre-specified
threshold, CU is invoked to calculate a consistent update
between the measurements and the state. Consequently, the
beacon ambiguity problem is solved in a consistent manner,
albeit at the expense of a conservative update. The dynamics
of the navigation filter is scenario dependent. For example, the
swollen covariance of a CU update may accommodate even
more ambiguous assignments at the next time step. Never-
theless, a consistent update is guaranteed. On the other hand,
if there is only a single assignment to be made, a standard
Kalman update would be triggered and this would restore
some accuracy to the system. The next section describes an
example that is aimed at investigating the performance of CU
over multiple time steps of a nonlinear navigation problem.

V. EXAMPLE

The CU algorithm was tested in the scenario which is
illustrated in Fig. 2 — a vehicle drives between regularly
spaced blocks. A bearings-only sensor is fixed to the front of
the vehicle and can detect targets which are rigidly fixed to the
surface of the blocks. This is an abstraction of a vehicle driving
through an urban environment and using a single camera to
detect and track features (such as edges of windows) which
are on the walls of the building.

The state space of the system consists of the (x, y) position
and orientation θ of the vehicle. The control inputs for the
vehicle are front wheel speed V (k) and front steer angle δ(k).
The process model for the vehicle is

x(k) = x(k − 1) + V (k)∆t cos [θ(k) + δ(k)] (7)

y(k) = y(k − 1) + V (k)∆t sin [θ(k) + δ(k)] (8)

θ(k) = θ(k − 1) + V (k)∆t
sin [δ(k)]

B
(9)

where B is the wheel base of the vehicle. The observation
model is for a bearings-only measurement. Therefore, if bea-
con i is observed the observation model is

z (k) = tan−1

[

yi − y(k)

xi − x(k)

]

− θ. (10)

The truth model identifies all beacons which lie within the
FOV, are oriented such that the angle between the beacon
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Fig. 2. The experimental scenario. A vehicle follows a criss-cross path
through a series of “streets” between “buildings”. Each “building” has a set
of targets on it (observed one circles, unobserved ones crosses). The sensor
can only detect the relative bearing to those targets and no ID information
exists with each target. The maximum range at which a sensor can be detected
is 75m (circle at the end of the true vehicle path line).

normal and the view angle is less than 90 degrees, and are
within a certain distance (L) of the platform. From this set a
single beacon is drawn at random and used in each update step.
Given the observation, each estimator has a list of available
beacons. It uses the same set of criteria (distance, normal
angle, FOV) to determine a list of potential candidates. In
order to detect potential ambiguities a χ2 test was performed:
if the normalised innovation is less than 4 (the average should
be 1), the beacon is considered to be a potential candidate.

Given the list of candidates, five different data fusion
algorithms were tested:

1) updateBeaconID: Kalman filter, given the true beacon
ID. This is a best case baseline and is used to compare
the performance of all of the other filters.

2) updateUnambig: Kalman filter, which only updates if
the beacon can be unambiguously identified.

3) updateMinNuNorm: Kalman filter, using the beacon
with the smallest normalised innovation (i.e., the nearest
neighbour solution).

4) updateCU: CU. For each gated beacon, perform a
Kalman update. Use CU to calculate the union of all of
the different updates (this was implemented in a com-
putationally simpler but sub-optimal pairwise manner).

5) updateMHT: Partial MHT. This uses the algorithm
described in Section II. However, only the single best
hypothesis is maintained and is used to update the
estimate.
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Fig. 3. The log of the normalised error in the estimates. If the estimate is
consistent, the average value should be log(3)=1.1.

Each filter, being nonlinear, was implemented using the
scaled unscented transformation [8] with α = 10−3 and β = 2.

A total of 50 Monte Carlo runs was performed. In each
run, the beacon distribution, the initial vehicle position, and
the process noise and observation noise, were drawn from a
normal distribution. The navigation filter was tuned so that
the truth filter (with beacon IDs) gave consistent estimates.
Fig. 3 plots the log of the normalised mean squared error in
the estimate from each filter calculated over five runs. The
normalised mean squared error is given by

q(k) =
(

x̂ (k | k) − x (k)
)

P−1 (k | k)
(

x̂ (k | k) − x (k)
)T

where x (k) is the true value at time step k.
The results suggest that the normalised error in the CU

filter is, on average, smaller than that of the other filters
(apart from the baseline with access to true beacon IDs). This
difference is particularly pronounced after about time step
2500. However, it should be noted that all of the filters (apart
from 1, which was always provided with the true beacon ID)
lost track in different runs. To quantify this track loss, the
following criteria was tested: if a filter receives measurements
for 10 successive runs but does not gate any of them with the
map, then it is declared lost. Table V lists the loss counts
for the different filter implementations. It shows that the
CU filter has the smallest number of losses and only using
unambiguous measurements has the largest number of losses.
The poor performance of the partial MHT would be improved
if hypotheses were propagated over multiple time steps.

