
Memory-Based On-Line Tuning of PID Controllers for Nonlinear Systems

Kenji Takao
Graduate School of Engineering

Hiroshima University
Hiroshima, Japan

takao17@hiroshima-u.ac.jp

Toru Yamamoto
Graduate School of Education

Hiroshima University
Hiroshima, Japan

yama@hiroshima-u.ac.jp

Takao Hinamoto
Graduate School of Engineering

Hiroshima University
Hiroshima, Japan

hinamoto@hiroshima-u.ac.jp

Abstract— Since most processes have nonlinearities, con-
troller design schemes to deal with such systems are required.
On the other hand, PID controllers have been widely used for
process systems. Therefore, in this paper, a new design scheme
of PID controllers based on a memory-based(MB) modeling is
proposed for nonlinear systems. According to the MB modeling
method, some local models are automatically generated based
on input/output data pairs of the controlled object stored in
the data-base. The proposed scheme generates PID parameters
using stored input/output data in the data-base. This scheme
can adjust the PID parameters in an on-line manner even if
the system has nonlinear properties. Finally, the effectiveness
of the newly proposed control scheme is numerically evaluated
on a simulation example.

I. INTRODUCTION

In recent years, many complicated control algorithms such
as adaptive control theory or robust control theory have been
proposed and implemented. However, in industrial processes,
PID controllers[1], [2], [3] have been widely employed
for about 80% or more of control loops. The reasons are
summarized as follows. (1) the control structure is quit
simple; (2) the physical meaning of control parameters is
clear; and (3) the operators’ know-how can be easily utilized
in designing controllers. Therefore, it is still attractive to
design PID controllers. However, since most process systems
have nonlinearities, it is difficult to obtain good control
performances for such systems simply using the fixed PID
parameters. Therefore, PID parameters tuning methods using
neural networks(NN)[4] and genetic algorithms(GA)[5] have
been proposed until now. According to these methods, the
learning cost is considerably large, and these PID parameters
cannot be adequately adjusted due to the nonlinear proper-
ties. Therefore, it is quite difficult to obtain good control
performances using these conventional schemes.

By the way, development of computers enables us to
memorize, fast retrieve and read out a large number of
data. By these advantages, the following method has been
proposed: Whenever new data is obtained, the data is stored.
Next, similar neighbors to the information requests, called
’queries’, are selected from the stored data. Furthermore,
the local model is constructed using these neighbors. This
memory-based(MB) modeling method, is calledJust-In-Time
(JIT) method[6], [7] ,Lazy Learning method[8] or Model-on-
Demand(MoD)[9], and these scheme have lots of attention
in last decade.

In this paper, a design scheme of PID controllers based on

the MB modeling method is discussed. A few PID controllers
have been already proposed based on the JIT method[10]
and the MoD method[11] which belong to the MB modeling
methods. According to the former method, the JIT method is
used as the purpose of supplementing the feedback controller
with a PID structure. However, the tracking property is not
guaranteed enough due to the nonlinearities in the case where
reference signals are changed, because the controller does not
includes any integral action in the whole control system. On
the other hand, the latter method has a PID control structure.
PID parameters are tuned by operators’ skills, and they are
stored in the data-base in advance. And also, a suitable set of
PID parameters is generated using the stored data. However,
the good control performance cannot be necessarily obtained
in the case where nonlinearities are included in the controlled
object and/or system parameters are changed, because PID
parameters are not tuned in an on-line manner corresponding
to characteristics of the controlled object.

Therefore, in this paper, a design scheme of PID con-
trollers based on the MB modeling method is newly pro-
posed. According to the proposed method, PID parameters
which are obtained using the MB modeling method are
adequately tuned in proportion to control errors, and modified
PID parameters are stored in the data-base. Therefore, more
suitable PID parameters corresponding to characteristics of
the controlled object are newly stored. Moreover, an algo-
rithm to avoid the excessive increase of the stored data,
is further discussed. This algorithm yields the reduction of
memories and computational costs. Finally, the effectiveness
of the newly proposed control scheme is examined on a
simulation example.

