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ABSTRACT

We consider the problem of tracking multiple maneuvering
targets in the presence of clutter using switching multiple
target motion models. A novel suboptimal filtering algo-
rithm is developed by applying the basic interacting multi-
ple model (IMM) approach and joint probabilistic data as-
sociation (JPDA) technique. But unlike the standard single
scan JPDA approach, we exploit a multiscan joint proba-
bilistic data association (Mscan-JPDA) approach to solve
the data association problem. The algorithm is illustrated
via a simulation example involving tracking of three ma-
neuvering targets and a multiscan data window of length
two.

1. INTRODUCTION

We consider the problem of tracking multiple maneuvering
targets in presence of clutter using switching multiple tar-
get motion models. The switching multiple model approach
has been found to be very effective in modeling maneuver-
ing targets [1]-[4],[9]. In this approach various modes of
target motion are represented by distinct kinematic mod-
els, and in a Bayesian framework, the target maneuvers are
modeled by switching among these models controlled by a
Markov chain. While tracking multiple targets in the pres-
ence of clutter, one has to solve the problem of measure-
ment origin uncertainty, i.e. how to associate the data avail-
able at the sensor(s) with various targets or clutter (false
measurements). In the Bayesian framework the standard
JPDA algorithm uses only a single (latest) scan data avail-
able at the sensors. To use more information to solve the
data association problem, the idea of using multiple scans of
data (current and past scans) seems to have been initially
proposed by Drummond [8]. Drummond describes some
practical issues involved but does not discuss detailed prob-
lem formulation and technical issues for multiscan JPDA.
Roecker [6] has extended Drummond’s ideas where he has
discussed problem formulation and solution in some detail.
In a simulation example presented in [6] it has been shown
that performance improvement in multiple target tracking
can be achieved via multiscan JPDA as compared to single
scan JPDA with most of the improvement gains achieved
via a window size of 2 or 3 scans.

In [6] only non-maneuvering targets (i.e. one model per
target) have been considered. In this paper, we extend
Roecker’s approach to highly maneuvering targets where we
allow multiple kinematic motion models per target. A novel
suboptimal filtering algorithm is developed by applying
the basic interacting multiple model (IMM) approach and
multiple scan joint probabilistic data association (Mscan-
JPDA) technique. The algorithm is illustrated via a sim-
ulation example involving tracking of three maneuvering
targets and multiscan data window of length two.

The paper is organized as follows. The basic multiscan
JPDA problem is explained in Sec. 2 followed by the presen-
tation of the problem formulation in Sec. 3. The proposed
IMM-based multiscan JPDA algorithm is described in Sec.
4 for the case of a sliding multiscan window of size 2. A
computer simulation example is presented in Sec. 5.

This work was supported by the Office of Naval Research
under Grant N00014-01-1-0971.

2. MULTISCAN JOINT PROBABILISTIC
DATA ASSOCIATION

For multiple target tracking in presence of clutter, the
JPDA algorithm has been developed [1],[3] which computes
the probabilistic weight for measurement-to-track associa-
tion jointly across the set of all targets and clutter. Basi-
cally it defines all the feasible joint events for the known
number of targets and clutter. Each feasible joint event
is a unique event that represents the association of mea-
surements to targets and clutter. A disadvantage of JPDA
is that it uses only the data present in the current scan;
in multiscan JPDA, we use multiple scans. In a single
scan JPDA we define single scan joint events. Similarly in
the multiscan scenario we define multiple-scan joint events
as follows. A marginal association event θir(k) is said to
be effective at time scan k when the validated measure-
ment y

(i)
k is associated with (i.e. originates from) target r

(r = 0, 1, · · · , N where r = 0 means that the measurement
is caused by clutter). Assuming that there are no unre-
solved measurements, a joint association event Θk is said
to be effective when a set of marginal events {θir(k)} holds
true simultaneously. That is, Θk =

⋂m

i=1
θiri

(k) where ri is

the index of the target to which measurement y
(i)
k is associ-

ated in the event under consideration, (i = 1, 2, · · · ,m). In
the multiscan case with a scan window size L (L-scan-back)
and ks = k − L+ s, we define multiscan joint events

ΘkL =

L⋂

s=1

m⋂

i=1

θiris
(ks)

where θiris
(ks) is the marginal association event that at

time scan ks, the ith validated measurement y
(i)
ks

is associ-

ated with target ris. Let |{Θk}| denote the total number
of feasible joint events in the single scan case. In the mul-
tiscan case we get total number of multiscan feasible joint
events as |{Θk}|×|{Θk−1}|×· · ·×|{Θk−L+1}|, derived from
a Cartesian product of joint events present in all scans con-
sidered in the scan window. As one can see, the number
of feasible multiscan joint events grow exponentially with
multiscan window length, and even for a multiscan window
of length two or three, this number can be large.

