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Abstract— This paper derives two linear matrix inequality
(LMI) conditions for robust control analysis based on finite
frequency properties (FFP) and proposes robust control syn-
thesis based on FFP. Solvability conditions of the synthesis
problem are derived in the form of LMI condition adding
a rank condition. The conditions are still non-convex due to
the existence of the rank condition. However, we can solve
the problem by using a more efficient proposed method from
the viewpoint of computation.

I. INTRODUCTION

In the case of control system synthesis based onH1
control, for example, in order to improve a following
performance of the control system to a step change in
the reference input, we have to decrease a gain of the
sensitivity function which is a transfer function from
the reference input to the error output in broader low
frequency band. Therefore, so far, a weighting functionWS(j!) is chosen as shown in Figure1 and the synthesis
has been done so that the gain of sensitivity functionS(j!) may become smaller than that ofWS(j!)�1 at
all the point of frequency!. However, it is necessary to
select the weighting function appropriately when using
this method, and the control performance depends on the
weighting function greatly.

-
+

K(s) P(s)WS(s)rey r e y !jWS(j!)j�1jS(j!)j = j 11+P (j!)K(j!) j
Fig. 1. Loopshaping.

Then, this paper considers a synthesis method that im-
proves the following control performance directly based
on finite frequency properties (FFP) [1]–[3] without using
the weighting function. Our basic idea is that we can
expect an improvement of the following performance, for
example, the settling time in terms of the step response,
if the gain of sensitivity functionS(j!) becomes smaller
than 
 in the broader frequency band like the shaded
portion in the left picture of Figure2, or if the gain of
complementary sensitivity functionT (j!) becomes big-
ger than
 in the broader frequency band like the shaded
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portion in the right picture of Figure2. This paper derive
a robust control analysis and synthesis condition based on
FFP. Moreover, we propose a new design algorithm using
convex relaxation in order to solve the synthesis problem.

 �min[T (j!)℄ � 
�max[S(j!)℄ � 
 !!jS(j!)j = j 11+P (j!)K(j!) j jT (j!)j = j P (j!)K(j!)1+P (j!)K(j!) j

Fig. 2. A basic idea based on FFP.

Notation: For a matrixA, its minimum singular value
and its maximum singular value are denoted by�min(A)
and�max(A), respectively. For matricesB andC, their
Kronecker product is denoted byB
C. The set of2�2
Hermitian matrices are denoted byH. A quadratic form
function � : Cl �H! IR is defined by�(�;�) := � �1 ��� � �1 � :

II. FFP-BASED ROBUST CONTROL ANALYSIS

We shall extend the control analysis condition [1],
[2] of FFP to two correspondingrobust control analysis
conditions. Here the FFP mean generalized properties of
the small gain condition (�max[G(�)℄ � 
), the high
gain condition (�min[G(�)℄ � 
), and the positive real
condition (G(�)� +G(�) � 0) in a finite frequency band
where� is the continuous time operators or the discrete
time operatorz.

A. Analysis Problem Formulation

Consider an uncertain feedback system depicted in
Figure3 where� 2� is an uncertain matrix belonging
to a known subset of complex matrices� defined by� := f� = diag(Æ1In1 ; : : : ; ÆsIns ;�1; : : : ;�f ) :Æi 2 IR 8i; �j 2 Cl pj�qj 8j; k�k � 1g (1)

and a state space representation ofH(s) is given by24 _xz1z2 35 = 24 A B1 B2C1 D11 D12C2 D21 D22 3524 xw1w2 35 : (2)

Let the transfer function from inputw2 to outputz2 be
denoted byW�(s). Note that coefficients of a state space



�H(s) �- �� w1z1 w2z2 W�(s)
Fig. 3. An uncertain system.

representation ofW�(s) are given by� A� B�C� D� �:=� A B2C2 D22 �+ � B1D21 ��(I ��D11)�1� � C1 D12 �
(3)

where det(I ��D11) 6= 0; 8� 2�
andW�(s) can be defined on the imaginary axis.