II. PID CONTROLLER DESIGN BASED ON MEMORY-BASED

MODELING METHOD

A. MB modeling method

First, the following discrete-time nonlinear system is con-
sidered:

y(t) = f(φ(t − 1)), (1)

wherey(t) denotes the system output andf(·) denotes the
nonlinear function. Moreover,φ(t−1) is called ’information
vector’, which is defied by the following equation:

φ(t) := [ y(t − 1), · · · , y(t − ny),

u(t − 1), · · ·u(t − nu) ], (2)



where u(t) denotes the system input. Also,ny and nu

respectively denote the orders of the system output and the
system input, respectively. According to the MB modeling
method, the data is stored in the form of the information
vector φ expressed in Eq.(2). Moreover,φ(t) is required in
calculating the estimate of the outputy(t+1) called ’query’.
That is, after some similar neighbors to the query are selected
from the data-base, the predictive value of the system can be
obtained using these neighbors.

B. Controller design based on MB modeling method

In this paper, the following control law with a PID
structure is considered:

∆u(t) =
kcTs

TI

e(t) − kc

(

∆ +
TD

Ts

∆2

)

y(t) (3)

= KIe(t) − KP ∆y(t) − KD∆2y(t), (4)

wheree(t) denotes the control error signal defined by

e(t) := r(t) − y(t). (5)

r(t) denotes the reference signal. Also,kc, TI and TD

respectively denote the proportional gain, the reset time and
the derivative time, andTs denotes the sampling interval.
Here,KP , KI andKD included in Eq.(4) are derived by the
relationsKP = kc, KI = kcTs/TI andKD = kcTD/Ts. ∆
denotes the differencing operator defined by∆ := 1 − z−1.
Here, it is quite difficult to obtain a good control performance
due to nonlinearities, if PID parameters(KP , KI , KD) in
Eq.(4) are fixed. Therefore, a new control scheme is pro-
posed, which can adjust PID parameters in an on-line manner
corresponding to characteristics of the system. Thus, instead
of Eq.(4), the following PID control law with variable PID
parameters is employed:

∆u(t) = KI(t)e(t) − KP (t)∆y(t) − KD(t)∆2y(t). (6)

Now, Eq.(6) can be rewritten as the following relations:

u(t) = g(φ′(t)) (7)

φ′(t) := [K(t), r(t), y(t), y(t − 1), y(t − 2), u(t − 1)] (8)

K(t) := [KP (t),KI(t),KD(t)], (9)

whereg(·) denotes a linear function. By substituting Eq.(7)
and Eq.(8) into Eq.(1) and Eq.(2), the following equation can
be derived:

y(t + 1) = h(φ̃(t)) (10)

φ̃(t) := [ y(t), · · · , y(t − ny + 1),K(t), r(t),

u(t − 1), · · · , u(t − nu + 1) ], (11)

whereny ≥ 3, nu ≥ 2, andh(·) denotes a nonlinear function.
Therefore,K(t) is given by the following equations:

K(t) = F (φ̄(t)) (12)

φ̄(t) := [ y(t + 1), y(t), · · · , y(t − ny + 1),

r(t), u(t − 1), · · · , u(t − nu + 1) ], (13)

where F (·) denotes a nonlinear function. Since the future
outputy(t + 1) included in Eq.(13) cannot be obtained att,
y(t + 1) is replaced byr(t + 1). Because the control system
so that can realizey(t + 1) → r(t + 1), is designed in this
paper. Therefore,̄φ(t) included in Eq.(13) is newly rewritten
as follows:

φ̄(t) := [ r(t + 1), r(t), y(t), · · · , y(t − ny + 1),

u(t − 1), · · · , u(t − nu + 1) ]. (14)

After the above preparation, a new PID control scheme is
designed based on the MB modeling method. The controller
design algorithm is summarized as follows.

[STEP 1] Generate initial data-base
The MB modeling method cannot work if the past data

is not saved at all. Therefore, PID parameters are firstly
calculated using Zieglar& Nichols method[2] or Chien,
Hrones& Reswick(CHR) method[3] based on historical data
of the controlled object in order to generate the initial data-
base. That is,Φ(j) indicated in the following equation is
generated as the initial data-base:

Φ(j) :=
[

φ̄(j) , K(j)
]

, j = 1, 2, · · · , N(0) (15)

where φ̄(j) and K(j) are given by Eq.(14) and Eq.(9).
Moreover,N(0) denotes the number of information vectors
stored in the initial data-base. Note that all PID parameters
included in the initial information vectors are equal, that is,
K(1) = K(2) = · · · = K(N(0)) in the initial stage.

