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Abstract -- In this paper, a microprocessor-based 
decentralized sliding-mode tracking control was applied to 
a legged robot with two-degree-of-freedom. Under no 
external load, a linear discrete-time dynamic model for 
every link was individually achieved by the recursive 
least-squares parameter estimation. An output disturbance 
caused by the interaction and modeling error deteriorated 
the system performance. In this situation, a minimax 
optimization of the weighted sensitivity between the 
output disturbance and switching surface was obtained to 
attenuate the effect of the output disturbance. Moreover, a 
suitable selection of the weighted function could reject the 
output disturbance of known mode. For further improving 
the system performance, a switching control was designed. 
Finally, the experiments for the legged robot with (or 
without) payload was arranged to evaluate the usefulness 
of the proposed method. 

I.  INTRODUCTION 
As one knows, the dynamics of a legged robot is 

coupled and complex [1]. Hence, a centralized control is 
neither economically feasible nor even necessary [2]. 
Because the decentralized control scheme avoids 
difficulties in complexity of design, debugging, data 
gathering, and storage requirements, it is more preferable 
for the legged robot than a centralized control. In this 
situation, a decentralized control is considered. Under no 
external load, a linear discrete-time dynamic model for 
every link is individually achieved by the recursive least- 
squares parameter estimation, e.g., [3]. Due to the coupled 
characteristics of the legged robot and the existence of 
modeling error, an output disturbance depreciates the 
system performance or results in the system instability. 
Therefore, how to design an effective and simple 
controller for a legged robot is of paramount importance.  

It is well-known that sliding-mode control contains 
several advantages, e.g., fast response, less sensitive to 
uncertainty, and easy implementation [4]. A dead-beat to 
switching surface is first obtained to track the desired 
trajectory [5]. A minimax optimization of the weighted 
sensitivity between the output disturbance and switching 
surface is then obtained to reduce the effect of the output 
disturbance. In addition, a suitable selection of the 
weighted function can reject the output disturbance of 
known mode. It is the so-called “optimal and rejected 
robustness”. Although the effect of the output disturbance 
is attenuated or rejected, a better performance can be 
improved by a switching control based on the Lyapunov 
redesign. This is another aspect of the paper, which is 
called as “improved robustness”. 

The DSP-chip of TMS320F240 is employed to realize 
the proposed control. The TMS320F240 has many good 
features that make it a good candidate to implement the 
proposed control. Finally, the experiments of the legged 
robot with (or without) payload for different controllers 
are given to confirm the usefulness of the proposed control 
scheme. 

II. SYSTEM DESCRIPTION AND PROBLEM 
FORMULATION 

2.1 Experimental Setup 
Fig. 1 shows the experimental setup of the legged 

robotic system. The details of Fig. 1 are described in 
section 4.1. Before modeling the legged robot, a 
proportional control { } ,2,1,27,21 === ikkkdiagK i

pppp  is 
applied to improve the dynamics of the legdxged robot 
(see Fig. 2). Then two linear discrete-time models for the 
modified legged robot are achieved in the next section. 
2.2 Modeling 

For brevity, the mathematical notation of this paper is 
the same as our previous paper [6]. The upper script i of a 
variable denotes the ith subsystem of the legged robot. 
Assume that the legged robot is described as follows: 
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and )(⋅F denotes an unknown function of the legged robot. 
The random signal with maximum amplitude 0.3 volt is 

employed to drive each motor of the legged robot at one 
time. Then the input and output pairs of data 
{ })(),( kyku i

p
i  are attained. These input/output pairs are 

fed into the following least-squares parameter estimation 
algorithm: 
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where ,11 ≤≤− iγ the initial value of ,)0( IP ii α= iα  is 
large enough, the system degrees ii mn , are chosen based 
on the prior knowledge of the system [3]. After the model 
verification, an appropriate learned model for the robot leg 
is expressed as follows: 
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These two subsystems are stable, in non-minimum phase, 
and coprime. Because the other sinusoidal responses are 
similar with Fig. 3, only one sinusoidal response is shown. 
It indicates that the modeling is acceptable. 
2.3 Problem Statement 

Based on the approximation theory, 
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where the output disturbance is relatively bounded: 
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where 2,1 , and , 210 =iiii ααα  are bounded. The reference 
input to be tracked is assigned as follows: 
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where )( and )( 11 −− qFqG i

r
i
r  are coprime.  

