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Finite Frequency Property-Based Robust Control Analysis ad
Synthesis

Tsuyoshi Kiyama and Emi Nishio

Abstract— This paper derives two linear matrix inequality portion in the right picture of Figur2. This paper derive
(LMI) conditions for robust control analysis based on finite a robust control analysis and synthesis condition based on
frequency properties (FFP) and proposes robust control syn FFP. Moreover, we propose a new design algorithm using

thesis based on FFP. Solvability conditions of the synthesi Do .
problem are derived in the form of LMI condition adding convex relaxation in order to solve the synthesis problem.

a rank condition. The conditions are still non-convex due to o
the existence of the rank condition. However, we can solve 156G = | TppGeyRGay | TGl = | TR |
the problem by using a more efficient proposed method from
the viewpoint of computation.

. INTRODUCTION

In the case of control system synthesis based{op
control, for example, in order to improve a following Fig. 2. A basic idea based on FFP.
performance of the control system to a step change in
the reference input, we have to decrease a gain of theNotation: For a matrix A, its minimum singular value
sensitivity function which is a transfer function from and its maximum singular value are denotedshy, (A)
the reference input to the error output in broader low ande,,..(A), respectively. For matriceB and (', their
frequency band. Therefore, so far, a weighting function Kronecker product is denoted by C'. The set of2 x 2
Ws(jw) is chosen as shown in Figuteand the synthesis  Hermitian matrices are denoted BJ. A quadratic form
has been done so that the gain of sensitivity function functions : € x H — IR is defined by
S(jw) may become smaller than that & s(jw)~! at

all the point of frequency.. However, it is necessary to o(\1D) = [ A ] I [ A ] .
select the weighting function appropriately when using 1 1
this method, and the control performance depends on the ||, FEP-BASED ROBUST CONTROL ANALYSIS

weighting function greatly. ) .
We shall extend the control analysis condition [1],

l:‘j |W<<my [2] of FFP to two correspondingbust control analysis

W () ' =p> conditions. Here the FFP mean generalized properties of
w the small gain condition (., [G(A)] < #), the high

7°+ £ m;)—» e / gain condition &,,;,[G(A)] > ¥), and the positive real

_-’T_ condition (G(A)* + G(A) > 0) in a finite frequency band

where A is the continuous time operateror the discrete
time operatorz.

[SGw)l = \W\

Fig. 1. Loopshaping.

: . . . A. Analysis Problem Formulation
Then, this paper considers a synthesis method that im- ¥

proves the following control performance directly based ~ Consider an uncertain feedback system depicted in
on finite frequency properties (FFP) [1]-[3] without using Figure3 whereA € A is an uncertain matrix belonging
the weighting function. Our basic idea is that we can t0 @ known subset of complex matrices defined by
expect an |mprove_men_t of t_he following performance, for A= {A=diag(iln,, . 6sTn, Aryery A
example, the settling time in terms of the step response, v X v

if the gain of sensitivity functiort(jw) becomes smaller g € R Vi, Aj e ©7 Vg Al <1} (1)
than v in the broader frequency band like the shaded

and a state space representatiori@) is given b
portion in the left picture of Figur@, or if the gain of P P Hab) s g y

complementary sensitivity functiof(jw) becomes big- & A B B z
ger thany in the broader frequency band like the shaded z1 | = € D11 Dis wy | . (2)
29 Co Do Dy wWa
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B. Analysis Condition
Two sufficient analysis conditions of FFP for the ro-

1 1
z w
| . A = bust control system are described in Theorem 1 [3] and
| | Theorem 2. First, we considé?a and QA as standard
! < ! affine functions depending on the uncertain paramater
:22 ! H(s) - ! W2 where P, and Qa are characterized as follows:
L_________MfA_(f)_! Py = Py+H'AAH, Qa = Qu+ H'AAH,
A = {A=diagdil,,,. ., 0mls, AL, Af)

s €IRYi, A; € CFI%95 Y5 A < 1}, (7)

