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Abstract This paper presents an application of con-
trol theory and µ-analysis to stability analysis of optical
communication networks. The network transfer matrix
representation is used and simplified so that the prop-
agation time-delay is isolated on a link-by-link basis.
The optical network stability problem is reformulated
as a robust stability problem. Sufficient stability con-
ditions are developed by applying µ- analysis and Pade
approximation.

1 Introduction

Optical communications networks are very recent ex-
amples of complex systems that have appeared in the
industrial application area of control theory. The evo-
lution from point-to-point, static optical links to mesh,
reconfigurable optical networks (Figure 1), leads to the
need to study these systems in a dynamic context,
[1]Reconfigurable optical networks are complex systems
that encompass tens of dynamic optical devices and dis-
tributed propagation time-delays. Since channel routes
can be changed dynamically, closed or quasi closed-
cycles affected by time-delay can be formed, [2].

Figure 1: Optical communication network - mesh

Dynamics, stability and control in optical networks
are becoming important problems to be addressed, and
represent fertile new areas of application of system and
control theory.
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Most existent results at the optical network level are
based on extensive simulation or experimental studies
of physical networks, followed by development of heuris-
tic rules. Recent studies, [7], [8], [9], have shown that
for a generic network configuration as in Figure 2, tran-
sient dynamical behaviour is observed. At reconfigura-
tion or at failures, sudden power changes on some chan-
nels can cause abrupt power changes on other channels,
followed by transient fluctuations. In some cases these
fluctuations lead even to a sustained oscillation regime
in the network, or instability. This behavior was ob-
served in simulations and experiments only, and based
on this, heuristic rules developed for avoiding it. How-
ever, there are no rigorous analysis approaches devel-
oped to address this problem. These observations high-
light the need for a theoretical understanding of optical
network dynamics and stability.

In this paper we address the network stability prob-
lem for a generic configuration as in Figure 2. We
use the modeling framework proposed in [10], where a
more comprehensive treatment of this problem is given.
We find sufficient conditions for network stability based
on application of µ-analysis. We relate them to the
sustained oscillations regime, previously observed by
means of simulation and experiments. These results
can be used in reconfigurable networks, where routing
algorithms could decide whether or not to configure an
optical path based on a preliminary stability analysis.

In Section 2 we formulate the problem for a generic
optical network configuration, and review the results on
optical network modeling. In Section 3 we address net-
work stability by reformulating it as a robust stability
problem. We use the Pade approximation for the path
propagation time-delays, and we resort to µ-analysis.
Simulation results are shown in Section 4 and conclu-
sions in Section 5.

2 Optical Network Modeling

A network configuration typically used in the communi-
cation industry is shown in Figure 2. This configuration
is representative for a quasi-ring optical path, [2], that
can be extracted from a mesh topology (Figure 1).
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Figure 2: Optical communication network: quasi-ring

Multiple optical signals, corresponding to channels at
different wavelengths (optical frequencies), are trans-
mitted together on a single optical fiber, resulting in a
wavelength-division multiplexed (WDM) system. Op-
tical amplifiers (OA) in combination with dynamic gain
equalizers (DGE) are used every few tens of km to com-
pensate the power loss that occurs during light propa-
gation through the optical fiber. Optical add-drop mul-
tiplexers (OADM), are used to separate and recombine
wavelength channels or for switching. OADM consti-
tute network nodes. Each optical communication link
between two adjacent OADM nodes is composed of sev-
eral cascaded optically amplified spans.

Let u and y denote the network input and output
optical power vectors in Figure 2, partitioned as

u =
[

u1

u2

]
, y =

[
y1

y2

]
, u1,2, y1,2 ∈ Rm1,2 (1)

corresponding to the two wavelength sets, λ1 and λ2,
each with m1 and m2 channels, m = m1 + m2.