[STEP 2] Calculate distance and select neighbors
Distances between the querȳφ(t) and the information

vectorsφ̄(i)(i 6= k) are calculated using the followingL1-
norm with some weights:

d(φ̄(t), φ̄(j))=

ny+nu+1
∑

l=1

∣

∣

∣

∣

∣

∣

φ̄l(t) − φ̄l(j)

max
m

φ̄l(m) − min
m

φ̄l(m)

∣

∣

∣

∣

∣

∣

,

(16)

( j = 1, 2, · · · , N(t) )

whereN(t) denotes the number of information vectors stored
in the data-base when the queryφ̄(t) is given. Furthermore,
φ̄l(j) denotes thel-th element of thej-th information vec-
tor. Similarly, φ̄l(t) denotes thel-th element of the query
at t. Moreover,maxφ̄l(m) denotes the maximum element
among thel-th element of all information vectors(φ̄(j), j =
1, 2, · · · , N(t)) stored in the data-base. Similarly,minφ̄l(m)
denotes the minimum element. Here,k pieces with the
smallest distances are chosen from all information vectors.

[STEP 3] Construct local model
Next, using k neighbors selected in STEP 2, the lo-

cal model is constructed based on the following Linearly



Weighted Average(LWA)[12]:

K
old(t) =

k
∑

i=1

wiK(i),
k

∑

i=1

wi = 1, (17)

where wi denotes the weight corresponding to thei-th
information vectorφ̄(i) in the selected neighbors, and is
calculated by:

wi =

nu+ny+1
∑

l=1



1 −
[φ̄l(t) − φ̄l(i)]

2

[max
m

φ̄l(m) − min
m

φ̄l(m)]2





.

(18)

[STEP 4] Data adjustment
In the case where information corresponding to the current

state of the controlled object is not effectively saved in
the data-base, a suitable set of PID parameters cannot be
effectively calculated. That is, it is necessary to adjust PID
parameters so that the control error decreases. Therefore, PID
parameters obtained in STEP 3 are updated corresponding to
the control error, and these new PID parameters are stored
in the data-base. The following steepest descent method is
utilized in order to modify PID parameters:

K
new(t) = K

old(t) − η
∂J(t + 1)

∂K(t)
(19)

η := [ηP , ηI , ηD], (20)

whereη denotes the learning rate, and the followingJ(t+1)
denotes the error criterion:

J(t + 1) :=
1

2
ε(t + 1)2 (21)

ε(t) := yr(t) − y(t). (22)

yr(t) denotes the output of the reference model which is
given by:

yr(t) =
z−1T (1)

T (z−1)
r(t) (23)

T (z−1) := 1 + t1z
−1 + t2z

−2. (24)

Here, T (z−1) is designed based on the reference
literature[13]. Moreover, each partial differential of Eq.(19)
is developed as follows:

∂J(t + 1)

∂KP (t)
=

∂J(t + 1)

∂ε(t + 1)

∂ε(t + 1)

∂y(t + 1)

∂y(t + 1)

∂u(t)

∂u(t)

∂KP (t)

= ε(t + 1)(y(t) − y(t − 1))
∂y(t + 1)

∂u(t)
∂J(t + 1)

∂KI(t)
=

∂J(t + 1)

∂ε(t + 1)

∂ε(t + 1)

∂y(t + 1)

∂y(t + 1)

∂u(t)

∂u(t)

∂KI(t)

= −ε(t + 1)e(t)
∂y(t + 1)

∂u(t)
∂J(t + 1)

∂KD(t)
=

∂J

∂ε(t + 1)

∂ε(t + 1)

∂y(t + 1)

∂y(t + 1)

∂u(t)

∂u(t)

∂KD(t)

=ε(t+1)(y(t)−2y(t−1)+y(t−2))
∂y(t+1)

∂u(t)
.
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(25)