We describe the following analysis problem and derive
analysis conditions of FFP for the robust control system.

Analysis Problem: Derive conditions satisfying(i) or (ii): that is satisfying the FFP for robust
control system where the transfer function ma-
trix W�(s) with �, 
 = 
� and� :=((�;	) j 9�;� 2 IR; N 2 Cl 2�2; �det(N) 6= 0� = N� � 0 �� 0 �N; 	 = N� � �1 �� 1 �N);

(4)� := f� 2 Cl j�(�; �) = 0; �(�; 	) � 0g
are given.(i) det(�I �A�) 6= 0; 8� 2 �; 8� 2�;h (�I � A�)�1B�I i�
 h (�I � A�)�1B�I i�0;8� 2 �; 8� 2�: (5)(ii) 9Q� = Q�� > 0; P� = P �� s.t.h A� B�I 0 i0L(P�; Q�)h A� B�I 0 i+
 � 0;

(6)L(P�; Q�) :=�
P�+	
Q�; (�;	) 2 �:(i) and (ii) are equivalent conditions.
 is shown as
follows:
 = � C� D�0 I ��� � C� D�0 I � :
The special cases of (5) and (6) can express the small gain
condition, the high gain condition and the positive real
condition by characterizing�. Moreover, a continuous
and discrete time system can be shown by characterizing� and the finite frequency range can be shown by
characterizing	.

B. Analysis Condition

Two sufficient analysis conditions of FFP for the ro-
bust control system are described in Theorem 1 [3] and
Theorem 2. First, we considerP� andQ� as standard
affine functions depending on the uncertain parameter�
whereP� andQ� are characterized as follows:P� = P0 +H0 ~��H; Q� = Q0 +H0 ~�~�H;~� := f ~� = diag(Æ1Iv1 ; : : : ; ÆmIvm ;�1; : : : ;�f) :Æi 2 IR 8i; �j 2 Cl pj�qj 8j; k~�k � 1g: (7)H is a given constant matrix.� and ~� are constant
symmetric matrices with the commutative structure of~�.

Theorem 1: Let W�(s), (�; 	) 2 � and� be given
by (3), (4) and (1). Then finite frequency properties for
the robust control system (3) hold if there exit matricesP0 = P �0 ; Q0 = Q�0; �1 = ��1; �2 = ��2 satisfying(i) F1L(P0; Q0)F 01 + 12F1L(�H; ~�H)0F 02+12F2L(�H; ~�H)F 01+F3�F 03+F4�1F 04 < 0;F1 := 264 A0 IB01 0B02 00 00 0 375; F2 := 264 0 00 00 0I 00 I 375; F3 := 264 C02 0D021 0D022 I0 00 0 375;F4 := 264 C01 A0H0 H0 0 0 0D011 B01H0 0 I 0 0D012 B02H0 0 0 0 00 0 0 0 I 00 0 0 0 0 I 375:(ii) � h Q0 H0~�0=2~�H=2 0 i+ h H 00 I i0�2 h H 00 I i<0:(iii) � Ir� ���1 � Ir� � � 0; 8r 2r;r := f diag(�; ~�; ~�) j 8� 2 � g:(iv) � I~�� ���2 � I~�� � � 0; 8 ~� 2 ~�:
Proof: The proof is omitted for the space.

Next, we considerP� and Q� as rational functions
depending on the uncertain parameter� whereP� andQ� are characterized as follows:P� := � IN� �� P � IN� � ; P = P �;Q� := � IN� ��Q � IN� � ; Q = Q�;N� := (I ��D11)�1�C1:
The following theorem is obtained by using the above
rational parameter dependent functions.