3. PROBLEM FORMULATION

Assume that there are total N targets with the target set
denoted as TN := {1, 2, · · · , N}. Assume that the dynamics
of each target can be modeled by one of the n hypothesized
models. The model set is denoted as Mn := {1, 2, · · · , n}.
For target r (r ∈ TN ), the event that model i is in ef-
fect during the sampling period (tk−1, tk] will be denoted
by M i

k(r). For the j-th hypothesized model (mode), the
state dynamics and measurements of target r (r ∈ TN ) are
modeled as

xk(r) = F j
k−1(r)xk−1(r) +Gj

k−1(r)v
j
k−1(r), (1)

zk(r) = hj(xk(r)) + wj
k(r) (2)

where xk(r) is the system state of target r at tk and of
dimension nx (assuming all targets share a common state
space), zk(r) is the (true) measurement vector (i.e. due to



target r) at tk and of dimension nz, F
j
k−1(r) and Gj

k−1(r)
are the system matrices when model j is in effect over the
sampling period (tk−1, tk] for target r and hj is the nonlin-
ear transformation of xk(r) to zk(r) for model j. A first-
order linearized version of (2) is given by

zk(r) = Hj
k(r)xk(r) + wj

k(r) (3)

where Hj
k(r) is the Jacobian matrix of hj evaluated at some

value of the estimate of state xk(r) (see Sec. 4). The

process noise vjk−1(r) and the measurement noise wj
k(r)

are mutually uncorrelated zero-mean white Gaussian pro-
cesses with covariance matrices Qj

k−1 (same for all tar-

gets) and Rj
k (same for all targets), respectively. At the

initial time t0, the initial conditions for the system state
of target r under each model j are assumed to be Gaus-
sian random variables with the known mean x̄j0(r) and

the known covariance P j
0 (r). The probability of target r

in model j at t0, µ
j
0(r) = P{M j

0 (r)}, is also assumed to
be known. The switching from model M i

k−1(r) to model

M j
k(r) is governed by a finite-state stationary Markov chain

(same for all targets) with known transition probabilities

pij = P{M j
k(r)|M

i
k−1(r)}. Henceforth, tk will be denoted

by k.
Note that, in general, at any time k, some measurements

may be due to clutter and some due to the target, i.e. there
can be more than a single measurement at time k. The
measurement set (not yet validated) generated at time k

is denoted as Zk := {z(1)k , z
(2)
k , · · · , z(m)k } where m is the

number of measurements generated at time k. Variable z
(i)
k

(i = 1, · · · ,m) is the ith measurement within the set. The
validated set of measurements at time k will be denoted by
Yk, containing m (≤ m) measurement vectors. The cumu-
lative set of validated measurements up to time k is denoted
as Zk = {Y1, Y2, · · · , Yk}.

We make the following (standard) assumptions: It is as-
sumed that the number of targets (N) is known and that
for each target track has been initiated, and our objective is
to maintain the tracks. Assuming there are no unresolved
measurements (i.e. measurements associated with two or
more targets simultaneously), any measurement therefore
is either associated with a single target or caused by clut-
ter. Clutter is modeled as independently and identically
distributed (i.i.d.) with uniform spatial distribution over
the entire validation region (across all targets). State esti-
mate of individual targets conditioned on the modes, joint
events and set of measurements are mutually independent
and Gaussian distributed i.e. states of the targets are not
coupled and estimation is carried out independently. Mul-
tiscan window of length two will be used to compute mul-
tiscan joint probabilities. Extension to higher lengths is
straightforward but tedious.

The goal is to find the filtered state estimate for target r
(r ∈ TN )

x̂k|k(r) := E{xk(r)|Z
k} (4)

and the associated error covariance matrix

Pk|k(r) := E{[xk(r)− x̂k|k(r)][xk(r)− x̂k|k(r)]
′|Zk} (5)

where xk(r)
′ denotes the transpose of xk(r).