λ1 =
{

λ1,1, ...λ1,m1

}
, λ2 =

{
λ2,1, ...λ2,m2

}
(2)

Channels λ1 are added (transmitted) at the Tx1 site
(OADM1) and dropped (received) at the Rx1 site
(OADM3). Channels λ2 are added at the Tx2 site
(OADM2) and dropped at the Rx2 site (OADM2).

For a general LTI system with transfer matrix G(s),
y = G(s)u, we define the related system, G̃, that maps
u, (1), to the reversed output vector, ỹ ∈ R(m2+m1)

ỹ = G̃u, ỹ =
[

y2

y1

]
, G̃ =

[
0 Im2

Im1 0

]
G (3)

In the following we review the results in [10] on opti-
cal network modeling. The approach involves firstly de-
veloping transfer matrix models for individual network

elements, optical spans and optical links. Then the op-
tical network model is developed using interconnections
rules and linear fractional transformation (LFT) tech-
niques. The closed-form transfer matrix can be used to
study network dynamics and transient response.

Through an optical fiber, signals experience loss
and propagation time-delay. The fiber loss coefficient,
which is typically the same for all channels, can be in-
corporated into the amplifiers model. For propagation
time-delay we will use the following assumption.
(A1): In a WDM network, all channels in an optical
span (link) experience essentially the same propagation
time-delay.

This assumption is justified as follows. In an optical
span, different channels (wavelengths) are sharing the
same optical fiber. For typical span lengths of tens of
kilometers, the average propagation induced delay for
all channels is on the order of fractions of ms. Due to
modal dispersion, [3], different channels (wavelengths)
will travel with slightly different speeds. Hence, due
to dispersion, they will experience slightly different de-
lays, called dispersion induced delays. However, in an
optical system, , for adequate receiver detection, dis-
persion management techniques are used periodically,
[3]. As a result, dispersion induced delay (pulse broad-
ening) is maintained at a fraction of the bit period, i.e.,
typically fractions of nsec. Therefore, at the end of an
optical span (link), the dispersion induced delay differ-
ence between channels is considerable smaller than the
average propagation induced delay. This shows that, at
least on network reconfiguration time-scales, i..e, from
µs to hundreds of ms, assumption (A1) is valid.

Therefore the following relation holds in the fre-
quency domain across an optical fiber span

ys(s) = αDτ (s)us(s) (4)

Dτ (s) = e−τsIm (5)

with α being the scalar fiber loss coefficient and τ the
propagation time-delay across a span, respectively.

An optically amplified span consists of an optical
fiber and an optical dynamic amplifier (ODA) (optical
amplifier /DGE blocks in Figure 2). An ODA is real-
ized by combining optical amplifiers, GOA, with DGEs.
An optical amplifier has active control for maintain-
ing total output power or total gain constant. For
Erbium-doped fiber optical amplifiers, typically used,
a linearized model GOA, is a MIMO, square transfer
matrix, [4], [6]. Diagonal terms have a high-pass be-
havior, and off-diagonal terms have a low-pass behav-
ior, with typical time-constants on the order of 1 - 10
ms. These are comparable to network reconfiguration
time-scales, and hence affect cross-coupling dynamics
between groups of wavelengths.



DGEs have spectrally adjustable attenuation, and
are used for equalizing wavelength channel powers, [5],
[6]. A linearized model of the ODA, GODA, can be
developed, [10], as a feedback interconnection of GOA

with a MIMO (m x m) diagonal controller, KDGE(s),

GODA(s) = GOA(s)(Im + KDGE(s)GOA(s))−1 (6)

KDGE(s) =

 K1(s) · · · 0
. . .

0 · · · Km(s)


Let the kth optical span be described by a MIMO

transfer matrix, G(k)(s), that combines the transfer ma-
trix of ODA, GODA(s), and loss of optical fiber, α. In-
cluding the delay effects, the span overall transfer ma-
trix, GD,(k)(s), is given as

GD,(k)(s) = G(k)(s)Dτ (s) (7)

where Dτ (s) is defined in (5). An optical link has the
transfer matrix given next.