Theorem 2: Let W�(s), (�; 	) 2 � and� be given
by (3), (4) and (1). Then finite frequency properties for
the robust control system (3) hold if there exit matricesP = P �; Q = Q�; �1 = ��1 ; �2 = ��2 satisfying(i) F1L(P; Q)F 01 + F2�F 02 + F3�1F 03 < 0;



F1 := 264 A0 0 I 0B01 0 0 0B02 0 0 00 0 0 I0 I 0 0 375 ; F2 := 264 C02 0D021 0D022 I0 00 0 375;F3 := 264 C01 C01 A0C01 0 0 0D011 0 B01C01 I 0 0D012 0 B02C01 0 0 00 D011 0 0 I 00 0 D011 0 0 I 375:(ii) �Q + h C1 D110 I i0�2 h C1 D110 I i < 0:(iii) � Ir� ���1 � Ir� � � 0; 8r 2r;r := f diag(�;�;�) j 8� 2 � g:(iv) � I�� ���2 � I�� � � 0; 8� 2�:
Proof: The proof is omitted for the space.

The infinite inequality conditions(iii) and (iv) in
Theorem 1 and Theorem 2 can be eliminated by using
the D-G scaling etc. as a special structure of�1, �2, �1
and�2 but this approach is conservative. However, it can
easily check whether the robust control system satisfies
FFP by solving LMI conditions with a computer.

C. Numerical Analysis Example

We confirm whether the analysis conditions in Theorem
1 and Theorem 2 become analysis conditions in consid-
eration of robustness by using numerical examples.

Problem: Consider a system having uncertain-
ties of k and� given by (2) withW�(s) = k + Æks2 + 2(� + Æ� )s+ 1 ;k = 1; � = 0:5; jÆkj � 0:2; jÆ� j � 0:2:
Maximize a frequency!0 using Theorem 1 and
Theorem 2 satisfying�min[W�(s)℄ � 
.

Since the above problem considers the continuous system
and the high gain condition in low frequency, parameters
in Theorem 1 and 2 are set as follows:� = � 0 11 0 �; 	 = � �1 00 !20 �; � = � �I 00 
2I �:
The maximal frequency!0 satisfying�min[W�(s)℄ � 

is calculated by using MATLAB. The results are obtained
as follows:(
; !0) = � (1=p2; 0:7414); (0:1; 2:8210) : Theorem1;(1=p2; 0:7413); (0:1; 2:8209) : Theorem2:
In comparison with the above calculated results and
values obtained by the bode diagrams in Figure4, we
understand that the value in consideration of robustness
is calculated. The FFP robust analysis conditions in The-
orem 1 and Theorem 2 are valid.

10
−1

10
0

−40

−35

−30

−25

−20

−15

−10

−5

0

5

10

Frequency [rad/sec]

M
ag

ni
tu

de
 [d

B
]

Fig. 4. Bode diagrams.

III. FFP-BASED ROBUST CONTROL SYNTHESIS

A solvability condition of a general FFP-based robust
control synthesis problem is derived in the form of LMI
conditions adding the rank condition.

A. Synthesis Problem Formulation
Consider the feedback system depicted in Figure5

where a state space representation of a plantG(s) is given
by264 _xz1z2y 375 = 264 A B1 B2 B3C1 D11 D12 D13C2 D21 D22 D23C3 D31 D32 0 375264 xw1w2u 375=: � M11 M12M21 M22 � 264 xw1w2u 375 =:M 264 xw1w2u 375 ; (8)

and a state space representation of a general feedback
controllerK(s) is given by� _x
u � = � A
 B
C
 D
 �� x
y � =: K � x
y � : (9)

Moreover,L andIl are defined byL := � L11 L12L21 L22 � := 264 M11 0 0 M120 0 I 00 I 0 0M21 0 0 0 375 ;Il := 264 I 0 0 00 0 0 I0 I 0 00 0 I 0 375 :
An appropriate size of the matrixL is chosen such thatM = Il(L11 + L12KL21)Il (10)

holds. In this case, the closed-loop system is described as
follows:" _x
lz1z2 # =M" x
lw1w2 # =: " A B1 B2C1 D11 D12C2 D21 D22 #" x
lw1w2 # (11)

where the state variable is defined byx
l := [x0 x0
℄0.
Since the synthesis problem makesM become a

variable, the analysis conditions(i) in Theorem 1 and



�G(s)K(s) �- H(s)uy ��� - w1w2z2z1
Fig. 5. A general feedback control system.

