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Abstract— A new approach for the improvement of the set-
point following performances achieved by a PID controller is
presented in this paper. Basically, the devised methodology
consists of designing, by means of a stable dynamic inversion
procedure, a suitable command signal to be applied to the
closed-loop control system in order to achieve a desired
transient response when the process output is required to
assume a new value. A closed-form solution of the problem
is obtained, making the technique suitable to be applied in
the industrial context. Simulation and experimental results
show that high performances are obtained despite the presence
of model uncertainties and, above all, independently on the
PID tuning. Thus, the PID gains can be selected in order to
guarantee good load rejection performances without impairing
the set-point transient responses.

I. INTRODUCTION

Proportional-Integral-Derivative (PID) controllers are the
most adopted controllers in industry, due to the good
cost/benefit ratio they are able to provide. To help the
operator to select the controller gains to address given
control specifications, many tuning formulas have been
devised in the past [1] and autotuning functionalities are
almost always available in commercial products [2], [3].
However, it is well-known that good performances both in
the set-point following and in the load disturbances rejection
task are often difficult to achieve at the same time. To solve
this problem, which is of concern in many applications, the
typical approach is to adopt a two degrees-of-freedom con-
troller, namely, to adopt a feedforward (linear) compensator
[4]. The use of the well-known set-point weighting strategy
[5] falls in this framework. The main disadvantage of this
method is that the reduction of the overshoot is paid by a
slower set-point response. To overcome this drawback, the
use of a variable set-point weight [6], [7] or of a feedforward
action [3], [8], [9], [10] has been proposed.
In this paper we propose to use a dynamic inversion based
approach to determine a suitable command signal to be
applied to the closed-loop (PID based) control system,
instead of the typical step signal, in order to achieve
high-performances (i.e. low rise time and low overshoot
at the same time) when the process output is required to
assume a new value. To better understand the framework
of the proposed method and the differences with the usual
approaches, assume that the process variable is required
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Fig. 1. The classic one degree-of-freedom PID based control scheme.
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Fig. 2. The typical two degrees-of-freedom PID based control scheme.

to assume a steady-state value y1 starting from a steady-
state value y0. The standard unity-feedback control scheme
based on a one degree-of-freedom PID controller is shown
in Figure 1, where P is the process, y is the process output
and C is the PID controller. The typical two degrees-of-
freedom PID based control scheme is reported in Figure
2, where F is a second order system [11]; note that the
use of a set-point weight is equivalent to filtering the step
signal to be applied to the closed-loop system. The control
scheme related to the new technique is shown in Figure
3. Conversely to the other methods, here a step signal is
not employed, but the knowledge of y1 is adopted by a
command signal generator block to calculate a command
signal r to be applied to the closed-loop PID control system
in order to guarantee a high performance transient response.
Basically, the new method consists of choosing a desired
function to achieve a process output transition from y0 to
y1 and then determining the command function r that causes
the desired transition by inverting the closed-loop dynamics
by means of a stable inversion procedure. Note that the
concept of dynamic inversion [12], [13] has been already
proven to be effective in different areas of the automatic
control field, such as motion control [14], [15], flight control
[16], robust control [17], [18].
The paper is organized as follows. The overall methodology
is explained in Section 2, while the stable dynamic inversion
procedure is presented in Section 3. Simulation results are
shown and discussed in Section 4 and experimental results
are presented in Section 5. Conclusions are drawn in the
last section.

II. METHODOLOGY

A. Modeling

As a first step of the devised method, the process to
be controlled is modelled as a first-order plus dead-time
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Fig. 3. The new dynamic inversion based control scheme.