4. IMM/MSCAN-JPDA FILTERING
ALGORITHM

We now extend the single scan IMM/JPDA filtering algo-
rithm of [5] to apply to the multiscan case. As in [6] we will
follow a sliding window multiscan approach. The approach
of [5], in turn, is based on the approaches of [1], [3]. As the
IMM/PDAF algorithm is well-explained in [3, Sec. 4.5], the

JPDAF algorithm is well-explained in [1, Sec. 9.3] and [3,
Sec. 6.2], and the IMM/JPDA filter is given in detail in [5],
we will only briefly outline the basic steps in “one cycle”
(i.e. processing needed to update for a new set of measure-
ments and a new multiscan window) of the IMM/JPDA
multiscan filter. We assume that the scan window size is
two. Given state estimate at time k − 1 based on data up
to time k − 1, in Sec. 4.1 we provide first scan steps (using
data up to time k) and in Sec. 4.2 we provide the second
scan steps (using data up to time k + 1).

Assumed available: Given the state estimate
x̂jk−1|k−1(r) := E{xk−1(r)|M

j
k−1(r),Z

k−1}, the associated

covariance P j
k−1|k−1(r) and the conditional mode probabil-

ity µjk−1(r) = P [M j
k−1(r)|Z

k−1] at time k−1 for each mode
j ∈Mn and each target r ∈ TN .

4.1. First Scan Steps
Step 1.1. Interaction − mixing of the esti-
mate from the previous time (∀j ∈ Mn, ∀r ∈
TN ): The expressions for the predicted mode probabil-

ity µj−k (r) := P{M j
k(r)|Z

k−1} and the mixing prob-

ability µi|j(r) := P{M i
k−1(r)|M

j
k(r),Z

k−1} are as in
[5, Sec. 4.2]. Similarly, the expressions for the mixed

estimate x̂0jk−1|k−1(r) := E{xk−1(r)|M
j
k(r),Z

k−1} and

the associated covariance P 0jk−1|k−1(r) := E{[xk−1(r) −

x̂0j
k−1|k−1

(r)][xk−1(r)−x̂
0j
k−1|k−1

(r)]′|M j
k(r),Z

k−1} are as in

[5, Sec. 4.2].

Step 1.2. Predicted state (∀j ∈Mn, ∀r ∈ TN ):
State prediction:

x̂jk|k−1(r) := E{xk(r)|M
j
k(r),Z

k−1} = F j
k−1x̂

0j
k−1|k−1(r).

(6)
State prediction error covariance:

P j
k|k−1(r) = F̃ j

k−1P
0j
k−1|k−1(r)F̃

j′

k−1 + G̃j
k−1Q

j
k−1G̃

j′

k−1. (7)

The mode-conditioned predicted measurement of target r,
ẑjk(r), and the covariance Sj

k(r) of the mode-conditioned

residual ν
j(i)
k (r) := z

(i)
k − ẑjk(r) are as in [5].

Step 1.3. Measurement validation: This is exactly as
in Step 3.3 of [5]. Denote the volume of validation region

for the whole target set by Vk where Vk =
∑N

r=1
Vk(r), and

Vk(r) is the validation region for target r.

Step 1.4. State estimation with validated measure-
ments (∀j ∈ Mn, ∀r ∈ TN ): From among all the raw

measurements at time k, i.e., Zk := {z(1)k , z
(2)
k , · · · , z(m(k))k },

define the set of validated measurement for sensor 1 at time
k as Yk := {y(1)k , y

(2)
k , · · · , y(m(k))k } where m(k) is the total

number of validated measurement at time k and y
(i)
k := z

(li)
k

where 1 ≤ l1 < l2 < · · · < lm(k) ≤ m(k) when m(k) 6= 0.
Define the validation matrix

Ω = [ωir] i = 1, · · · ,m(k), r = 0, · · · , N (8)

where ωir =1 if the measurement i lies in the validation
gate of target r, else it is zero. A joint association event Θk

is represented by the event matrix

Ω̂(Θk) = [ω̂ir(Θk)] i = 1, · · · ,m(k), r = 0, · · · , N (9)

where ω̂ir(Θk) = 1 if θir(k) ⊂ Θk, else it is 0. A fea-
sible association event is one where a measurement can
have only one source, i.e.

∑N

r=0
ω̂ir(Θk) = 1 ∀i, and

where at most one measurement can originate from a tar-

get, i.e. δr(Θk) :=
∑m(k)

i=0
ω̂ir(Θk) ≤ 1 for r = 1, · · · , N .



The above joint events Θk are mutually exclusive and ex-
haustive. Define the binary measurement association in-

dicator τi(Θk) :=
∑N

r=1
ω̂ir(Θk), i = 1, · · · ,m(k), to in-

dicate whether the validated measurement y
(i)
k is associ-

ated with a target in event Θk. Furthermore, the num-
ber of false (unassociated) measurements in event Θk is

φ(Θk) =
∑m(k)

i=1
[1 − τi(Θk)]. We will limit our discussion

to nonparametric JPDA [2],[5]. One can evaluate the like-

lihood that the target r is in model jr as [5] Λjr

k (r) :=

p[Yk|M
jr

k (r),Zk−1] =
∑

Θk

p[Yk|Θk,M
jr

k (r),Zk−1]P{Θk}.