Theorem 2 become non-convex conditions. Then the non-
convex condition reduces to an LMI condition with a
rank condition respectively such that a numerical com-
putational method [4] is applicable.

Synthesis Problem: Derive a necessary and
sufficient condition where there exists the con-
troller K(s) defined by (9) satisfying Theorem
1 or Theorem 2.

B. Synthesis Condition

First we describe a basic lemma [5], [6] which will
be used to derive the solvability condition of synthesis
problem.

Lemma 1: A real symmetric matrix� is given by� := � R SS0 U �
whereU > 0. Then the following four statements are
equivalent.

(a) R� SU�1S0 < 0.
(b)

� S0 U 0 �0?� � S0 U 0 �0?0 < 0.
(c) There exists a real symmetric matrixW satisfying� < W; W � 0; rankW = rankU: (12)

(d) There exists a real symmetric matrixV satisfyingX := � R+ V SS0 U � � 0; V > 0; (13)

rankX = rankU:
When we utilize the following condition� < W; W � 0

except for the rank condition from (12), the statement (c)
becomes a convex relaxation condition of the statement
(a), equivalently, the statement (b) and the statement
(d). We can obtain the same convex relaxation on the
statement (d).

Using Lemma 1 to Theorem 1, we have the following
theorem [3].

Theorem 3: Let a controlled object and(�; 	) 2 �
be given by (8) and (4). Then the synthesis problem is

solvable if and only if there exitW � 0, U > 0, R, S,K, P0 = P �0 , Q0 = Q�0, �1 = ��1, �2 = ��2 satisfying
analysis conditions (ii), (iii), (iv) in Theorem 1 and(v) � R SS0 U � < W; rankW = rankU
whereR, S, U , T , J are defined byR := T 02664 L(P0; Q0) 12L(�H; ~�)0 0 012L(�H; ~�) 0 0 00 0 � 00 0 0 �1 3775T;S := � �I J �0 ; U := �I;J := 26664 A B1 B2 0 0C1 D11 D12 0 0C2 D21 D22 0 0HA HB1 HB2 0 0H 0 0 0 00 0 0 I 00 0 0 0 I 37775;T := 26666664 I 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 I 0 0 0 00 0 0 0 0 I 0 0 0 0 0 00 0 0 0 0 0 I 0 0 0 0 00 0 I 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 I 0 00 I 0 0 0 0 0 0 0 0 0 00 0 0 I 0 0 0 0 0 0 0 00 0 0 0 I 0 0 0 0 0 0 00 0 0 0 0 0 0 0 I 0 0 00 0 0 0 0 0 0 0 0 0 I 00 0 0 0 0 0 0 0 0 0 0 I 37777775:
Proof: It is trivial from Lemma 1.

Solution of the synthesis problem to Theorem 2 is
obtained by the following theorem.