Lemma 1 : The transfer matrix of an optical commu-
nication link, SD(s), realized by a series interconnection
of N optical spans is given as

SD(s) = DN (s)S(s) = S(s)DN (s)

S(s) =
∏N

k=1
G(k)(s), DN (s) = e−(Nτ)sIm

where G(k)(s), (7), is the span transfer matrix, and τ
is the span time-delay.

Proof: [10].
The following result gives the transfer matrix of the

optical network in Figure 2. Let PD, QD and XD denote
the optical link transfer matrices for Figure 2, given
as in Lemma 1. Recall that u and y, (1), denote the
network input and output optical power vectors, parti-
tioned accordingly to the two wavelength sets, λ1 and
λ2, (2). Then the equivalent network block diagram for
Figure 2 is shown in Figure 3.
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Figure 3: Network: Block-Diagram

Theorem 2 : The transfer matrix, T , of the optical
communication network in Figure 2 (or Figure 3)[

y1

y2

]
= T

[
u1

u2

]
, T =

[
T11 T12

T21 T22

]
is given as (Figure 4)

T =
[

0 Im1

Im2 0

]
<

(
P̃D,

[
XD 0
0 Im2

]
Q̃D

)
(8)

where <(·, ·) is the Redheffer star-product, [11], and
P̃D, Q̃D, and XD are related to the optical link transfer
matrices, PD, QD and XD, as in (3).

For partitions according to the two wavelength sets

PD =
[

PD,11 PD,12

PD,21 PD,22

]
, QD =

[
QD,11 QD,12

QD,21 QD,22

]
the transfer matrix T has partitions Tij, i, j = 1, 2,

T11 = QD,11 ΨDPD,11

T12 = QD,12 + QD,11 PD,12 Ψ̃DXD QD,22

T21 = PD,21 + PD,22 XD QD,21 ΨD PD,11

T22 = PD,22 Ψ̃DXD QD,22

(9)

where

ΨD =
(

I − PD,12 XD QD,21

)−1

Ψ̃D =
(

I −XD QD,21 PD,12

)−1
(10)

Proof: [10].
As seen from Theorem 2 and Figure 4, explicit cross-

coupling exists between group 1 and 2 of channels, as
given by T12, T21. These transfer matrices are directly
dependent on the time-delay link transfer matrices, PD,
QD, XD, as well as on the feedback terms, ΨD, Ψ̃D.

P̃D
-

-

u1 y2
-

Q̃D-

-

-

XD

u2 y1

XXXXXXXXXXXXX �������������

<

Figure 4: Network: Star-Product Representation



3 Network Stability by µ-Analysis

In the following we use these results to address the net-
work stability problem. Using (A1) we will show that
the distributed propagation time-delays can be lumped
on a link-by-link basis, and isolated as a delay block on
a path-by-path basis.

Theorem 3 : Under (A1), the optical network (Figure
2, or Figure 3) is stable if and only if the feedback loop
configuration in Figure 5 (b) is stable, where L is the
loop transfer matrix that describes the cross-coupling,
and Dt is the total path delay-block

L = P12 X Q21 Dt = e−τts Im1 (11)

and τt = (N1 + N2 + N3) τ is the total network propa-
gation delay.

QD,21

PD,12

XD

-

� L

Dt
-

�

(a) (b)

Figure 5: Network Stability: Loop Configuration

Proof: Recall (9) where, from Lemma 1, the optical
links PD, QD and XD are given as

PD(s) = DN1(s)P (s), P (s) =
∏N1

k=1G(k)(s)

QD(s) = DN2(s)Q(s) Q(s) =
∏N2

k=1G(k)(s)

XD(s) = DN3(s)X(s) X(s) =
∏N3

k=1G(k),22(s)
(12)

with
DNi

(s) = e−(Niτ)sIm

denoting the delay-terms on a link-by-link basis, for
N1, N2 and N3 optical fiber spans, respectively. There-
fore, as cascades of stable systems, optical links PD, QD
and XD and their partitions in (9) are also stable.

