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Nonstationary Robust Control for Time-Varying System

Masatsugu Otsuki and Kazuo Yoshida

Abstract— This paper presents a synthesis method of non-
stationary robust controller for a time-varying system con-
sidering various uncertainties. For the uncertainties, a scaled
structured uncertainty is regarded as weightings for variations
of parameters and a design function in the time domain.
Meanwhile, an unstructured uncertainty is counted by a filter
enveloping model errors of a control object in the frequency
domain. A wire changing its length is adopted as the controlled
object and then its vibration control is discussed as a practical
problem for solution. The performances of controllers are
demonstrated in the time and the frequency domains through
the numerical calculations for the case that the object is
subjected to disturbance and variation of parameters. The
proposed controller designed by considering both uncertainties
shows the advantages for the robustness.

. INTRODUCTION

We mention the nonstaionary robust control for a time- Il
varying system such as a wire changing its length. For the

its length which is a time-varying system and a kind of
flexible structure. On the control for its vibrations, Takagi
and Nishimura [5] in 1998 proposed a gain-scheduled
control method based on LMI for a tower crane considering
variation of length of crane-rope. And authors [6], [7]
investigated for the control of transverse vibrations of wire
such as the elevator cable caused by the resonance with
sway of a high-rise building.

In this paper, the main objective is to present a synthesis
method of nonstationary robust controller considering un-
certainties positively. Besides the proposed control method
is verified through numerical calculations simulating the
practical problem which is the vibration control for the wire
changing its length.

NONSTATIONARY ROBUST CONTROL
METHOD

robust control of time-varying or -invariant system, DGKFA_ Construction of generalized plant

paper [1] is known very well as a proposal to design a robust
controller for a part of time-invariant system in the time-,
domain. And also Sanpei et al. [2] proposed to design the
output-feedback robust controller for all the time-invariant

In this paper, we mention the vibration control for the
following time-varying system.

(1) = An(t)Xn(t) +Bn(t)u(t) + Dn(t)za(t) (1)

system be_ased ohle th(_eory. Fgrthermo_re, Limebeer et a'-wherexn(t) is the state valuedin(t), Bn(t) and Dp(t) are
[3] established to design a time-varying robust controllef,e time-varying matricegy(t) the control inputzy(t) the

for a time-varying system based on the differential gamegystem disturbance. In this research, the controller having
theory, and then they utilize the constantvhich means e ropustness for uncertainties is proposed. Besides, the
the index of ro_bust stak_)ilizing perfo_rmance. However, f%ontrol object is a system having flexibility and time-
the control of time-varying system, its parameters vary iarying parameters. Therefore, the formulation of its model
the time domain, that is, it is certainly that theis also s yery important for the reason that it needs the exact model
varying with time. Hence, thg becomes a function of time, o the model based on complex formulation to obtain the nu-

conversely, it is effective for the enhancement of robusferical realization of control object completely. Conversely,

stabilizing ability to utilize they(t) as a design function of
nonstationary controller. Moreover, if thgt) is assigned
huge value, the designed controller i controller [4].

the numerical model with lower dimension is reasonable for
the design of controller. Based on the lower model for it, the
model errors due to the ignored high order modes cause the

Resultingly, it is also feasible to implement th andH..  control and observation spillovers. Moreover, the complete
switching controller using the(t). realization of parameter identification for the control object
Meanwhile, for the vibration control of flexible structure,js glso difficult, especially, a nonparametric identification

the spillover due to uncertainties is a serious problergs time-varying system is complicated. Consequently, we
on the active control. The uncertainties are categorizechnsidered that the parameter errors and variations of con-
into scaled structured and unstructured ones. The scalgg, object are time-domain uncertainties. From the above
structured uncertainty arises from parameter variation ar?ﬂguments, we frame the model errors of ignored high order
error of controlled system in the time domain. And thénodes as an unstructured uncertainty and the parameter
unstructured uncertainty is also caused by model errors dygriation and error as a scaled structured uncertainty. For
to ignored mode of model in the frequency domain. Hencgesigning the robust controller, we construct the augmented
the vibration control of flexible structure is the good subjecgystem including both uncertainties in the equation.