Theorem 4: Let a controlled object and(�; 	) 2 �
be given by (8) and (4). Then the synthesis problem is
solvable if and only if there exitW � 0, U > 0, R, S,K, P = P �, Q = Q�, �1 = ��1 , �2 = ��2 satisfying
analysis conditions (ii), (iii), (iv) in Theorem 2 and(v) � R SS0 U � < W; rankW = rankU
whereR, S, U, T , J are defined byR := T 024 L(P; Q) 0 00 � 00 0 �1 35T ;S := � �I J �0 ; U := �I;J := 26664 A B1 B2 0 0C1 D11 D12 0 0C2 D21 D22 0 0C1 0 0 D11 0C1A C1B1 C1B2 0 D110 0 0 I 00 0 0 0 I 37775;T := 26666664 I 0 0 0 0 0 0 0 0 0 0 00 0 0 0 0 0 I 0 0 0 0 00 0 0 0 0 0 0 I 0 0 0 00 0 0 0 0 I 0 0 0 0 0 00 0 I 0 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 I 0 00 I 0 0 0 0 0 0 0 0 0 00 0 0 I 0 0 0 0 0 0 0 00 0 0 0 I 0 0 0 0 0 0 00 0 0 0 0 0 0 0 I 0 0 00 0 0 0 0 0 0 0 0 0 I 00 0 0 0 0 0 0 0 0 0 0 I 37777775:
Proof: It is trivial from Lemma 1.

The above solvability condition of the synthesis prob-
lem is derived in the form of LMI condition adding a rank



condition. Note that the solvability condition of the robust
well-posedness problem is also derived in the same form
of the LMI condition adding a rank condition [5].

C. Design Method

In this subsection, we propose a new simple and
effective design method in order to solve the synthesis
conditions in Theorem 1, Theorem 2, the robust well-
posedness problem [5], and so on.

1) Design Procedure: In order to solve the above
problems, we generalize these problems to the following:

General Problem: Find a scalar� > 0 and
matricesW � 0, R, S satisfying~� := � R SS0 �In � < W := � W11 W12W 012 wIn � ;

(14)

rank (W ) = rank (�In) = n: (15)

The design procedure is described below. This approach
is extension of the linearization algorithm in reference [7].
Design Procedure

1. Solve ~�, W s.t. ~� < W , W � 0 and� > 0.
2. W 011 :=W11, W 012 :=W12, w0 := w and letj = 1.
3. Fix W11 := W j�111 , W12 := W j�112 , ~w := wj�1.

Solve�j := min�>0;W�0;R;S� tr[( ~wW11 +wW11 � ~wW11)�(W12W012 +W12W 012 �W12W012)℄ (16)

and letWj11 :=W11, Wj12 := W12, wj := w.

4. If
����j��j�1�j ��� � � for sufficiently small� > 0, then

stop. Otherwise letj ! j � 1 and go to3.
2) Explanation of the Design Procedure: We explain

the above design procedure in the following explanation
1 and 2. First, we explains a numerical computational
method to satisfy the rank condition step by step from the
convex relaxation condition without the rank condition.
Explanation 1 of the Design Procedure

The following equationW = � I W12=w0 In � � W11 �W12W 012=w 00 wIn �� � I 0W 012=w In �
(17)

holds. IfW11�W12W 012=w = 0, then the rank condition
(15) holds. We can choosetr[wW11 �W12W 012℄ (18)

as an objective function to be approached to 0 subject
to LMI constraints andtr[wW11 �W12W 012℄ � 0 due toW � 0 andw > 0. This is a simple and effective key
idea of our method.

Explanation 2 of the Design Procedure
Next, a linear approximated function of a matrix prod-

uct functionF (X) = XX 0 is obtained by the following:(i) ~F (X) = mXi=1 nXj=1 �F�xij jx0ij (xij � x0ij) + F (X0);(ii) ~F (X) = X0(X �X0)0 + (X �X0)X00 +X0X00= X0X0 +XX00 �X0X00:(i) and (ii) are equivalent.
Proof: The (p; q) element of F (X) = XX 0 isPni=1 xpixqi by usingF (X) =XX0=264 x11 x12 : : : x1nx21 x22 : : : x2n

..

.
..
.

. . .
..
.xm1 xm2 : : : xmn375264 x11 x21 : : : xm1x12 x22 : : : xm2

..

.
..
.