The proposed control is assumed as the following form: 
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where )(kd i
o is caused by the modeling error or external 

load, )(kyi denotes the real position of the legged robot, 
the polynomials )( and )(),( 111 −−− qTqSqR iii are found to 
obtain an equivalent control, and )(kui

sw  represents a 
switching control to improve the system performance.  

For safety, the real control inputs (i.e., 2,1, =iui
r ) are 

limited to 8.5 volt. Define the following switching surface: 
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The )( 1−qAi

c denotes the characteristic polynomial of the 
closed-loop system: 
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The objectives of this paper are described as follows: (i) 
The equivalent control (i.e., )( and )(),( 111 −−− qTqSqR iii ) is 
attained according to the following two requirements: (a) 
For the nominal system (i.e., 0)()( == kukd i

sw
i
o ), the 

response of the operating point is dead-beat to the 
switching surface. (b)The minimization of 
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−− qVqW ii where )( 1−qW i  denotes a suitable rational 

function, is applied to partially reject and attenuate the 
effect of the output disturbance. (ii) Based on the 
Lyapunov redesign, the switching control (i.e., )(kui

sw ) is 
designed to improve the performance of the legged robot.  

III. CONTROLLER DESIGN 
There are three subsections for the decentralized control 

with robustness designs (DCRD).  
3.1Dead-Beat to Switching Surface for Nominal Subsystem 

The response of switching surface )(kiσ must have the 
following form [5]: 

)()()( 1 kqHk ii δσ −=                         (10) 
where )( 1−qH i is a polynomial with the degree which is the 
same as the number of dead-beat steps. Comparing (8) 
with 0)()( == kukd i
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Because )( 1−qAi
c is stable, the denominator of the right 

hand side of (11) must be stable. Hence, the following 
facts are obtained 
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minimum degree. Assume that 
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From (6), (11)-(14), the following equations are attained 
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(9), the following nominal closed-loop characteristic 
polynomial is then achieved 
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3.2Minimax Optimization of Weighted Sensitivity Function 
Based on a prior paper (e.g., [7]), the optimal 
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denote the zeros of )( 1−
− qAi and ),( 1−
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 respectively. 
According to the result of Lemma 1 in [8] and the 

constraint (18), the following equation is achieved 
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i is a stable 
polynomial, and )( 1−qW i

d contains the zeros on 1≥q for 
rejecting the corresponding output disturbance. Moreover, 
the constraint (18b) gives the following result: 
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By the solution of )(  and  1−qii Φρ  from (21), the 
following equations are accomplished from (8c) and (19) 
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where )(ˆ 1−qX i is a stable polynomial. Then from 
(22)-(24) 
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Substituting the relations (25), (26), and (20) into (9) 
yields 
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From (16) and (24), the )( 1−qT i  is attained as follows: 
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That is, the control polynomials { })(),(),( 111 −−− qTqSqR iii  
for the dead-beat and the minimax optimization of the 
output disturbance with respect to the switching surface 
are achieved from (26)-(28).  
3.3 Switching Control for Enhanced Robustness 

The proposed switching control is designed as follows: 
{ } { }









>
+−

=

−
−

−−
+

−−

 otherwise                                   0,
)()(  if

)()()()()()()(
)(

11111

kk
qBqCqBkvqkqA

ku ii

iiii
sw

iii
c

i
sw χσ

βσ
(29) 

where )( 1−qAi
c is the same as (25), )( 1−qiβ is a causal 

stable rational weighting function, )(kvi
sw  is given in (38), 

and )(kiχ is described in (39). Substituting (29), (8c) and 
(9) into (8a) gives 
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 The upper bound of )(kiΛ  is estimated as follows: 
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The switching gain satisfies the following inequality:  
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Theorem 1: Consider the system (4) and the controller (6) 
with )(kui

sw in (29) and )(kvi
sw  in (38). The polynomials 
)( and )(),( 111 −−− qTqSqR iii are achieved from (26)-(28). 