matter to verify the robust stabilizing performance. In this .
| " Sta ; s Xa(®)] _ [An(t) +AAa(t) 0

aper, we mention the vibration control of wire changing x,(t) = | = X(t
Pap ang 50 = [70] = |G S0
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Y(t) = [Ca(t) + ACH(t)  Cr(t) +ACH ()] (1) Al(t) = [A”O(t) Ar(zt)},sl(t) HD’E)(U} 0110 o}

+ Dr (t)U(t) +V(t)W0(t> (3) _Bn(t)
which are based on the time-varying nominal system ex- Ba(t) = | Br(t) Calt) = [Cn(t) O]
pressed by matricedn(t), Bn(t), Dn(t) and Cy(t), they [QY2(t) 0 0
include the scaled structured uncertaityand the un- 0 0 RY/2(t)
structured uncertainty systera(t), A (t), B (t), Ci(t) and Wa(t) 0 0
Dy (t), wo(t) and V(t) are the observation noise and its 1(t) = 0 0 ;D1a(t) = W(t)
power vector, respectively. The unstructured uncertainty is We(t) 0 0
expressed by a shaped filter such as a high pass filter. In 0 Cr(t) Dy (t)
addition, the nominal system is given by the system (1). () :_[O Vi) 0 0 | I]
This augmented system indicates the set of model of control 21

object, which has a fluctuation band in the time domaimhere the Wa(t), Ws(t) and We(t) are the weight-

described by the scaled structured uncertainty and the oimgy matrices of scaled structured uncertainti€¥t) =

in the frequency domain performed by the unstructure@'/2T(t)QY2(t) and R(t) = RY2T(t)RY2(t). Therefore,

uncertainty. this paper presents the synthesis method of controller to
By the previous augmented system and weighting funémplement the robust stabilization of the above augmented

tions, we synthesize a generalized plant to build a robusystem considering the scaled structured and unstructured

controller. For the scaled structured uncertainty, the closathcertainties.

loop expression of system substitutes for the open loop one

by using virtual disturbance inpwta(t), ws(t), we(t) and B. Formulation of nonstationary robust control problem

weighted performance outpaj(t), z,(t), z(t). And also, In the priori derived generalized plant, thd, norm

the unstructured uncertainty derived from a shaped filteaf the closed loop transfer functioB,, from the virtual

is turned from being closed loop expression into beingvorst disturbancev(t) to the performance outpu(t) is

open loop one with a virtual disturbance inpug(t) and described by, induced norm in the time domain as shown

a weighted performance outpgj(t). Moreover, the state in the following equation.

values and the control input are open looped from the _ za(0)]]2

system noiseg(t) and the observation noisg(t) to the mJnl\sz\Ioo = m|n Suw Y (7)

performance outputgy(t) andzz(t). As an illustration, the

open loop expression of generalized plant is shown in Figwhere || |l gives H, norm, || ||2 gives L induced norm

which abbreviates the description of time. In this controBnd y* is the minimum value of K norm realized by the

problem, the state space description of generalized plantagtimal controllerK(y,t)*. With (4)-(6) and (7) given, the

described by the followings. H. optimal control problem is to find a controll&(y,t)*.
. For they > y*, the control satisfying
¥a(t) = Ag(t)x(t) +Ba(t)w(t) +Ba(t)u(t) (4)
Z(t) = Ca(t)x(t) +D2(t)u(t) ()  Ju(U,WP) = minmax / —ywh (w(t)] dt<0
Ye(t) = Ca(t)X(t) + Daa(t)w(t) ®) o _ (8)
T is called the quasi optimal control. Hena? is the worst
W(t) = [Za(t) Wo(t) Wa(t) wp(t) Wwe(t) wg(t)] disturbance which is the solution of maximization problem
T
) =[t) =) z(t) ) z() z1) Joo (U, WP) = maxJo, (U, W) 9)
w
/Scaled structured uncertaint; \ and It iS described by the equation
R — %z 2
v ! @ @ Zy W= y Bl(t)xw(t)xz(t) (10)
zd*‘.—w - D,| where X, (t) is the positive definite symmetric matrix as a
" — A — Wi lution of the Riccati differential equation derived f
w,— clf 3% solution of the Riccati differential equation derived from
¥ \| - = z, (9). Thereupony® is the optimal control input which is the
e e e B solution of minimization problem
U B" ¥y
: Joo (U, W) = MinJe (U, W) (11)
Nominal plant u