(10)
The first term in the last line of (10) can be written as

p[Yk|Θk,M
jr

k (r),Zk−1] =

n∑

j1=1

· · ·

n∑

jr−1=1

n∑

jr+1=1

· · ·

n∑

jN=1

p[Yk|Θk,M
j1
k (1), · · · ,M jN

k (N),Zk−1]× P{M j1
k (1), · · · ,

M
jr−1

k (r−1),M
jr+1

k (r+1), · · · ,M jN

k (N)|Θk,M
jr

k (r),Zk−1}.
(11)

The second term in the last line of (10) turns out to be [5]

P{Θk} =
φ(Θk)! ε

m(k)!

N∏

s=1

(PD)δs(Θk)(1− PD)1−δs(Θk) (12)

where PD is the detection probability (assumed to be the
same for all targets) and ε > 0 is a “diffuse” prior (for
nonparametric modeling of clutter) whose exact value is
irrelevant. We assume that the states of the targets (in-
cluding the modes) conditioned on the past observations
are mutually independent. Then the first term in (11) is

p[Yk|Θk,M
j1
k (1), · · · ,M jN

k (N),Zk−1]

≈

m(k)∏

i=1

p[y
(i)
k |θiri

(k),M
jri

k (ri),Z
k−1], θiri

(k) ⊂ Θk (13)

where the conditional pdf of the validated measure-

ment y
(i)
k given its origin and target mode, is given by

p[y
(i)
k |θiri

(k),M
jri

k (ri),Z
k−1] = N (y

(i)
k ; ẑ

jri

k (ri), S
jri

k (ri)) if
τi(Θk) = 1, else it equals 1/Vk where

N (x; y, P ) := |2πP |−1/2exp[−
1

2
(x− y)′P−1(x− y)]. (14)

The second term on the right-side of (11) is given by∏N

s=1,s6=r
µjs−
k (s). Moreover, P{Θk|M

j
k(r),Z

k−1, Yk}

=
1

c
p[Yk|Θk,M

j
k(r),Z

k−1]P{Θk} =: βj
k(r,Θk)

where c is such that
∑
Θk

βj
k(r,Θk) = 1. The following up-

dates are done for each target r (r ∈ TN ). Calculate Λjr

k (r)
(needed in Step 1.5 later) via (10)-(14). Define the target

and mode-conditioned innovations νjk(r,Θk) := y
(i)
k − ẑjk(r)

if θir(k) ⊂ Θk, else 0. Using x̂jk|k−1(r) and its covariance

P j
k|k−1(r), one computes the state update x̂jk|k(r) and its

covariance P̃ j
k|k(r) according to the standard PDAF [5].

Step 1.5. Update of mode probabilities (∀j ∈ Mn,

∀r ∈ TN ): µjk(r) := P [M j
k(r)|Z

k]

= P [M j
k(r)|Z

k−1]p[Yk|M
j
k(r),Z

k−1] =
1

c
µj−k (r)Λj

k(r)

where c is such that
∑n

j=1
µjk(r) = 1.

Step 1.6. Combination of the mode-conditioned es-
timates (∀r ∈ TN ): The final state estimate update at

time k is given by x̂k|k(r) =
∑n

j=1
x̂jk|k(r)µ

j
k(r) and its co-

variance Pk|k(r) is given by

n∑

j=1

{
P j
k|k(r) + [x̂jk|k(r)− x̂k|k(r)][x̂

j
k|k(r)− x̂k|k(r)]

′
}
µjk(r).

4.2. Second Scan Steps
Here we update to scan k+ 1, given data up to time k+ 1,
with a sliding scan window of size two, scans {k, k + 1}.
Step 2.1. Interaction − mixing of the estimate from
the previous time (∀j ∈Mn, ∀r ∈ TN ):

µjk(r,Θk) := P{M j
k(r)|Z

k,Θk}

= c′p[Yk|M
j
k(r),Z

k−1,Θk]P{M
j
k(r)|Z

k−1,Θk}

= cβj
k(r,Θk)µ

j−
k (r). (15)

predicted mode probability: µj−
k+1(r,Θk) :=

P{M j
k+1(r)|Z

k,Θk} =

n∑

i=1

pijµ
i
k(r,Θk). (16)

mixing probability: µi|j(r,Θk) :=

P{M i
k(r)|M

j
k+1(r),Z

k,Θk} = pijµ
i
k(r,Θk)/µ

j−
k+1(r,Θk).