The inequalities in (36) and (37) are satisfied. Then 
{ })(kui  is bounded, { })(kiσ  is bounded in the sense of 



 

 

the minimal weighted sensitivity between switching 
surface and output disturbance, and the following 
performance (44) is accomplished. 
 { }.)()(:)( kkkD iii χσσσ ≤=                   (44) 

Proof: See [5] for a similar result.  
IV.  EXPERIMENTS 

4.1 Experimental Setup 
The first and second links are individually driven by the 

same permanent magnet DC motor. The length and mass 
of the first and second links are 83mm, 0.826kg and 
103mm, 0.214kg, respectively. The DC motor, gear box, 
and driver are A-max32 motor, Gp32C, and 4-Q-DC servo 
control LSC30/2 of Maxon, respectively. The DSP-chip of 
TMS320F240 is to realize the DCRD. A 12bits DA 
converter is used to send the control signal; a quadrature 
encoder/counter interface is applied to feedback the 
position of the motor to the DSP chip. To communicate 
these interfaces with DSP chip, a CPLD is employed to 
select the signal from the address bus of the DSP chip. 
4.2 Control Performance 

In this study, ,8msTs =  ),2(2.0)1(5.0)()( −+−−= kekekek iiiiσ  

( ) ( ),4.04.13.05.1)( 111 −−− −−= qqqiβ ,001.010 == ii λλ  ,01.02 == ii λλ  

,4.0=iε and { })(1000

11 99.01 )(3.0)()( kiii
i
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The response of the system without payload for 

2,1)),6.0cos(1(30)( =−°= ittr i π  is shown in Fig. 4. The 
corresponding ssme is also shown in Table 1. Similarly, the 
Fig. 4 case without switching control is shown in Fig. 5. 
The performance is still acceptable. The output responses 
for the other reference inputs are also acceptable; for 
simplicity, only the corresponding ssme is shown in Table 1. 
For authenticating the effectiveness of the proposed 
control, the Fig. 4 case with 3.28 kg payload fastened on 
the bottom of the second link is studied; the related result 
is then presented in Fig. 6 that is satisfactory (see Table 1). 
On the contrary, the output response of Fig. 6 by the 
proportional control is poorer than that of Fig. 6 (see Table 
1). For simplicity, only the output response by the 
proportional control for 2,1)),4.0cos(1(30)( =−°= ittri π  is 
shown in Fig. 7. Finally, the response of Fig. 6 case by 

== −− )(ˆ)( 11 qWqWi  ( )( )[ ],)cos(2111 211 −−− +−− qqwhq  where i=1,2 
),(  100 radw π=  is shown in Fig. 8. Indeed, the weighted 

function can tackle the payload to obtain a better tracking 
result; however, some high-frequency components of the 
control input occur (see Figs. 8(g) and (h)). Because the 
system is subjected to the uncertainties, the operating point 
is in the neighborhood of the switching surface (see Figs. 
8 (e) and (f)). The other output responses of the system 
with 3.28 kg payload are also satisfactory. For brevity, 
only the related ssme are shown in Table 1. 

From the above analysis, the advantages of the DCRD 
are summarized as follows: 
(i) The DCRD for the legged robot is simple because the 

system identification and the controller design of 
every link are individually obtained. 

(ii) A suitable selection of weighted function, e.g., 
,2,1),(ˆ)( 11 == −− iqWqW i  influences the system 

performance much. However, the switching control 
can further enhance the system performance. 

(iii) It is effective because the on-line identification is not 
required and the system performance is excellent. 