4’_{@} z, and it is given byNthe equation

w, L y _ w0 = —RH(1)(B () Xu(t) + S(t))x(t) (12)
Unstructured uncertaint: . . .. . .
where X,(t) is the positive definite symmetric matrix as a
Fig. 1. Schematic diagram of structure of generalized plant solution of the Riccati differential equation derived from
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(11). In this control problem, it is a main objective thatwhere (19) is the final condition and (21) the initial con-
this control converges to thd. optimal control by using dition. Therefore, (18) is solved by using Runge-Kutta
iteration of solving a controlleK(y,t) with decreasingy. = method in the inverse direction of time from (19) and then
In other words, it is the goal for this control problem to(20) is performed in the forward direction of time from
accomplishy — y* or J, = 0. In this research, we adopt (21). Furthermore, we utilize a polynomial function for the
* * expression of nonstationary robust controller changing with
V) >y ([0, ],0<t" <tr) (13) timpe. The time-variation of){he controller is smooth? hgnce,
for y, and (8) is transformed into the following problem. the order of polynomial interpolation is enough~ 10 to

t . . . . _ .
I, W) :muin mﬁxf f 2 (©)2n(t) — y©)2W (Ow(t)] dt give a description of the time-varying controller.
D. Design ofy(t), the weightings and the shaped filter for

0
—minmax [ (600 + 2T OSOU  uncertainties

+uTOROUE) — y)2W (Ow(t)] dt  (14) For the nonstationary robust control method, the design
G0 -G08 - oty Bty L) 2 et S it
In this paper, we will solve the problem to obtain acontrol, they(t) is designed by using discretgiteration
controllerK (y,t) which minimizes the criterion function of through all the time. If it is assumed that the time-varying
(14) by using opt|ma| control inpl_mo with the existence parameters of controlled SyStem is continuous on time, the
of the worst disturbancev, for the case that this control Y(t) is based on the combination of discrete minimyft)*

problem is finished by finite time. given by y-iteration at the arbitrary tim@. However, the
y(t) derived by the iteration can be utilized directly to
C. Synthesis of controller design a robust controller, because the Riccati differential

We begin by considering a controller which achieves thgguation has no stable solution based on it. Resultingly,
robust stabilization for the time-varying generalized plantve Use a largey/(t) referring they(t)" derived fromy-
The solution of (14) is a saddle point solution satisfying théferation. Secondly, we estimate the quantity of the scaled

inequality condition: structured uncertainty considering the parameter variation
by the followings.
I(U0,w) < I(W°,WP) < I(u,wP) ) J
and it is implemented with the following controller in the DAa(t) = Amax—An(t), ABn(t) = Bmax—Bn(1),
state space description [3]. ACh(t) = Cmax—Cal(t) (22)
K(t) = A()R(t) 4 B(t)yz(t) (16) In this equation, the subscript ‘'max’ means the matrix
and the output including the absolute maximum values through all the time,
ut) = F(O)R(t) (17) and all the symbols expresses the matrix. Thus the scaled
: db structured uncertainties are substituted into the following
is constructed by equation.
A T
Al =A) +Bo(OF (1) +y (”Bl@Bl (OX(®) DAG(t) = |AGAWA(L), ABn(t) = Ip3aWk (1),
—B()(Ca(t) +y 2(1)D2a(VB] ()X (1)) ACH(t) = IcBWe (1) (23)

)B1 (1)
~2 -1 T T
B( ) ==y OYOXO) (Y (G (O +Ba(t)D2 (1)) wherel; is an identity matrixg| a repeated scalar block and

T —
x EDZl(t)DZl(t)) W the weighting matrix expressing the quantitative scale.
F(t) =—R(t)"1(B] (t)X(t) +§T(t)) Finally, the shaped filter is applied to note the unstructured