H is a given constant matrixA and A are constant
symmetric matrices with the commutative structure’of
Theorem 1: Let Wa(s), (®, ¥) € = and A be given
by (3), (4) and (1). Then finite frequency properties for
the robust control system (3) hold if there exit matrices
Py=F;, Qo= Q5, 91 = 07, 0, = O} satisfying

Fig. 3. An uncertain system.
representation oft/a (s) are given by
S P oy
Ca Da || C2 Da D
X(I— ADll)_lA[ Cl DlZ ] (3)

where

det(I —ADy;) #£0, YA€A

(1) FiL(Po, Qo)F] + lFlL(AH, AH)'F
andWa (s) can be defined on the imaginary axis. 2

We describe the following analysis problem and derive
analysis conditions of FFP for the robust control system.

1 _
—|——F2L(AH, AH)F{+F3HF§+F4@1F4 <0,

Analysis Problem: Derive conditions satisfying g‘,’ é 8 8 DC,'z 8
(¢) or ﬁii): that is satisfying the FFP for robust Foo=18 ol F=lool| Foim=| D 1
control system where the transfer function ma- b o o7 rol| % 0> 0|
trix Wa (s) with A, @ = Q" and | 0 o 0 I 00
(¢ AH H 0 0 0
E;:{(@,qf)ﬁa,ﬂem,Nqu?X?,adet(N);éo Fo= | Dl @m0 o o o
0 0 0 0o I o
0 0 0 o o I
«| 0 « « -1 3 -
(I):N[ ]N7W=N[ ]N}7 . o H'A 7 ool H
- DT e <[ e[ e ]
T:={\ed|o(\ ®) =00\ ¥) >0} (#47) [VI] el[vf*]zo, Vev,
are given. V = {diag(A,A/A) |"AeA}
. _ v v * - .
(7)) det(AT — Aa) ;E*O, AeT, AeA (iv) ~I* ] 0, [ ~I* ] >0, YA cCA.
(M - AA)_lBA} 0 [(AI— AA)—lBA} <0 A AN
[ I I = Proof: The proof is omitted for the space.
aer, YAeA. (5) Next,_we considerPa ar_1d Q) as rational functions
(i) PQa=0Qi>0, Pa=P; st depending on the_ uncertain parz.;\memrwherePA and
B B () are characterized as follows:
[ e fres s S | raso 1,0
(6) Pa = P , P=P,
Na Na
L(PA,QA) =PRQPA+TYRQA, ((I)’\II) €= I * I
({) and (47) are equivalent conditions2 is shown as @a = [ Na ] @ [ Na ] L Q=0
follows: Na = (I—AD;)PAC.
0= [ COA DIA ] I [ COA DIA ] . The following theorem is obtained by using the above

condition by characterizindl. Moreover, a continuous

® and the finite frequency range can be shown by

characterizingl.

rational parameter dependent functions.

The special cases of (5) and (6) can express the small gain Theorem 2: Let Wa(s), (®, ¥) € = and A be given
condition, the high gain condition and the positive real by (3), (4) and (1). Then finite frequency properties for
the robust control system (3) hold if there exit matrices
and discrete time system can be shown by characterizingP = P*, Q) = Q*, 01 = 0f, 6, = O] satisfying

(Z) flL(P, Q)f{ + fzﬂfé + f3@1fé < 0,

3963



A" 0 T 0 ¢, 0
B, 0 0 0 DL, 0
Fir:=| B, 0o 0o o |, Fy:=| D) 1|,
0 0 0 I 0 0
L o I 0 o0 0 0
c ¢, Act 0o o0 o
D,y 0 Bic;, I 0 o0
F3:= | Dy, 0 B, 0 0 0 |.
0o D 0 0o I 0
L © 0 D, 0 0 I
!
.. ¢, D ¢i D
G —e+| S e T <o

Frequency [radisec]

(i11) ! @1[ ! ]20, Vev,

| V* v* Fig. 4. Bode diagrams.
V :={diag(A, A A) | YAEA Y.
(iv) AI* 0, AI* >0, YACA. IlIl. FFP-BASED ROBUST CONTROL SYNTHESIS

A solvability condition of a general FFP-based robust
control synthesis problem is derived in the form of LMI
conditions adding the rank condition.