V.  CONCLUSION 
In this paper, the trajectory tracking of a two-degree- 

of-freedom legged robot using TMSC320F240-based 
decentralized control with robust designs is developed. 
Each link is modeled by a second-order linear discrete- 
time system. The output disturbance of every link includes 
interaction stemming from the other link, external load, 
and modeling error. It is huge and contains various 
frequencies. The ∞H -norm of the weighted sensitivity 
function between the switching surface and output 
disturbance is then minimized to attenuate its effect. An 
appropriate weighting function to reject the related output 
disturbance is much more important than the role of a 
switching control. However, the switching control does 
not need the information of the output disturbance and can 
further improve the system performance. The system 
identification and controller design only for each link are 
required. The experiments of the legged robot with  
3.28kg payload that is much larger than that of the DC 
motor (i.e., 0.5 kg) confirm the validity of the proposed 
control scheme.  
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  Fig. 1. Experimental setup of legged robotic system. 
 
 
 
 
 
 

Fig. 2. Control block diagram of the ith subsystem. 
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Fig. 3. The output responses of the mathematical model )(− and the 
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Fig. 4. The response of the system without payload by using the proposed 
control with 1)( 1 =−qW i for .2,1)),6.0cos(1(30)( =−°= ittr i π  
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Fig. 5. The output response of Fig. 4 for the proposed control without 
switching control. 
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Fig. 6. The output response of Fig. 4 with 3.28kg payload 
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Fig. 7. The output response of the system with 3.28kg payload for 
2,1)),4.0cos(1(30)( =−°= ittri π by the proportional control with 
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Fig. 8. The response of the system with 3.28 kg payload by the proposed 
control with )(ˆ)( 11 −− = qWqW i for .2,1)),6.0cos(1(30)( =−°= ittr i π  
 

 
Table 1. The maximum steady-state tracking error (degree and % relative to the corresponding amplitude of the reference input) for various controls and 
reference inputs: [ ] .2,1,)2cos(1)( =−= ikTfrkr s

ii
m

i π  

Payload No 3.28 kg 
Weighting - 1)( 1 =−qW i  )(ˆ)( 11 −− = qWqW i  - 1)( 1 =−qW i  )(ˆ)( 11 −− = qWqW i  

       Control 
Case 

P Control 
( 120=i

pk ) 
Equivalent 

Control DCRD Equivalent
Control DCRD

P Control
( 120=i

pk )
Equivalent

Control DCRD Equivalent
Control DCRD

o30,2.0 11 == mrHzf  2.30(3.82%) 2.01(3.34%) 1.52(2.54%) 0.51(0.85%) 0.47(0.78%) 2.38(3.97%) 7.62(12.69%) 2.07(3.45%) 0.94(1.57%) 0.60(1.00%)

o30,2.0 22 == mrHzf 2.20(3.68%) 2.13(3.54%) 1.65(2.75%) 0.44(0.73%) 0.39(0.65%) 2.31(3.84%) 2.82(4.71%) 1.43(2.38%) 0.99(1.65%) 0.52(0.87%)

o30,3.0 11 == mrHzf 3.30(5.50%) 1.50(2.50%) 0.99(1.65%) 0.50(0.83%) 0.41(0.68%) 2.37(3.95%) 6.46(10.76%) 2.19(3.65%) 0.88(1.47%) 0.54(0.90%)

o30,3.0 22 == mrHzf 3.19(5.32%) 1.59(2.65%) 0.89(1.49%) 0.57(0.95%) 0.48(0.79%) 2.36(3.93%) 2.61(4.36%) 1.49(2.49%) 0.74(1.24%) 0.55(0.92%)

o30,4.0 11 == mrHzf 4.33(7.22%) 2.50(4.18%) 1.59(2.66%) 0.57(0.95%) 0.59(0.98%) 4.31(7.19%) 4.94(8.23%) 2.32(3.87%) 1.08(1.81%) 0.95(1.58%)

o30,4.0 22 == mrHzf 4.15(6.92%) 1.87(3.12%) 1.22(2.03%) 0.44(0.74%) 0.41(0.69%) 4.33(7.21%) 2.14(3.57%) 1.98(3.30%) 0.79(1.32%) 0.54(0.91%)
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