L . . uncertainty, and it then is designed to envelop the model
where X(t) and Y(t) is given by solving the following errors due to ignored high order modes.
Riccati differential equation with an explicit method such

as Runge-Kutta method. I1l. CONTROL OBJECT

—X(t) = X(t)Ag(t )+AT ()X (1) +X(t)B1(t)B] (t)X(t)/y?(t)  Inthis study, we consider the following system: a flexible

- = T =T ~ structure contains a wire and mass points as shown in Fig.2
(X(t)Bz(t);S( DR B OX()+5 (1) +QA1)(18) which illustrates a length-varying wire system. This system

X(tr) = (19)  has time-varying parameters such as length or moving
. velocity, namely, this is classified into time-varying system.
Y(t) =Y (A (t) +Az(t)Y(t) +Y(OC] (OCL)Y(t)/Y?(t)  Itis assumed in this research that the structure, the wire and
(Y(t)CZ( )+Bl(t) 1(1))(D21 t)D}l(t))*l mass points have horizontal deflections and then longitudi-
T nal vibrations are ignored, because we focus on the proposal
X (C2(U)Y (1) + Daa(1)Ba(t)) +Ba(1)By (1) (20) of control method and it is easy to understand intuitively
Y(0)=0 (21) ' the vibration control of transverse deflection of wire caused

3970



by the resonance between the structure and the wire. And
a control force is added directly into one of mass points
to displace at the boundary of wire. First, we construct the
equation of motion of wire. A wave equation of length-
varying wire is expressed by the following equation.

pA (gt +v(t)§s) u(st) — (%T(s) dulgss,t)

RN

+c(s) (:t +v(t)js> u(sit)=0 (24)

where s is the coordinate along the wireys,t) the dis-
tributed parameter of deflection of wire in the transverse
direction,t the arbitrary time pA the line density of wire,
T(s) the tension of wire depending on the up-and-dowmyn the normalizing values of length and time. The details of
position,v(t) the velocity of variation of length of wire and non-dimensional model are found in reference [7]. Finally,
c(s) the damping coefficient per unit length of wire. Thethe state equation (1) is obtained by the coupled and non-
model of wire is constructed by using Galerkin's methodiimensionalized equation.

asu(s,t) = N(s)r(t). From the previous wave equation, the For the wire and mass points, their state values are

Fig. 2. Schematic diagram of controlled system

motion of equation of an element is derived. expressed by the relative displacement, velocity and ac-
2a(t)  a(t) fi(t) celeration from the structure, because .th.ey are generally
at)  2a(t) L';i—o—l(t)] measure'd by using non-contact or bwlt-m dlsplacemgnt
2H(t) —de(t)  y(t)+de(t) fi(t) sensor fixed on the s_tructure. Thus the dlsturbance_s into
+ - deft)  24(0)+d (t)] {f- (t)] the wire and mass points are the absolute accelerations of
¥ (t) — de i ¢ i+l structure, and then they depend on the position of mass

n { B(t) — d(t) —B(t)+dk(t)} [ ri(t) } —0 (25 boints of wire. Therefore, we will express their disturbances
—B(t) —d(t)  B(t)+dk(t) | [risa(t) by using dynamics of structure under the assumption that

a(t) = pAl(t)/6,1(t) = (1(0) + v(t)t)/n,de(t) = pAV(t), the structure is a cantilever in the numerical calculation.
H (1) = c(e)1(1)/6,B(1) = (T(s) = PAZ(1)/1 (1), IV. NUMERICAL CALCULATIONS

dk(t) = 0.5c(s)v(t
k() (S(t) A. Conditions of numerical calculations
wheren is the discrete number and it is assumed that the |\ .o chapter, we examine the reduction and the ro-

wire 1 not interacted directly with an external force._ Inbust stabilization performances of the proposed controllers
addmon,dc(t)_ anddy(t) are the_ a_dvectlon_terms Olependlngthrough the numerical calculations. The control methods for
on the velogty of 'ef‘gth var|_at|c_)n of wire. For the C8S&he examination are six as shown in the left side of Table I.
that the V?r'at'on of its veloc_:lty is smaller than the c’therBasically, we examine the nonstationary robust controllers
parameter's ones, the advection terms are neglected becayisgioned by various weightingg(t) and shaped filter. The
the |n.fluence .Of wave propagation has I't,tl,e effect on Fhﬁrst is the basic nonstationary robust controller based on
V|brat|(_)n of wire. Based _on_the superposition of e_quatlori\ne constany, the second the one designed jay) derived