(FOPDT) transfer function, i.e.:

P (s;K,T, L) =
K

Ts + 1
e−Ls. (1)

This is a typical choice in industrial practice and a variety of
methods, based on simple experiments, for the identification
of the parameters K, T and L are available (e.g. the
well-known area method [3] based on the open-loop step
response). Then, in order to have a rational transfer function,
the dead-time term is approximated by means of a second
order Padé approximation. In this way, the approximated
process transfer function results to be:

P̃ (s;K,T, L) ∼=
K

Ts + 1

1 − Ls/6 + L2s2/12

1 + Ls/6 + L2s2/12
. (2)

B. Tuning the PID controller

In order to apply the dynamic inversion based methodol-
ogy that will be presented in the next, the PID controller can
be tuned according to any of the many methods proposed in
the literature or even by hand. However, since the purpose of
the dynamic inversion procedure is the attainment of high
performances in the setpoint following task, disregarding
of the controller gains, it is sensible to select the PID
parameters aiming only at obtaining good load rejection
performances.
The PID controller transfer function be denoted as follows:

C(s;Kp, Ti, Td, Tf ) = Kp

(

1 +
1

Tis
+ Tds

)

1

Tfs + 1
(3)

where Kp is the proportional gain, Ti is the integral time
constant, Td is the derivative time constant and Tf is the
time constant of a first order filter that makes the transfer
function proper.

C. Output function design

As a desired output function that defines the transition
from a setpoint value y0 to another y1 (to be performed in
the time interval [0, τ ]) we choose a “transition” polynomial
[19], i.e a polynomial function that satisfies boundary
conditions and that is parameterized by the transition time τ .
In the following, without loss of generality we will assume
y0 = 0, Formally, define

y(t) = c2k+1t
2k+1 + c2pkt2k + · · · + c1t + c0

The polynomial coefficients can be uniquely found by
solving the following linear system, in which boundary

conditions at the endpoints of interval [0, τ ] are imposed:


















y(0) = 0; y(τ) = y1

y(1)(0) = 0; y(1)(τ) = 0
...
y(k)(0) = 0; y(k)(τ) = 0

The results can be expressed in closed-form as follows (t ∈
[0, τ ]):

y(t; τ) = y1
(2k + 1)!

k!τ2k+1

k
∑

i=0

(−1)k−i

i!(k − i)!(2k − i + 1)
τ it2k−i+1.

(4)
The order of the polynomial can be selected by imposing
the order of continuity of the command input that results
from the dynamic inversion procedure [19]. Specifically, if
the plant is modelled as a FOPTD transfer function (see (1)),
its relative degree is equal to one. Taking into account that
the relative degree of the PID controller is zero, the relative
degree of the overall closed-loop system is one. Thus, a
third order polynomial (k = 1) suffices if a continuous
command input function is required, i.e.:

y(t; τ) = y1

(

−
2

τ3
t3 +

3

τ2
t2

)

. (5)

Outside the interval [0, τ ] the function y(t; τ) is equal to 0
for t < 0 and equal to y1 for t > τ .
Remark 1. The value of τ can be selected by solving
an optimization problem where the transition time has to
be minimized subject to actuator constraints [19]. Alterna-
tively, from a more practical point of view, the choice of the
transition time τ can be made by the user either directly or
through a (possibly) more intuitive reasoning. For example,
the user might select a ratio between the bandwidth of the
open-loop system and that of the closed-loop one, from
which the value of τ can be determined easily. In any case,
parameter τ represent a very desirable feature from a user
point of view, as it allows to handle the trade-off between
performance, robustness and control activity [20], [21].

III. STABLE DYNAMIC INVERSION ALGORITHM

At this point we address the problem of finding the com-
mand signal r(t;K,T, L,Kp, Ti, Td, Tf , τ) that provides
the desired output function (5). For the sake of clarity of
notation, in the following we will omit the dependence
of the functions and of the resulting coefficients from the
parameters K, T , L, Kp, Ti, Td, Tf . The closed-loop
transfer function be denoted as

H(s) :=
C(s)P̃ (s)

1 + C(s)P̃ (s)
= K1

b(s)

a(s)
(6)

where b(s) and a(s) are monic polynomials. As H(s) is
nonminimum phase, a stable dynamic inversion procedure
is necessary, that is a bounded input function has to be found
in order to produce the desired output. Denote the set of all
cause/effect function pairs (r(·), y(·)) associated to H(s) by



B. Now, in order to perform the stable inversion, we rewrite
the numerator of the transfer function (6) as follows:

b(s) = b−(s)b+(s)

where b−(s) and b+(s) denote the polynomials associated
to the zeros with negative real part (i.e. those of the
PID controller) and positive real part (i.e. those of the
Padè approximation) respectively. Now, consider the inverse
system of (6) whose transfer function can be written as:

H(s)−1 = γ0 + γ1s + H0(s)

where γ0 and γ1 are suitable constants and H0(s), a strictly
proper rational function, represents the zero dynamics. This
can be uniquely decomposed according to

H0(s) = H−

0 (s) + H+
0 (s) =

c(s)

b−(s)
+

d(s)

b+(s)

where c(s) and d(s) are suitable polynomials. The modes
associated to b−(s) and b+(s) be denoted by m−

i (t), i =
1, 2, and by m+

i (t), i = 1, 2 respectively. Being L the
Laplace transform operator, define:

η−

0 (t) := L−1[H−

0 (s)]

η+
0 (t) := L−1[H+

0 (s)].

The following propositions and the following theorem rep-
resent the solution to the stable dynamic inversion problem.

Proposition 1:
∫ t

0
η+
0 (t − v)y(v; τ)dv =

H+
0 (0)y(t; τ) + 1

τ3

∑2
i=1 p+

i (τ)m+
i (t) + 1

τ3 T+
0 (t, τ)

(7)
where

T+
0 (t, τ) =

{
∑1

i=0 s+
i (t)τ i if t ∈ [0, τ ]

∑2
i=1 q+

i (τ)m+
i (t − τ) if t > τ

(8)
and p+

i (τ), q+
i (τ), i = 1, 2 are suitable τ -polynomials and

s+
i (t), i = 0, 1 are suitable t-polynomials.

Proposition 2:
∫ t

0
η−

0 (t − v)y(v; τ)dv =

H−

0 (0)y(t; τ) + 1
τ3

∑2
i=1 p−i (τ)m−

i (t) + 1
τ3 T−

0 (t, τ)
(9)

where

T−

0 (t, τ) =

{
∑1

i=0 s−i (t)τ i if t ∈ [0, τ ]
∑2

i=1 q−i (τ)m−

i (t − τ) if t > τ
(10)

and p−i (τ), q−i (τ), i = 1, 2 are suitable τ -polynomials and
s−i (t), i = 0, 1 are suitable t-polynomials.

Theorem 1: The function r(t; τ) defined as

r(t; τ) = − 1
τ3

∑2
i=1 p+

i (τ)m+
i (t)−

1
τ3

∑2
i=1 q+

i (τ)m+
i (t − τ) if t < 0

(11)

r(t; τ) = γ1Dy(t; τ) + γ0y(t; τ) + H0(0)y(t; τ)+
1
τ3

∑1
i=0(s

+
i (t) + s−i (t))τ i−

1
τ3

∑2
i=1 q+

i (τ)m+
i (t − τ)+

1
τ3

∑2
i=1 p−i (τ)m−

i (t) if t ∈ [0, τ ]
(12)

r(t; τ) = γ0 + H0(0) + 1
τ3

∑2
i=1 p−i (τ)m−

i (t)+
1
τ3

∑2
i=1 q−i (τ)m−

i (t − τ) if t > τ.
(13)

is bounded over (−∞,+∞) and (r(t; τ), y(t; τ)) ∈ B.
Proofs of the above propositions and of the above theorem
are not reported for brevity [22].
Summarizing, the determined function
r(t;K,T, L,Kp, Ti, Td, Tf , τ) exactly solves the stable
inversion problem for FOPDT plants (in which the dead-
time term has been approximated) controlled by a PID
controller (3) and for a family of output functions, which
depend on the free transition time τ .
Actually, from a practical point of view, in order to use the
synthesized function (11)-(13), it is necessary to truncate
it, resulting therefore in an approximate generation of the
desired output y(t; τ). This can be done with arbitrarily
precision given any couple of small parameters ε0 > 0 and
ε1 > 0. Indeed, compute

t0 := max{t′ ∈ R : |r(t; τ)| ≤ ε0 ∀t ∈ (−∞, t′]}

and define
ts := min{0, t0}.