From (9)and Figure 4 it follows immediately that in-
ternal stability of the optical network is equivalent to
stability of the system ΨD, or equivalently Ψ̃D, (10).
From the definition of ΨD, (10), we see that stability of
the feedback system ΨD can be found by representing
it in a feedback loop configuration as in Figure 5 (a).

Note that in Figure 5 (a), link time-delay blocks
DNi(s) are distributed across the path, as given in (12).
However, by (A1) all channels in an optical link experi-
ence the same propagation delay. Based on this, simple

manipulations can be used to show how the link time-
delay blocks can lumped together in a single optical
path delay-block. For example, for the partition PD,12

as in (12), we can write

PD,12 = e−(N1τ)s P12(s) = P12(s) e−(N1τ)s

Proceeding similarly for the other factors in (10), we
get

ΨD =
(

I − P12(s) X(s) Q21(s) e−τts Im1

)−1

where τt = (N1 + N2 + N3) τ is the path delay.
Equivalently, using (11),

ΨD =
(

I − L(s) Dt(s)
)−1

where Dt = e−τts Im1 is a single path total delay-block.
Then, stability of ΨD, and hence of the network, is

equivalent to stability of the feedback configuration in
Figure 5 (b).

Remark: Note that for typical transfer matrices,
by applying the small gain theorem, stability of the
feedback system in Figure 5 (b) could be analyzed in
terms of the H∞ norm of the loop transfer matrix. As
seen from (11), the presence of the time-delay block Dt

on the feedback path of the MIMO loop transfer matrix
L precludes the direct application of such a result.

We will use the approach in [13], based on the Padé
approximation technique, and the use of robust stabil-
ity and µ-analysis.

Recent studies on the quality of the Padé approxi-
mation in H∞ and L1 norm sense, and on the order of
the rational approximation for a delay bandwidth of a
given system, were done in [14] and [15], respectively.
Padé approximations are appropriate to use particu-
larly for low bandwidths. We are concerned here with
low loop time-delay bandwidths, on similar time-scales
as network reconfiguration time-scale. These are on the
order of ms, i.e., on much slower time-scales than the
fast bit periods (nsec), so that the use of a low order
Padé approximation is justified.

Then the following network stability result is given.

Theorem 4 : Under (A1), stability of the optical
network in Figure 2 (or Figure 3) is equivalent to robust
stability of the closed loop system in Figure 6 (b), where

M(s) = Fl(Gx,Pade(s), L(s)) (13)

is assumed stable, with L(s) being the loop transfer ma-
trix, (11), and Gx,Pade(s) the known LFT system for
the uncertain Padé approximation of Dt, (11). There-
fore, the closed-loop system is stable if and only if

sup
ω

µ∆(M(jω)) < β ∀w (14)



for all ∆ such that

‖ ∆ ‖∞≤
1
β

, ‖ ∆(s) ‖∞= max
ω

σ̄(∆(jω))

Gx,Pade

∆

-
-

�

L �

M

M

∆

-

�
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Figure 6: Network Stability: M∆ Configuration

Proof:
Let the delay τt be expressed as

τt = τ0 + δ0 ∆, ∆ ∈ [−1, 1]

with τ0 some nominal delay, δ0 a known scalar, and ∆
an unknown but bounded real scalar (−1 ≤ ∆ ≤ 1).