Note thata priori information with respect to the system
Jacobian∂y(t + 1)/∂u(t) is required in order to calculate
Eq.(25). Here, using the relationx = |x|sign(x), the system
Jacobian can be obtained by the following equation:

∂y(t + 1)

∂u(t)
=

∣

∣

∣

∣

∂y(t + 1)

∂u(t)

∣

∣

∣

∣

sign

(

∂y(t + 1)

∂u(t)

)

, (26)

where sign(x) = 1(x > 0), −1(x < 0). Now, if the sign
of the system Jacobian is known in advance, by including
|∂y(t+1)/∂u(t)| in η, the usage of the system Jacobian can
make easy[14]. Therefore, it is assumed that the sign of the
system Jacobian is known in this paper.

[STEP 5] Remove redundant data
In implementing to real systems, the newly proposed

scheme has a constraint that the calculation from STEP 2
to STEP 4 must be finished within the sampling time. Here,
storing the redundant data in the data-base needs excessive
computational time. Therefore, an algorithm to avoid the
excessive increase of the stored data, is further discussed.
The procedure is carried out in the following two steps.

First, the information vectorsΦ(̄i) which satisfy the fol-
lowing first condition, are extracted from the data-base:

[First condition]

d(φ̄(t), φ̄(i)) ≤ α1, i = 1, 2, · · · , N(t) − k (27)

whereΦ(̄i) is defined by

Φ(̄i) :=
[

φ̄(̄i) K(̄i)
]

. ī = 1, 2, · · · (28)

Moreover, the information vectorsΦ(̂i) which satisfy the
following second condition, are further chosen from the
extractedΦ(̄i):

[Second condition]

3
∑

l=1

{

Kl(̄i) − K
new
l (t)

K
new
l (t)

}2

≤ α2, (29)

whereΦ(̂i) is defined by

Φ(̂i) :=
[

φ̄(̂i), K(̂i)
]

. î = 1, 2, · · · (30)

If there exist pluralΦ(̂i), the information vector with the
smallest value in the second condition among allΦ(̂i), is
only removed. By the above procedure, the redundant data
can be removed from the data-base.

Here, a block diagram summarized mentioned above al-
gorithms are shown in Fig.1.
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Fig. 2. Static properties of System 1 and System 2.

III. S IMULATION EXAMPLE

In order to evaluate the effectiveness of the newly proposed
scheme, a simulation example for a nonlinear system is con-
sidered. As the nonlinear system, the following Hammerstein
model[15] is discussed:
[System 1]

y(t) = 0.6y(t − 1) − 0.1y(t − 2)
+1.2x(t − 1) − 0.1x(t − 2) + ξ(t)

x(t) = 1.5u(t) − 1.5u2(t) + 0.5u3(t)







(31)

[System 2]

y(t) = 0.6y(t − 1) − 0.1y(t − 2)
+1.2x(t − 1) − 0.1x(t − 2) + ξ(t)

x(t) = 1.0u(t) − 1.0u2(t) + 1.0u3(t)







(32)

whereξ(t) denotes the white Gaussian noise with zero mean
and variance0.012. Static properties of System 1 and System
2 are shown in Fig.2. ¿From Fig.2, it is clear that gains of
System 2 are larger than ones of System 1 aty ≥ 1.0.

Here, the reference signalr(t) is given by:

r(t) =















0.5(0 ≤ t < 50)
1.0(50 ≤ t < 100)
2.0(100 ≤ t < 150)
1.5(150 ≤ t ≤ 200).

(33)

The information vector̄φ is defined as follows:

φ̄(t) := [ r(t + 1), r(t),

y(t), y(t − 1), y(t − 2), u(t − 1) ]. (34)

The desired characteristic polynomialT (z−1) included in the
reference model was designed as follows:

T (z−1) = 1 − 0.271z−1 + 0.0183z−2, (35)

where T (z−1) was designed based on the reference
literature[13]. Furthermore, the user-specified parameters in-
cluded in the proposed method are determined as shown in
Table I.

TABLE I

USER-SPECIFIED PARAMETERS INCLUDED IN THE PROPOSED

METHOD (HAMMERSTEIN MODEL).