Similarly, compute

tf := min{t′ ∈ R : |r(t; τ) − y1| ≤ ε1 ∀t ∈ [t′,∞)}

Hence, the approximate reference signal to be actually used
is

ra(t; τ) :=







0 for t < ts
r(t; τ) for ts ≤ t ≤ tf
y1 for t > tf .

Note that it normally occurs that ts < 0, resulting in the
so-called “preaction control” [23], and therefore the inverse
input is noncausal.
Remark 2. It is worth stressing again that the overall stable
dynamic inversion procedure can be performed by means
of a symbolic computation, i.e. a closed-form expression
of r(t;K,T, L,Kp, Ti, Td, Tf , τ) results. Indeed, the actual
command signal to be applied for a given plant and a given
controller is determined by substituting the actual value of
the parameters into the resulting closed-form expression.
Remark 3. The choice of using a second order Padè
approximation is motivated by keeping the expression of
r(;K,T, L,Kp, Ti, Td, Tf , τ) as simple as possible while
guaranteeing at same time high performances.
Remark 4. The presented stable dynamic inversion pro-
cedure is based on a general one [22], where H(s) can
be the rational transfer function of any (stable) system,
provided that there are not purely imaginary zeros. Thus,
the proposed approach can be straightforwardly applied also
to integral and unstable processes, as it is based on the
inversion of the dynamics of the closed-loop system H(s).
Analogously, the same method can be trivially extended to
PI, P and PD control.
Remark 5. As said in Remark 4, the devised method can
be extended also to high-order processes. Thus, a more
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Fig. 4. The determined command signals for the three considered PID
tuning for the FOPDT system.

accurate model of the process, if available, can be fully
exploited. However, in this case, the dynamic inversion
procedure has to be performed on purpose and this might
prevent the use of the method in single-station controllers.
Conversely, if a FOPDT model is employed, the determined
general expression of r(t;K,T, L,Kp, Ti, Td, Tf , τ) can be
used.

IV. SIMULATION RESULTS

In the following examples the process output has to
perform a transition from 0 to y1 = 1.

A. FOPDT system

Consider the following FOPDT process:

P1(s) =
1

10s + 1
e−6s. (14)

To prove the effectiveness of the method with different PID
tunings, three sets of PID parameters have been considered,
namely, the Ziegler-Nichols step response PID formula
(Kp = 2, Ti = 12, Td = 3), the Ziegler-Nichols step
response PI formula (Kp = 1.5, Ti = 18, Td = 0), and the
one that results from the minimization of the ISTE integral
criterion for the load disturbance rejection [24] (Kp = 2.41,
Ti = 7.33, Td = 2.74). In each case it has been set
Tf = 0.01. By setting ε0 = 0.01, the resulting values of the
preaction time in the three cases are ts = −7.8, ts = −8.9
and ts = −7.3 respectively (note that, for convenience, the
time axis has been properly shifted in order to have ts = 0).
The determined command functions are reported in Figure
4 (solid line: Ziegler-Nichols PID; dash-dot line: Ziegler-
Nichols PI; dashed line: integral criterion minimization) and
the corresponding process outputs are plotted in Figure 5.
For the sake of comparison, the process outputs resulting
with the classic method, i.e. by applying a step set-point
signal are shown in Figure 6.
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Fig. 5. The resulting process outputs with the new method for the three
considered PID tuning for the FOPDT system.
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Fig. 6. The resulting process outputs with the classic method for the
three considered PID tuning for the FOPDT system.

B. High-order system

In order to evaluate the robustness of the method to
unstructured uncertainties, consider the following FOPDT
process:

P1(s) =
1

(s + 1)8
. (15)

By applying the area method, a FOPDT transfer function
has been estimated, resulting in K = 1, T = 3.04 and
L = 4.97. With respect to these parameters, the same
tuning formula as before has been adopted, resulting in
Kp = 0.73, Ti = 9.93, Td = 2.48 for the Ziegler-Nichols
PID tuning, Kp = 0.55, Ti = 14.90, Td = 0 for the Ziegler-
Nichols PI tuning, and Kp = 1.06, Ti = 4.26, Td = 2.48
for the minimization of the ISTE integral criterion. In
each case it has been set Tf = 0.01. By setting again
ε0 = 0.01, the resulting values of the preaction time in
the three cases are ts = −5.19, ts = −6.55 and ts =
−5.04 respectively. The command functions determined by
applying the dynamic inversion procedure are reported in
Figure 7 and the corresponding process outputs are plotted
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Fig. 7. The determined command signals for the three considered PID
tuning for the high-order system.
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Fig. 8. The resulting process outputs with the new method for the three
considered PID tuning for the high-order system.