(17)

mixed estimate: x̂0jk|k(r,Θk) := E{xk(r)|M
j
k+1(r),Z

k,Θk}

=

n∑

i=1

x̂ik|k(r,Θk)µ
i|j(r,Θk). (18)

covariance of the mixed estimate: P 0jk|k(r,Θk) :=

E{[xk(r)−x̂
0j
k|k(r,Θk)][xk(r)−x̂

0j
k|k(r,Θk)]

′|M j
k+1(r),Z

k,Θk}

=

n∑

i=1

{P i
k|k(r,Θk) + [x̂ik|k(r,Θk)− x̂0jk|k(r,Θk)]

×[x̂ik|k(r,Θk)− x̂0jk|k(r,Θk)]
′}µi|j(r,Θk). (19)

Step 2.2. Predicted state (∀j ∈Mn, ∀r ∈ TN ):

State prediction: x̂jk+1|k(r,Θk) :=

E{xk+1(r)|M
j
k+1(r),Z

k,Θk} = F j
k x̂
0j
k|k(r,Θk). (20)

State prediction error covariance: P j
k+1|k(r,Θk)

:= E{[xk+1(r)− x̂jk+1|k(r,Θk)][xk+1(r)− x̂jk+1|k(r,Θk)]
′|

M j
k+1(r),Z

k,Θk} = F j
kP

0j
k|k(r,Θk)F

j′

k +Gj
kQ

j
kG

j′

k . (21)

Using (2) and (20), the mode-conditioned predicted mea-
surement of target r is

ẑjk+1(r,Θk) := hj(x̂jk+1|k(r,Θk)). (22)

Using the linearized version (3), the covariance of the mode-

conditioned residual ν
j(i)
k+1(r,Θk) := z

(i)
k+1 − ẑjk+1(r,Θk) is

given by

Sj
k+1(r,Θk) := E{νj(i)k+1(r,Θk)ν

j(i)
k+1(r,Θk)

′|M j
k+1(r),Z

k,Θk}



= Hj
k+1(r,Θk)P

j
k+1|k(r,Θk)H

j′

k+1(r,Θk) +Rj
k+1 (23)

where Hj
k+1(r,Θk) is the first order derivative (Jacobian

matrix) of hj(.) at x̂
j(0)

k+1|k(r,Θk).

Step 2.3. Measurement validation: For target r, the
validation region is taken to be the same for all models and
Θk’s, i.e., as the largest of them. Let

(jr,Θk) := arg

{
max

j∈Mn, Θk

|Sj
k+1(r,Θk)|

}
. (24)

Then measurement z
(i)
k+1 ( i = 1, 2, · · · ,m(k+1)) is validated

if and only if

[z
(i)
k+1− ẑ

jr

k+1(r,Θk)]
′[Sjr

k+1(r,Θk)]
−1[z

(i)
k+1− ẑ

jr

k+1(r,Θk)] < γ
(25)

where γ is an appropriate threshold. The volume of the
validation region with the threshold γ is

Vk+1(r) := cnz
γnz/2|Sjr

k+1(r,Θk)|
1/2 (26)

where nz is the dimension of the measurement and cnz
is

the volume of the unit hypersphere of this dimension. The
volume of validation region for the whole target set is ap-

proximated by Vk+1 =
∑N

r=1
Vk+1(r).

Step 2.4. State estimation with validated mea-
surements (∀j ∈ Mn, ∀r ∈ TN ): From among
all the raw measurements at time k + 1, i.e., Zk+1 :=

{z(1)k+1, z
(2)
k+1, · · · , z

(m(k+1))
k+1 }, define the set of validated mea-

surement for sensor 1 at time k + 1 as

Yk+1 := {y
(1)
k+1, y

(2)
k+1, · · · , y

(m(k+1))
k+1 } (27)

where m(k + 1) is the total number of validated measure-
ment at time k + 1. and

y
(i)
k+1 := z

(li)
k+1 (28)

where 1 ≤ l1 < l2 < · · · < lm(k+1) ≤ m(k + 1) when m(k +
1) 6= 0. Note that all targets share a common validated
measurement set Yk+1. We now consider joint probabilistic
data association across targets as in Sec. 4.1. Define the
validation matrix

Ω = [ωir] i = 1, · · · ,m(k + 1), r = 0, · · · , N (29)

where ωir =1 if the measurement i lies in the validation
gate of target r, else it is zero. A joint association event
Θk+1 is represented by the event matrix

Ω̂(Θk+1) = [ω̂ir(Θk+1)] i = 1, · · · ,m(k+1), r = 0, · · · , N
(30)

where

ω̂ir(Θk+1) =
{

1 if θir(k + 1) ⊂ Θk+1

0 otherwise. (31)

A feasible association event is one where a measurement
can have only one source

∑N

r=0
ω̂ir(Θk+1) = 1 ∀i, and

where at most one measurement can originate from a tar-

get δr(Θk+1) :=
∑m(k+1)

i=0
ω̂ir(Θk+1) ≤ 1 for r = 1, · · · , N .