of motion of an _element im times and the construction Of_from discretey-iteration through all the time, the third one
dynamics equation of structure and mass points, we der%%sed on the generalized plant including the shaped filter,

a time-varying equation of motion of controlied system Athe fourth one designed by the generalized plant including

the following. the weightings describing the scaled structured uncertainty,
M (t)Xq (t) 4+ C(t)Xqg (t) + K (t)xg(t) = F(t) (26) the sixth the gain-scheduled robust controller (G.S.) based
T on the generalized plant considering both uncertainties and
Xa(t) = [Xoa(t) - Xom(t) X(t) ra(t)---ra-a(t) Xe(t)2]7 the sixtﬁ one the nofnstationary robugt controller designed on
27) the generalized plant considering both uncertainties. These
whereM(t), C(t), K(t) andF(t) are the inertial, damping, examinations are performed for the case that the structure is
stiffness and external force matrices, respectivglyis the subjected to the basement disturbance, the value of tension
absolute displacement of each story of structuvethe of wire shifts from -50% to +200% in the time domain
discrete number of structurey, the relative displacement while the wire descends. For the synthesis of controller, it is
of mass point at one end from the top of structuggethe supposed that the discrete number of wire is 10, the number
relative displacement of mass point at the other énthe of mass points of structure model is 5 and the verification
relative displacement of i-th discrete element, and tkgn model of wire has the discrete numberequal to 40. In
and xe coincide withrg andry , respectively. Besides, we addition, we adopt the signal shown in Figs.3 and 4 as the
non-dimensionalize the coupled equation of motion basetisturbance into the controlled system.

3971



TABLE | -
THE NOMINAL CONTROL RESULTS(R.R.:REDUCTION RATE) % 1.000
=
# shape ofy Max UR.M.S. (R.R. of Max XR.R. of R.M.S. x E
il Const. 31.5] 130 0.524 0.580 E LRI
2 y-it. 28.6| 125 0.518 0.566 2
3 y-it. +filter 249] 115 0.585 0.419 3 0.600
4 y-it.+delta 23.9] 93 0.539 0.498 E
5G.S.4#-it.+deltatfiltef 32.5| 11.0 0.538 0.548 = 0.400
6 y-it.+deltatfilter | 29.2] 10.7 0.517 0.525 b -50% | -20% | 0% | +20% | +50% |+100% |+200%
Z 4 1.02 ;: m Noncontrol | 1.284 [ 0.910 | 0.980 | 0.925 | 0959 | 1.301 | 0916
= & 2
+ 3 ‘ g |mNo.l 1.092 | 0.647 |0.514 [0.541 | 0.845 [0.936 | 1.013
%, <1’ =
2 £ S |mNo2 1.088 | 0.620 | 0.508 |[0.533 | 0.868 | 0.931 |0.977
g =
£o0 2, Fig. 6. The maximum values of displacement of wire with controllers
3 e No.1 and 2
3 e
= -2 % =
2 0 g
E = <
=8 10 0) 1 2 g
) 1 2 3 4 10 10 10 RS 0270
< Time[tz 1] Frequency[Hz- 1] g -
Fig. 3. Time history of acceler- Fig. 4. Power spectrum density of =
ation of disturbance acceleration of disturbance = 0220
g 0.220
100 5
Model Errors ‘ 2
gof_— High-pass filter| | T,;‘;
ol // “ :; 0.170
/ | . 50% | -20% | 0% | +20% | +50% |+100% |+200%
= 40 vl | ‘ !
= \ =
g 20 ,/ I AL & |mNoncontrol |0.336 [0.315 |0.311 |0.287 |0.306 |0.335 |0.218
/ g
N A L] | } 2 |mNol 0.245 {0.211 |0.181 [0.174 [0.201 [0.190 |0.293
20 mNo.2 0.243 {0204 [0.176 [0.172 [0202 [0.187 |0.277
-40) Fig. 7. The root mean square values of displacement of wire with
60 controllers No.1 and 2
107 10" 10’ 10' 10°