Orders of the information vector ny = 3
nu = 2

Number of neighbors k = 6
ηP = 0.8

Learning rates ηI = 0.8
ηD = 0.2

Coefficients to inhibit the data α1 = 0.5
α2 = 0.1

Initial number of data N(0) = 6

For the purpose of comparison, the fixed PID control scheme
which has widely used in industrial processes was first
employed, whose PID parameters were tuned by CHR
method[3]. Then, PID parameters were calculated as

KP = 0.486, KI = 0.227, KD = 0.122. (36)

Moreover, the PID controller using the NN, called NN-PID
controller, was applied for the purpose of the comparison,
where the NN was utilized in order to supplement the fixed
PID controller.

The control results for System 1 are summarized in Fig.3,
where the solid line and dashed line denote the control results
of the proposed method and the fixed PID controller, respec-
tively. Furthermore, trajectories of PID parameters using the
proposed method are shown in Fig.4. From Fig.3, owing to
nonlinearities of the controlled object, the control result by
the fixed PID controller is not good. On the other hand, from
Fig.3 and Fig.4, the good control result can be obtained using
the proposed method, because PID parameters are adequately
adjusted. Moreover, the number of data stored in the data-
base was49. Using the algorithm to remove needless data,
the number of data stored in the data-base can be effectively
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Fig. 3. Control results using the proposed method(solid line) and the fixed
PID control(broken line) for System1.
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Fig. 4. Trajectories of PID parameters corresponding to Fig.3.

reduced from206 to 49. In addition, the errorε given by the
following equation was0.0417 using the proposed method:

ε(epoc) :=
1

N

N
∑

t=1

{

ε(t)

r(t)

}2

, (37)

whereN denotes the number of steps per 1[epoc]. Further-
more, the number of iteration was set as1, because PID
parameters can be adjusted in an on-line manner by the pro-
posed method. Moreover, the NN-PID controller was applied
to System 1. Error behaviors ofε expressed in Eq.(37) are
shown in Fig.5, and control results are shown in Fig.6.
¿From Fig.5, the necessary number for learning iterations
was 86[epoc] until the control result using the NN-PID
controller could be obtained the same control performances
as the proposed method, that is, untilε ≤ 0.0417 was
satisfied. Therefore, the effectiveness of the proposed method
is also verified in comparison with the NN-PID controller for
nonlinear systems.

Next, the case where the system has time-variant parame-
ters is considered. That is, the system changes from Eq.(31)

1 20 40 60 80 86 100
0.04

0.0417

0.045

0.05

0.055

0.06

0.065

epoc

η

Fig. 5. Error behaviors using the controller fused the fixed PID with the
NN-PID for Hammerstein model.
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Fig. 6. Control result using the controller fused the fixed PID with the
NN-PID for Hammerstein model.

to Eq.(32) att = 70. First, the control result with the fixed
PID controller, is shown in Fig.7, where PID parameters
are set as the same parameters as shown in Eq.(36). Since
the gain of the controlled object becomes high gain around
r(t) = 2.0, the fixed PID controller does not work well. On
the other hand, the proposed control scheme was employed
in this case. The control result and trajectories of PID
parameters are shown in Fig.8 and Fig.9. ¿From these
figures, a good control performance can be also obtained
because PID parameters are adequately adjusted using the
proposed method. The usefulness for the nonlinear system
with time-variant parameters is suggested in this example.

IV. CONCLUSIONS

In this paper, a new design scheme of PID controllers using
the MB modeling method has been proposed. Many PID
controller design schemes using NNs and GAs have been
proposed for nonlinear systems up to now. In employing
these scheme for real systems, however, it is a serious
problem that the learning cost becomes considerably large.
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Fig. 7. Control result using the fixed PID controller in the case where the
system is changed from System1 to System2.
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Fig. 8. Control result using the proposed method in the case where the
system parameters are changed.

On the other hand, according to the proposed method, such
computational burdens can be effectively reduced using the
algorithm for removing the redundant data. In addition, the
effectiveness of the proposed method have been verified by
a numerical simulation example.

The application of the newly proposed scheme for real
systems and the extension to multivariable cases are currently
under consideration.
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