The above joint events Θk+1 are mutually exclusive and
exhaustive.

Define the binary measurement association indicator

τi(Θk+1) :=
∑N

r=1
ω̂ir(Θk+1), i = 1, · · · ,m(k + 1), to in-

dicate whether the validated measurement y
(i)
k+1 is associ-

ated with a target in event Θk+1. Furthermore, the num-
ber of false (unassociated) measurements in event Θk+1 is

φ(Θk+1) =
∑m(k+1)

i=1
[1 − τi(Θk+1)]. We will limit our dis-

cussion to nonparametric JPDA [1],[3]. One can evaluate
the likelihood that the target r is in model jr as

Λjr

k+1(r) := p[Yk+1|M
jr

k+1(r),Z
k]

=
∑

Θk

∑

Θk+1

p[Yk+1|Θk,Θk+1,M
jr

k+1(r),Z
k]

×P{Θk+1}P{Θk|M
jr

k+1(r),Z
k}. (32)

The first term in the last line of (32) can be written as

p[Yk+1|Θk,Θk+1,M
jr

k+1(r),Z
k]

=

n∑

j1=1

· · ·

n∑

jr−1=1

n∑

jr+1=1

· · ·

n∑

jN=1

p[Yk+1|Θk,Θk+1,M
j1
k+1(1),

· · · ,M
jr−1

k+1 (r−1),M jr

k+1(r),M
jr+1

k+1 (r+1), · · · ,M jN

k+1(N),Zk]

×P{M j1
k+1(1), · · · ,M

jr−1

k+1 (r − 1),M
jr+1

k+1 (r + 1),

· · · ,M jN

k+1(N)|Θk,Θk+1,M
jr

k+1(r),Z
k}. (33)

The second term (apriori joint association probabilities) in
the last line of (32) turns out to be ([2, Sec. 6.2])

P{Θk+1} =
φ(Θk+1)! ε

m(k + 1)!

N∏

s=1

(PD)δs(Θk+1)(1− PD)1−δs(Θk+1)

(34)
where PD is the detection probability (assumed to be the
same for all targets) and ε > 0 is a “diffuse” prior (for
nonparametric modeling of clutter) whose exact value is
irrelevant. The third term in the last line of (32) is given
by

P{Θk|M
jr

k+1(r),Z
k} = c′P{M jr

k+1(r)|Θk,Z
k}P{Θk|Z

k}

= cµjr−
k+1(r,Θk)P{Θk}p[Yk|Θk,Z

k−1] (35)

where

p[Yk|Θk,Z
k−1] =

∑

j

p[Yk|Θk,M
j
k(r),Z

k−1]µj−k (r). (36)

We assume that the states of the targets (including the
modes) conditioned on the past observations are mutually
independent. Then the first term on the right-side of (33)
can be written as

p[Yk+1|Θk,Θk+1,M
j1
k+1(1), · · · ,M

jr−1

k+1 (r − 1),M jr

k+1(r),

M
jr+1

k+1 (r + 1), · · · ,M jN

k+1(N),Zk] ≈

m(k+1)∏

i=1

p[y
(i)
k+1|θiri

(k+1),Θk,M
jri

k+1(ri),Z
k], θiri

(k+1) ⊂ Θk+1

(37)
where the conditional pdf of the validated measurement

y
(i)
k+1 given its origin and target mode, is given by

p[y
(i)
k+1|θiri

(k + 1),Θk,M
jri

k+1(ri),Z
k] =

{
N (y

(i)
k+1; ẑ

jri

k+1(ri,Θk), S
jri

k+1(ri,Θk)) if τi(Θk+1) = 1,
1/Vk+1 if τi(Θk+1) = 0.