Proof: The proof is omitted for the space.

The infinite inequality conditions(¢i:) and (iv) in
Theorem 1 and Theorem 2 can be eliminated by using
the D-G scaling etc. as a special structuregf ©,, 6, A. Synthesis Problem Formulation
and ©, but this approach is conservative. However, it can  Consider the feedback system depicted in Figbre
easily check whether the robust control system satisfies\éVhere a state space representation of a gldsj is given

FFP by solving LMI conditions with a computer. y
T A B By ' Bs T
C. Numerical Analysis Example 2t | _ | €&v D Diay Dis w;
. . L ez G2 Du D Das || w2
We confirm whether the analysis conditions in Theorem y Cs Dai Daxi O u
1 and Theorem 2 become analysis conditions in consid- x x
eration of robustness by using numerical examples. My 1 My wy wy
= tAisoC [V S =M ’ (8)
. . . . Msy @ Moo w2 w2
Problem: Consider a system having uncertain- - u T

ties of k¥ and¢ given by (2) with )
and a state space representation of a general feedback

k+ oy controller K (s) is given by
WA(S) = 9 ) -
s24+2(C+dc)s+1 ée | [ Ac Be we | g | we 9
k=1, C=05, |6 <0.2, |6 < 0.2. w |=le ||y | TNy ] O
Maximize a frequency, using Theorem 1 and Moreover, L and; are defined by
Theorem 2 satisfying ., [Wa(s)] > v. r My 010 M
. . . L11 L12 0 01 I 0
Since the above problem considers the continuous system L := [ I L ] =y
. . " . 21 22 !
and the high gain condition in low frequency, parameters | Moy 010 0
in Theorem 1 and 2 are set as follows: 7 0 0:0 '
0 0 01
o=V Dlw=| 0 L= 2L =0 1 0o
L0 0 ws 0 I 00T
The maximal frequency, satisfying o, ,i, [Wa(s)] > v An appropriate size of the matrik is chosen such that
is calculated by using MATLAB. The results are obtained
o0 Py Heing M = I(Lyy + Li2K Loy) I (10)
as follows:

holds. In this case, the closed-loop system is described as

(1/v/2, 0.7414), (0.1, 2.8210) : Theoreml, follows:

(7, wo) = { (1/+/2, 0.7413), (0.1, 2.8209) : Theorem?.

Tl Tl A Bl B2 Tl
In comparison with the above calculated results and | 2 | =M | w1 | =:| G Du D || wi | (11)
D) wa Co Dz Do w2

values obtained by the bode diagrams in Figdrewe
understand that the value in consideration of robustnesswhere the state variable is defined by := [’ =.]’.

is calculated. The FFP robust analysis conditions in The- Since the synthesis problem makegg become a
orem 1 and Theorem 2 are valid. variable, the analysis conditiong) in Theorem 1 and
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Fig. 5. A general feedback control system.

Theorem 2 become non-convex conditions. Then the non-
convex condition reduces to an LMI condition with a
rank condition respectively such that a numerical com-
putational method [4] is applicable.
Synthesis Problem: Derive a necessary and
sufficient condition where there exists the con-
troller K (s) defined by (9) satisfying Theorem
1 or Theorem 2.

B. Synthesis Condition

First we describe a basic lemma [5], [6] which will
be used to derive the solvability condition of synthesis
problem.

Lemma 1: A real symmetric matriX(" is given by

R S
T’[g U]

where ' > 0. Then the following four statements are
equivalent.