. . .
..
.x1n x2n : : : xmn 375 :

Hence, the(p; q) element of a linear approximated func-
tion is~F (X)pq = nXi=1 x0qi(xpi � x0pi) + nXi=1 x0pi(xqi � x0qi) + nXi=1 x0pix0qi= nXi=1 x0pixqi + nXi=1 xpix0qi � nXi=1 x0pix0qi:
Moreover, the(p; q) element of(ii) becomes~F (X)pq = (X0X0 +XX00 �X0X00)pq= nXi=1 x0pixqi + nXi=1 xpix0qi � nXi=1 x0pix0qi:

Therefore,(i) and (ii) are equivalent.
Consequently, from the above equivalence, we can

understand that the linearized function of (18) at the fixed
point ( ~w;W11;W12) becomes the function of (16).

IV. N UMERICAL SYNTHESIS EXAMPLE

In order to confirm whether we can design a controller
satisfyingrobust stability and finite frequency properties
of a closed-loop system by using our proposed algorithm,
this section shows a synthesis result of an easy numerical
example with a finite feasible parameter space of a
controller satisfying the robust stability in Figure6.

A. Problem Formulation of Numerical Synthesis Example

Problem: Consider a plant given by transfer
function P (s) = (s � 1)=fs2 + (10 + Æ)s � 1g
with an uncertainty:jÆj � 2, and a designed
PI controller given byK(s) = p0 + p1=s. Find
the controllerK(s) with which a closed-loop
system satisfies an internal stable, the comple-
mentary sensitivity function of the closed-loop
system in Figure1 satisfies a low gain condition�maxjGyr(jw)j � 1:6 for all the frequency
domain, and!0 is maximized whereGyr(s) sat-
isfies the high gain condition�min[Gyr(j!)℄ �



0:55 in a finite frequency band0 � ! � !0 for
the plantP (s).

B. Analysis Result in the case of Given Controller Pa-
rameter (p0, p1)

First a true robust stability region of the closed-loop
system is checked by using a plane ofp0 andp1 in Figure
6 before the controllerK(s) is designed by using the
proposed method in the previous section. Next a maximal
value !0 of the frequency is estimated by Theorem 2,
where the closed-loop system satisfies the low and high
gain condition in the robust stability region for all! such
that 0 � ! � !0.
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Fig. 6. A robust stability region. Fig.7. (p0; p1) v.s.!0.

Figure 7 indicates the maximal values!0 where the
closed-loop system satisfies the design specification at
fixed values of(p0; p1) respectively. The area of!0 = 0
in Figure7 means that the synthesis problem is infeasible.
From Figure7, we can understand that the frequency band
becomes broader when the values ofp0 andp1 are small.

C. Synthesis Result

The PI controller is designed by our method using
Theorem 4 where an observable canonical form of state
space representation of the PI controller is utilized, and
then the values of(p0; p1) = (�4:3968;�0:2803) and!0 = 4:0 are obtained. The thick curve line in Figure6
also illustrates the movement of(p0; p1) while iterating
to minimize the trace of objective function. We can
understand that the values of(p0; p1) approach the small
square region where the design specification is satisfied.
Figure8 shows

P2i=1[tr( ~wiW11i+wiW11i�W12iW012i�W12iW 012i)℄ as a function of the iteration numbers wherei = 1; 2 means that there exist two conditions of low
and high gain design specification. The properties of the
designed closed systemGyr(s) in Figure1 are indicated
by Figure 9 and Figure10. Figure 9 and Figure10
illustrate bode diagrams and step responses of the closed
system with arising the perturbationsjÆj � 2 respectively.
We can understand that the design specification is satisfied
and our proposed method is helpful.

V. CONCLUSION

This paper has derived the new analysis condition of
the finite frequency properties for robust control systems.
Moreover, in this paper, we have formulated the problem
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of the control synthesis based on the derived analysis
condition. The solvability condition of the synthesis prob-
lem was derived in the form of LMI condition adding a
rank condition. Finally, the effectiveness of this synthesis
approach was confirmed through the numerical example
solved by using the proposed design algorithm.
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