VI. CONCLUSIONS

This paper has considered the problem of assignment am-
biguity for landmark-based tracking systems. We have exam-
ined a novel algorithmic approach, Covariance Union (CU),
which accommodates assignment ambiguity by computing



Scheme Loss count
updateBeaconID 0
updateUnambig 18

updateMinNuNorm 13
updateCU 7

updateMHT 11

TABLE I

THE TOTAL LOSS COUNT FOR EACH FILTER FROM 50 SEPARATE RUNS.

an updated estimate that is consistent with all the feasible
estimates. Initial experiments show that the performance of CU
is comparable or better than that of other techniques, but its
computational demands are potentially much less because CU
essentially summarizes many hypotheses in a single unioned
state estimate. Although this paper has presented CU as
an alternative to MHT, we believe that CU represents an
effective mechanism to complement MHT by replacing pruned
hypotheses with CU estimates. Further work will focus on
detailed and systematic simulation studies, but perhaps more
importantly on the evaluation of CU in current hardware-
based robotic simultaneous localization and mapping systems,
e.g., [4].

REFERENCES

[1] Y. Bar-Shalom and T. E. Fortmann. Tracking and Data Association.
Academic Press, New York NY, USA, 1988.

[2] I.P. Bottlik and S. S. Blackman. Co-ordinated Presentation of Multiple
Hypotheses in Multi-Target Tracking. In Signal and Data Processing of
Small Targets, volume 1096. SPIE, 1989.

[3] F. Chenavier and J. Crowley. Position Estimation for a Mobile Robot
Using Vision and Odometry. In Proceedings of IEEE International Con-
ference on Robotics and Automation, pages 2588–2593, Nice, France,
12–14 May 1992.

[4] A.R. Cooke, P. Greenway, M. le Maistre, R. Manley, D. Mullin,
D.Nicholson, D. Valachis. Application of Simultaneous Localisation
and Mapping in Autonomous Exploration of Urban Environments. In
Signal Processing, Sensor Fusion and Target Recognition XII, volume
5096. SPIE, 2003.

[5] I. J. Cox and J. J. Leonard. Modeling a Dynamic Environment Using
a Multiple Hypothesis Approach. Artificial Intelligence, 66(2):311–344,
April 1994.

[6] H. Hu, D. Gu and J. M. Brady. Outdoor Navigation of a Mobile Robot
with Multiple Sensors. In SPIE Intelligent Control Systems, Pittsburgh,
PA, USA, 14–17 October 1997.

[7] C. Hue, J.-P. Le Cadre and P. Perez. Tracking multiple objects with
particle filtering. Technical Report 1361, IRISA, Rennes, France, 2000.

[8] S. J. Julier, and J. K. Uhlmann. The Scaled Unscented Transformation.
In Proceedings of the IEEE American Control Conference, pages 4555–
4559, Anchorage AK, USA, 8–10 May 2002. IEEE.

[9] J. Leonard and H. F. Durrant-Whyte. Directed Sonar Sensing for Mobile
Robot Navigation. Kluwer Academic Press, Boston MA, USA, 1991.

[10] J. Neira and J. D. Tardós. Data Association in Stochastic Mapping
Using the Joint Compatibility Test. IEEE Transactions on Robotics and
Automation, 17(6):890–897, December 2000.

[11] T. Nishimura. On the a priori information in sequential estimation
problems. IEEE Transactions on Automatic Control, TAC-11(4):197–
204, April 1966.

[12] F. C. Schweppe. Uncertain Dynamic Systems. Prentice Hall, Englewood
Cliffs, NJ, USA, 1973.

[13] C. M. Smith. Integrated Mapping and Navigation. PhD thesis, MIT,
1998.

[14] C. Tomasi and T. Kanade. Detection and tracking of point features.
Cmu-cs-91-132, CMU, Pittsburgh, PA, USA, April 1991.

[15] J. K. Uhlmann. Covariance Consistency Methods for Fault-Tolerant
Distributed Data Fusion. Information Fusion, 4(3):201–215, 2002.

APPENDIX

Given the prior observations (m1,M1) and (m2,M2) and
a candidate mean u, this appendix describes a method for
calculating U which is guaranteed to be consistent.

Define

U1 = M1 + {u − m1} {u − m1}
T

U2 = M2 + {u − m2} {u − m2}
T

Let
S =

√

[U2]

where U2 = ST S.
Let V and D be the matrices of eigenvectors and eigenval-

ues of
(

S−1
)T

U1S
−1.

Theorem 1: Given the prior observations (m1,M1) and
(m2,M2) and a candidate mean u, a covariance matrix U

which obeys conditions (5) and (6) is given by

U = ST Vmax (D, I)VT S

where max (A,B) calculates the matrix which is the element-
wise maximum of the matrices A and B.

Proof: From the definitions of V and D,

VDVT =
(

S−1
)T

U1S
−1.

Therefore,
U1 = ST VDVT S.

Similarly, because V is orthonormal,

U2 = ST VIVT S.

Therefore, any matrix which can be written in the form

U = ST VCVT S

where C − max (D, I) ≥ 0 will be consistent with respect to
both U1 and U2.
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