() R—SU‘lS’L< 0. .

o [s v ] r[s v] <o

(c) There exists a real symmetric mat#iX satisfying
T<W, W>0, rankW =rankU. (12)

(d) There exists a real symmetric matiix satisfying

[ R+V 5
X’[ s U

rankX = rankU.
When we utilize the following condition

]zm V>0, (13)

T<W, W>0

except for the rank condition from (12), the statement (c)
becomes a convex relaxation condition of the statement
(a), equivalently, the statement (b) and the statement
(d). We can obtain the same convex relaxation on the
statement (d).

Using Lemma 1 to Theorem 1, we have the following
theorem [3].

Theorem 3: Let a controlled object and®, ¥) € =
be given by (8) and (4). Then the synthesis problem is

solvable if and only if there exitV > 0, U > 0, R, S,
K, Py =F;, Qo =Q} 01 =07, 0, = 0} satisfying
analysis conditionsi{), (¢i¢), (fv) in Theorem 1 and
R S
O
whereR, S, U, T, J are defined by

] < W, rankWV = rankU

1 ANV
L(Po, Qo) 5L(AH, A) 0 0
N ),
0 0 Im o
0 0 0 ©;
!
S=[-1 J]|, U:=ul,
A B B: 0 0
¢ Du Dz 0 O
Ca D2y Dz 0 0
J:=| HA HBy HBy 0 0 |,
H 0 0 0 0
0 0 0 I 0
L o 0 0 0o I
rr o o o o o0 0 0 ©0 o0 0 ©
o o o o o o o I o o o o
o o o o o I o o o o o o
o o o o o o I o o o o o
o o I o o o o o o o o o
T e 0 0 0 0 0 0 0 0 0 I 0 0
T o I o o o o o o o o o o
o o o I o o o o o o o o
o o o o I o o o o o o o
o o o o o o o o I o o o
o o o o o o o o o o I o
L .0 o o o o o o o o o o I
Proof: It is trivial from Lemma 1. [ |

Solution of the synthesis problem to Theorem 2 is
obtained by the following theorem.

Theorem 4: Let a controlled object and®, ¥) € =
be given by (8) and (4). Then the synthesis problem is
solvable if and only if there exitv > 0, U > 0, R, S,
K, P=P0Q=Q" 6, =07, O, = OF satisfying
analysis conditionsi{), (¢i¢), (fv) in Theorem 2 and

O

whereR, S, U, 7, J are defined by

] < W, rankW = rankU

L(P, Q) 0 0
R.=7' 0 I o T,
0 0 6,
!
S = [ -1 J ] , U:i=pul,
A By Ba 0 0
C1 D11 Dio 0 0
Ca D21 Dao 0 0
J = ¢y 0 0 D11 0 ,
CiA CiBy Ci1B2 0 D11
0 0 0 I 0
L o 0 0 0 I
r I 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 I 0 0 0 0 0
0 0 0 0 0 0 0 I 0 0 0 0
0 0 0 0 0 I 0 0 0 0 0 0
0 0 I 0 0 0 0 0 0 0 0 0
7- e 0 0 0 0 0 0 0 0 0 I 0 0
T 0 I 0 0 0 0 0 0 0 0 0 0
0 0 0 I 0 0 0 0 0 0 0 0
0 0 0 0 I 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 I 0 0 0
0 0 0 0 0 0 0 0 0 0 I 0
L D_ _D 0 0 0 0 0 0 0 0 0 I
Proof: It is trivial from Lemma 1. [ |

The above solvability condition of the synthesis prob-
lem is derived in the form of LMI condition adding a rank
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condition. Note that the solvability condition of the robus

Explanation 2 of the Design Procedure

well-posedness problem is also derived in the same form Next, a linear approximated function of a matrix prod-

of the LMI condition adding a rank condition [5].

C. Design Method

In this subsection, we propose a new simple and
effective design method in order to solve the synthesis
conditions in Theorem 1, Theorem 2, the robust well-
posedness problem [5], and so on.