(38)
The second term on the right-side of (33) is given by

P{M j1
k+1(1), · · · ,M

jr−1

k+1 (r − 1),M
jr+1

k+1 (r + 1),



· · · ,M jN

k+1(N)|Θk,Θk+1,M
jr

k+1(r),Z
k}

=

N∏

s=1,s6=r

P{M js

k+1(s)|Θk+1,Θk,M
jr

k+1(r),Z
k}

=

N∏

s=1,s6=r

P{M js

k+1(s)|Z
k,Θk} =

N∏

s=1,s6=r

µjs−
k+1(s,Θk). (39)

The probability of the joint association events Θk+1 and
Θk given that model j is effective for target r from time k
through k + 1 is

P{Θk+1,Θk|M
j
k+1(r),Z

k, Yk+1}

=
1

c
p[Yk+1|Θk+1,Θk,M

j
k+1(r),Z

k]P{Θk+1}P{Θk|M
j
k+1(r),Z

k}

=: βj
k+1(r,Θk+1,Θk) (40)

where the first term can be calculated from (33) and
(37) - (39), the second term from (34), the third term
from (35), and c is a normalization constant such that∑
Θk+1

∑
Θk

βj
k+1(r,Θk+1,Θk) = 1.

The following updates are done for each target r (r ∈
TN ). Calculate Λjr

k+1(r) (needed in Step 2.5 later) via (32)-
(39). Define the target and mode-conditioned innovations

νjk+1(r,Θk+1,Θk) :=

{
y
(i)
k+1 − ẑjk+1(r,Θk) for i = 1, · · · ,m(k + 1)

if θir(k + 1) ⊂ Θk+1

0 otherwise.
(41)

Using x̂jk+1|k(r,Θk) (from (20)) and its covariance

P j
k+1|k(r,Θk) (from (21)), one computes the state update

x̂j
k+1|k+1

(r) and its covariance P j
k+1|k+1

(r) as follows.

Kalman gain: W j
k+1(r,Θk)

= P j
k+1|k(r,Θk)H

j′

k+1(r,Θk)[S
j
k+1(r,Θk)]

−1. (42)

State estimate update: x̂jk+1|k+1(r)

:= E{xk+1(r)|M
j
k+1(r),Z

k, Yk+1}

=
∑

Θk+1

∑

Θk

x̂jk+1|k+1(r,Θk+1,Θk)β
j
k+1(r,Θk+1,Θk) (43)

x̂jk+1|k+1(r,Θk+1,Θk) = x̂jk+1|k(r,Θk)+

W j
k+1(r,Θk)ν

j
k+1(r,Θk+1,Θk). (44)

Covariance of x̂jk+1|k+1(r) :

P j
k+1|k+1(r) =

∑

Θk+1

∑

Θk

4∑

i=1

Ai(Θk+1,Θk)β
j
k+1(r,Θk+1,Θk)

(45)
where A1(Θk+1,Θk) =

E
{
xk+1(r)x

′
k+1(r)|M

j
k+1(r),Θk+1,Θk,Z

k, Yk+1
}

= x̂jk+1|k+1(r,Θk+1,Θk) + P j
k+1|k+1(r,Θk+1,Θk), (46)

P j
k+1|k+1(r,Θk+1,Θk)

= P j
k+1|k(r,Θk)−W j

k+1(r,Θk)S
j
k+1(r,Θk)W

j′

k+1(r,Θk)

(47)

if θir(k + 1) ⊂ Θk+1, 1 ≤ i ≤ m(k + 1), and

P j
k+1|k+1(r,Θk+1,Θk) = P j

k+1|k(r,Θk) (48)

otherwise,

A2(Θk+1,Θk) = −x̂
j
k+1|k+1(r,Θk+1,Θk)x̂

j′

k+1|k+1(r), (49)

A3(Θk+1,Θk) = −x̂
j
k+1|k+1(r)x̂

j′

k+1|k+1(r,Θk+1,Θk), (50)

A4(Θk+1,Θk) = x̂jk+1|k+1(r)x̂
j′

k+1|k+1(r). (51)

Step 2.5. Update of mode probabilities (∀j ∈ Mn,

∀r ∈ TN ): µjk+1(r) :=

P [M j
k+1(r)|Z

k+1] = P [M j
k+1(r)|Z

k]p[Yk+1|M
j
k+1(r),Z

k]

=
1

c
µj−k+1(r)Λ

j
k+1(r) (52)

where c is such that
∑n

j=1
µjk+1(r) = 1 and

µj−k+1(r) =
∑

Θk

µj−k+1(r,Θk)P{Θk}p[Yk|Θk,Z
k−1]. (53)

Step 2.6. Combination of the mode-conditioned es-
timates (∀r ∈ TN ): The final state estimate update at
time k + 1 is given by

x̂k+1|k+1(r) =

n∑

j=1

x̂jk+1|k+1(r)µ
j
k+1(r) (54)

and its covariance is given by Pk+1|k+1(r) =

n∑

j=1

{
P j
k+1|k+1(r) + [x̂jk+1|k+1(r)− x̂k+1|k+1(r)]