in Figure 8. The process outputs resulting with the classic
method, i.e. by applying a step set-point signal are shown in
Figure 9. The same line types as before have been adopted
also in this example.

C. Discussion

From the presented results, it emerges that the main fea-
ture of the proposed methodology is that it is able to provide
predefined performances regardless of the values of the PID
parameters. Actually, it appears that using a step input very
different performances are obtained with different tuning
formulas, whilst the use of the inversion-based command
input provides very similar transient responses, with both
low overshoots and settling times (note that this is a major
difference with respect to other feedforward approaches).
This fact can be exploited for an effective decoupling
of the set-point following and load disturbances rejection
tasks and to simplify the overall control system design
as the determination of the command signal is performed
automatically.
It has also to be noted that, despite the command signal is
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Fig. 9. The resulting process outputs with the classic method for the
three considered PID tuning for the high-order system.

calculated by considering a FOPDT model of the process,
the overall approach is robust to unstructured uncertainties,
as the example related to the high-order system demon-
strates. Thus, it appears that the devised method can be
applied in general for a wide range of plants.

V. EXPERIMENTAL RESULTS

In order to prove the effectiveness of the devised tech-
nique in practical applications, a laboratory experimental
setup (made by KentRidge Instruments) has been employed.
Specifically, the apparatus consists of small perspex tower-
type tank (whose area is 40 cm2) in which a level control is
implemented by means of a PC-based controller. The tank is
filled with water by means of a pump whose speed is set by
a DC voltage (the manipulated variable), in the range 0-5 V,
through a PWM circuit. The tank is fitted with an outlet at
the base in order for the water to return to a reservoir. The
measure of the level of the water is given by a capacitive-
type probe that provides an output signal between 0 (empty
tank) and 5 V (full tank). Since the apparent dead-time of
the system is very small with respect to its dominant time
constant, in order to provide a significant result, a time delay
of 10 s has been added via software at the plant input.
Despite the model is nonlinear (as the flow rate out of the
tank depends on the square root of the level), a FOPDT
model has been estimated by applying the area method to
the open-loop response with a step from 2 V to 2.5 V at
the process input. The FOPDT model obtained is

P3(s) =
1.98

29s + 1
e−11s

Based on this model, it has been set Kp = 1.24, Ti = 31,
Td = 0). The derivative action has not been employed
due to the excessive measurement noise. In order to obtain
a process output transition from 2 V to 3 V (starting
when the process is at the steady-state), which corresponds
approximately to a level transition from 6 cm to 12 cm, it
has been fixed τ = 10 s and the inversion-based command
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Fig. 10. The determined command signals for the level control experi-
ment.
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Fig. 11. The resulting process outputs with the new and the classic method
for the level control experiment.

signal has been determined. It is shown in Figure 10 (the
preaction time is ts = −1.7s). The corresponding process
output, together with the step response is plotted in Figure
11. A significant reduction of the overshoot and of the
settling time appears. It turns out that these experimental
results confirms the effectiveness of the methodology.

VI. CONCLUSIONS

The computational power available nowadays allows to
implement more and more easily useful additional features
in the context of industrial controllers. In this paper, we
propose to use a noncausal (i.e. based on a stable dynamic
inversion procedure) approach to determine an appropriate
command signal that can be adopted instead of the typical
step signal in order to achieved predefined high perfor-
mances in the set-point following task. This is achieved
regardless of the values of the PID parameters, so that
the overall design is greatly simplified. It is believed that
the devised technique can be implemented as a “one-shot”
procedure in single-station controllers and in Distributed

Control Systems. Further, the generality of the method
makes it suitable to be extended also to more complex
control architecture such as cascade control.
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