1) Design Procedure: In order to solve the above
problems, we generalize these problems to the following:

General Problem: Find a scalary > 0 and
matricesiV > 0, R, S satisfying

~_| B S | Wi Whs

e A R
(14)

rank (W) = rank (ul,) = (15)

The design procedure is described below. This approach

is extension of the linearization algorithm in reference [7
Design Procedure

1. SolveT, W st. T < W, W>0andu>0.
2. WP = Wiy, le = Wio, v’ :=w and letj = 1.

3. Fix Wy; = W11 , Wia = le_l, W= w Tt
Solve ); := i
u>0,W20,R,S
{ tr[(uN}WM + wWi — ﬁ}Wll) (16)
—(WiaWiy + Wia Wi, — WiaWi,)]

and |etWi1 = Wi, W‘ljz = Wha, wd = w.
w‘ < 7 for sufficiently smallr > 0, then
stop. Otherwise le§ — j — 1 and go to3.

2) Explanation of the Design Procedure: We explain
the above design procedure in the following explanation
1 and 2. First, we explains a numerical computational
method to satisfy the rank condition step by step from the
convex relaxation condition without the rank condition.
Explanation 1 of the Design Procedure

The following equation

4,

W = I le/w W11 — W12W1/2/w 0
10 I, 0 wl,
1 0
X [ Wi w I, ] a7

holds. If Wy, — W1,W/,/w = 0, then the rank condition
(15) holds. We can choose

tr[wW11 — W12W1/2] (18)

as an objective function to be approached to 0 subject
to LMI constraints andr[wW¥, — Wi2W{,] > 0 due to

W > 0 andw > 0. This is a simple and effective key
idea of our method.

uct function F(X) = X X' is obtained by the following:

N R oF
() FX) =) > 5— (el + F(Xo),
i=1j=1 tJ |I?
(1) F(X)=Xo(X — Xo)' + (X — X)X} 4+ X0 X}
= Xo X'+ XX, — XoX).
(¢) and (¢¢) are equivalent.
Proof: The (p, q) element of F(X) = XX’ is

SOt xpizg Dy using
F(X)=XX'

T11
T21

T12
T2

Tm1
Tm2

T21
T2

T11
T12

Tin
Ton

Tm1 Tm2 c Tmn Tin T2n c Tmn

Hence, thep, ¢) element of a linear approximated func-
tion is

F(X)pg =

M:

n
?p‘(l’pi - 1’21‘) + Zl’gi(l’qi - 1’?p‘) +
i=1

Ty l’qz‘l‘g l’pzl’qz § l’pzl’ql

Moreover, the(p, q) element Of(u) becomes

F(X)pg = (XOX/ +XX(/) — X0X0)pq

_Z%Z%H'Zwm Lyi Z%Z Tyi-

Therefore,(¢) and (i¢) are equivalent. [ |

Consequently, from the above equivalence, we can
understand that the linearized function of (18) at the fixed
point (w, Wh1, Wi2) becomes the function of (16).

1

||M:

IV. NUMERICAL SYNTHESIS EXAMPLE

In order to confirm whether we can design a controller
satisfyingrobust stability and finite frequency properties
of a closed-loop system by using our proposed algorithm,
this section shows a synthesis result of an easy numerical
example with a finite feasible parameter space of a
controller satisfying the robust stability in Figuée

A. Problem Formulation of Numerical Synthesis Example

Problem: Consider a plant given by transfer
function P(s) = (s — 1)/{s*+ (10 + d)s — 1}
with an uncertainty:§| < 2, and a designed
PI controller given byK (s) = po + p1/s. Find
the controller K'(s) with which a closed-loop
system satisfies an internal stable, the comple-
mentary sensitivity function of the closed-loop
system in Figurd satisfies a low gain condition
Omaz|Gyr (jw)| < 1.6 for all the frequency
domain, andv, is maximized wheré&/, . (s) sat-
isfies the high gain conditios,,i, [Gy- (jw)] >
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0.55 in a finite frequency band < w < w for
the plantP(s).