_ Frequency[tiz=rl square (R.M.S.) values of displacement of wire through
Fig. 5. The frequency characteristics of model errors frorto y and

shaped filter enveloping them the entire time for the controllers No.1 and 2. From these

) o ) results in the time domain, the controller No.2 gets the good
The second order high-pass filter is applied to note thgerformance when the tension of wire varies. As a resul,

unstructured uncertainty, and it is then designed to envelgpis clarified that the variation of(t) influences the robust
all the model errors in the frequency domain as shown igapilizing performances of controller, and then the optimal
Fig.5. The model errors come of the ignored high ordeyt) exists. Here they of No.1 is 90.0 and the minimum
modes of controlled object, besides, they are expressed g ) of No.2 is 41.8. The reason why thyeof No.1 is larger
the differences in the frequency responses under contr@i\n No.2 is that the Riccati differential equation of No.1 is
and non-control which are the responses from the contrgbyt aple to be solved by using the minimum value/@f of
input u to all the observed outputs In addition, since the No.2. This result to utilize the large value fpiimplies that
incrementation of order of controller by accompanying th& is possible to implement the more robust control based
high-pass filter is only two and it is very small for the entirépn the optimaly(t) derived by the other method than the
order of controller, the controller performs the practical usgjscretey-iteration in this paper.
without problems. Additionally, Figs.8 and 9 illustrate the same results of
Finally, for the gain-scheduled robust controller, its synthe controllers No.2 to 6 as Figs.6 and 7. The controllers
thesis is established by the discregdteration and the No.3 to 6 bring out better robust stabilizing performances
solutions of the Riccati differential equations (18) and (20)nan previous ones. Although No.6 controller obtains the
based on the controlled system which has fixed parametafgst regulation of vibrations in the maximum value, No.3
at the arbitrary time. In this examination, the eighteen gairgets the best one in the R.M.S. value. To reduce the
scheduled robust controllers are prepared at regular intervakaximum values is more important than to reduce the
during the control period, hence, the other controllers arg M.S. ones because the wire gets the fatal damage during
given by their smooth connection using spline interpolationhe bouts causing its maximum displacement. Meanwhile, to
suppress the rms value is only related to extend the life span
of wire. Moreover, No.5 gets the same performance as No.6,
Table | indicates the nominal performances and thkRowever, the more control input is required to get it. Finally,
control inputs by all the controllers which are made althe results in the time domain imply to select the synthesis
most equal quantitatively. For the examination in the timenethod of controller according to desired performance and
domain, Figs.6 and 7 show the maximum and root mearondition of uncertainty.

B. Consideration about numerical calculations
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Fig. 11. The time histories of summation of digitalized values in the
reduced frequency response within the high frequency range

the time histories of summation of digitalized values in
the reduced frequency responses which are limited within
the high frequency range more than 1 Hz. Although No.3
controller shows the best suppression performance shown
in the result of Fig.11 through all the time, from the result
shown in Fig.10 its quantitative reduction is very poor on
the ground that it is designed to get conservative due to
the filter. Meanwhile, No.4 controller derives the satisfied
guantitative suppression of vibrations without the high fre-
guency range. Consequently, No.5 and 6 controllers show
the good regulation for vibrations of wire with avoiding the
worst case, that is, reducing the maximum displacement
of wire. However, since these results in the frequency
domain are evaluated discretely in the time domain, the
gain-scheduled controller indicates the similar performance
to the nonstationary one.

V. CONCLUSIONS

This study presented a synthesis method of nonstationary
robust vibration controller considering uncertainties. The
proposed method permits the design functig(h) to be
designed on the worst disturbance and the time-variation
of parameter. The uncertainties were categorized by the
scaled structured and unstructured ones in the time and
frequency domains, and then the controllers considering
both uncertainties obtained the advantages for the vibration
control of wire changing its length for the case that the
controlled system is subjected to the disturbance and the
parameter variation in comparison with the gain-scheduled
and other controllers. In future study, we implement a robust
stabilizing control based on the optimized valuey¢f) and

Fig. 10. The digitalized differences of frequency response between nothe quantitative evaluation of uncertainties.
control and control at =t /2 in the case that the tension varies from 0.4
to 5 times (Black~ white : bad~ good)
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