×[x̂jk+1|k+1(r)− x̂k+1|k+1(r)]
′
}
µjk+1(r). (55)

5. SIMULATION EXAMPLE

We now consider tracking three maneuvering targets in
clutter. We carry out state estimation for each target using
IMM multiscan JPDA with a scan window size of two and
compare our results with single scan IMM/JPDA algorithm
of [5].
The True Trajectories: Target 1 starts at location
[10500 1740 40] in Cartesian coordinates in meters. The
initial velocity is [-140 299.9 0] in m/s. Target stays at
constant altitude with a constant speed of 331 m/s. Its tra-
jectory is a straight line with constant velocity between 0
and 15 sec., a coordinated turn of -0.32 rad/s with a con-
stant acceleration of 109 m/s2 between 15 and 25 s, and
a straight line with a constant velocity between 25 and 35
s. Target 2 starts at location [9800 1960 40] in Cartesian
coordinates in meters. The initial velocity is [0 299 0] in
m/s. The target stays at a constant altitude with a con-
stant speed of 299 m/s. Its trajectory is a straight line
with constant velocity between 0 and 15 sec., a coordinated
turn of 0.32 rad/s with a constant acceleration of 94 m/s2

between 15 and 25 s, and a straight line with a constant ve-
locity between 25 and 35 s. Target 3 starts at location [9200
1740 40] in Cartesian coordinates in meters. The initial ve-
locity is [0 299 0] in m/s. The target stays at a constant
altitude with a constant speed of 299 m/s. It’s trajectory
is a straight line with a constant velocity between 0 and 35
sec.
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Figure 1. Trajectories (xy positions) of the three targets.

The Target Motion Models: The motion models
are identical for all three targets. In each mode target
dynamics are modeled in cartesian coordinates as xk =
Fxk−1+Gvk−1 where state of the target is position, velocity
and acceleration in each of the three Cartesian coordinates
(x, y and z). Thus xk is of dimension 9 (nx=9). Three
models are considered in the following discussion and they
are exactly as in [5, Sec. 5]. The initial model probabili-
ties for three targets are identical: µ10 = 0.8, µ20 = 0.1 and
µ30 = 0.1. The mode switching probability matrix for three
targets is also identical and as in [5, Sec. 5].
The Sensor: A single sensor (radar) is used to ob-
tain three measurements: range, and azimuth and eleva-
tion angles. The measurement noise wj

k is assumed to be
zero-mean white Gaussian with known covariance matrix
R = diag[400m2, 49mrad2, 4mrad2]. The sensor is as-
sumed to be located at the origin of the coordinate system.
The sampling interval was T = 1s and it was assumed that
the probability of detection PD = 0.997.
The Clutter: For generating false measurements in sim-
ulations, the clutter was assumed to be Poisson distributed
with expected number of λ = 0.1/m− rad2. These statis-
tics were used for generating the clutter in all simulations.
However, a nonparametric clutter model was used for im-
plementing all the algorithms for target tracking.
Other Parameters: The gates for setting up the vali-
dation regions for the sensor were based on the threshold
γ = 16. With the measurement vector of dimension 3, this
leads to a gate probability PG = 0.9989 (see p. 96 of [3]).

Simulation Results: The results were obtained from
100 Monte Carlo runs. Fig. 1 shows the true trajectories
of the three targets. Fig. 2 shows the RMSE (root mean-
square error) for the filtered position estimates for the three
targets as a function of time. It is seen from Fig. 2 that the
multiscan approach does provide a significant improvement
over the single scan approach when the multiple maneuver-
ing targets are in close proximity.

6. CONCLUSIONS

We investigated the problem of tracking multiple maneuver-
ing targets in the presence of clutter using switching mul-
tiple target motion models. A novel suboptimal filtering
algorithm was developed by applying the basic interacting
multiple model (IMM) approach and multiscan joint proba-
bilistic data association (JPDA) technique. Past work (see
[6]) on this problem is restricted to non-maneuvering tar-
gets. The algorithm was illustrated via a simulation exam-
ple involving tracking of three maneuvering targets and a
multiscan data window of length two. The simulation ex-
ample shows a significant improvement in target position
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Figure 2. Root mean-square error (RMSE) in position using
single scan IMM/JPDAF [5] and the proposed multiscan (win-
dow size 2 scans) IMM/Mscan-JPDAF algorithms.

estimate by the proposed IMM multiscan JPDA (with a
scan window size of two) compared to the results of the
single scan IMM/JPDA algorithm of [5].
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