B. Analysis Result in the case of Given Controller Pa-
rameter (po, p1)

First a true robust stability region of the closed-loop
system is checked by using a planepgfandp, in Figure
6 before the controllerK’(s) is designed by using the
proposed method in the previous section. Next a maximal
value wy of the frequency is estimated by Theorem 2, S S S S S S S S
where the closed-loop system satisfies the low and high Iteration Number
gain condition in the robust stability region for allsuch
that0 < w < wp.

2 - T T
Tl (W Wyt WW = W W= W Wiy )

Fig. 8. Iteration numbers v.s. values of trace.

S /

Py

Frequency [radisec]

Py

)

Py 4 bo

) - ) ) Fig. 9. Bode diagrams. FiglO. Step responses.
Fig. 6. A robust stability region. Fig7. (po,p1) V.S.wq.

. - . of the control synthesis based on the derived analysis
Figure 7 indicates the_ maX'mal valgeso Whe_r_e the condition. The solvability condition of the synthesis prob

c_Iosed-Ioop system satisfies _the design specification atom was derived in the form of LMI condition adding a

fixed values of(po, p1) respectively. The area af, = 0 rank condition. Finally, the effectiveness of this synthes

:? F'gl::r_e7 m7eans that th(ej Sy?th?{ﬁ ﬂr;)hblefm 'S mfea%bleo.l approach was confirmed through the numerical example
rom Figure/, we can understand that the frequency band g, 0y by using the proposed design algorithm.

becomes broader when the valuegpgfandp, are small.

C. Yynthesis Result

The PI controller is designed by our method using
Theorem 4 where an observable canonical form of state
space representation of the Pl controller is utilized, and
then the values ofpo, p1) = (—4.3968, —0.2803) and
wyp = 4.0 are obtained. The thick curve line in Figuge REFERENCES
also !”l_JSt_rates the movemem_@ﬁo_’pl) Wh”_e Iterating [1] T. lwasaki and S. Hara: LMI characterizations of finiteduency
to minimize the trace of objective function. We can properties for linear time-invariant systen®&poc. 31st SICE Sym-
understand that the values @fy, p;) approach the small 2 $O?Um OE,CgﬂtLd Theoré’,ﬁp-Ylﬁ-llﬁ_ (2802) cal systemigte

. . s . . ff . lwasakl, S>. Hara an . Yamaucni: ynamical systemi S

Square region Wgere th~e design specification |s/sat|sf|ed. from a control perspective: Finite frequency positivekneas ap-
Figure8 shows) "~ [tr(@; Wi1i+wiWi1s— WiaiWio; — proach,|EEE Transactions on Automatic Control, Vol. 48, No. 8,
Wi2;W/,;)] as a function of the iteration numbers where 4 ED-N1_3§_7-135:14T(2?<Q3) Robust control analveis and b
. . e . NiIshio an . Klyama: opust control analysis an 2ISIS
b= 1_’ 2 me_ans that there_ _eXIS_t two Condltlons_ of low based on finite frequency propertié&pc. 2nd SICE Annua Conf.,
and high gain design specification. The properties of the  pp. 2704-2709 (2003)
designed closed systefi,, (s) in Figurel are indicated  [4] K-hM- ?riEIJOfiadiS and E. B-alBerani Atltlematingh projeaticalgo-

f : : : rithms for linear matrix inequalities problems with ranknstraints;
_by Figure 9 a”‘?' Figure10. Figure 9 and Figure 10 Advances in Linear Matrix Inequality Methods in Control (L. El
illustrate bode diagrams and step responses of the closed Ghaoui and S. Niculescu, Ed(s)), SIAM (2000)
system with arising the perturbatiof§ < 2 respectively. [5] T.Kiyama, S. Toyora and S. Hara: A solvability conditiohgeneral

We can understand that the design specification is satisfied 2383?) control problemsproc. SICE Annual Conf., pp. 677-678
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