Let a single-channel delay e−τts be approximated by
a 1st order Padé LTI system

e−τts ≈
1− τt

2 s

1 + τt

2 s
= 1−

(
1 + τt

2 s
)−1

τts

Then an upper linear fractional representation (LFT)
of the 1st order Padé approximation is given as

1− τt

2 s

1 + τt

2 s
= Fu(Gx,Pade(s),∆) (15)

where

Gx,Pade(s) =


−

δ0
2 s

1+
τ0
2 s

2s
1+

τ0
2 s

−
δ0
2

1+
τ0
2 s

1− τ0
2 s

1+
τ0
2 s


and ∆ ∈ [−1, 1]. In state-space form Gx,Pade(s) =
(Ax, Bx, Cx, Dx) with

Ax = − 2
τ0

Bx =
[
− δ0

τ0

4
τ0

]
Cx =

[
− 2

τ0

1

]
Dx =

[
− δ0

τ0

4
τ0

0 −1

]
Now, extending (15) to the multichannel delay, Dt(s),

(11), (Figure 5 (b)), we have

Dt(s) = e−τts Im1 ≈ Fu(Gx,Pade(s),∆) (16)

where ∆ = ∆ ∗ Im1 , ∆ ∈ [−1, 1]

and Gx,Pade(s) is a (m1 x m1) diagonal system

Gx,Pade(s) =

 Gx,Pade(s) · · · 0
. . .

0 · · · Gx,Pade(s)


Then using (16), we see that configuration in Figure

5 (b) is equivalent to Figure 6 (a), and the result fol-
lows from standard small gain theorem and µ-analysis
theory, [12], [11]. The basic idea is to rearrange the
system (Figure 6 (a)) in a M∆ structure (Figure 6 (b)),
where M is given as

M(s) = Fl(Gx,Pade(s), L(s))

and represents the transfer matrix from the output to
the input of the perturbation. Then use of the robust
stability condition (14) ensures stability.

Remark: Notice that this robust stability problem is
in the class of repeated real diagonal perturbations,
since the uncertainty in each channel is identical. The
calculated µ value gives the magnitude of the tolerated
perturbation before getting to instability. A particular
∆ that will cause instability can be found such that

‖ ∆ ‖∞≤
1
βl

where βl is the peak of the lower bound of the µ-value,
[12]. This gives the maximum delay τ , or maximum
path length before instability,

τ = τ0 + δ0
1
βl

4 Simulation results

As an example we consider the problem of network re-
configuration with varying path length. The nominal
network in Figure 2 has twelve optical dynamic ampli-
fier spans, (7), each span of a length of approximately
70 km, corresponding to τ ≈ 0.33 ms delay. There are
80 wavelength channels grouped in 10 sub-bands prop-
agating across a total 12 x 70 km loop, with a nominal
total delay of τ0 ≈ 4 ms. We assume that the two
groups λ1 and λ2 are equal. We will use the results
in Theorem 4 to get a measure of the maximum path
length (total delay) that could be used at network re-
configuration. Numerical calculation using the µ tool-
box (Matlab) gives µ = 1.05, yielding a destabilizing
perturbation of τt ≈ 15 ms.

We simulate network reconfiguration by a sudden in-
crease in power on the λ2 group. Results are shown for



varying loop time-delay (loop path length). As seen in
Figure 7 (a), for nominal delay, both groups of wave-
lengths experience power fluctuations until settled. For
the case when the loop path and time-delay is four times
larger, τt ≈ 16 ms, the network becomes unstable, with
sustained oscillations. This shows that the results of
Theorem 4 provide a good estimate although slightly
conservative. Also, they correspond to the simulation
and experimental results of physical networks, [8], [9].

(a)

(b)
Figure 7: Simulation results: (a) nominal time-delay

(optical path length), (b) four times larger

5 Conclusions

This paper presented an application of control theory
and µ-analysis to stability analysis in optical commu-
nications networks. A generic network configuration
was considered. The transfer matrix representation
evidences coupling on the feedback path between two
channel groups as well as propagation time-delay.

The network stability problem was reformulated as
a robust stability problem. We used a Pade approxi-
mation for the overall path delay, suitable for the low

frequencies used for network reconfiguration (as com-
pared to the high data rates). We applied µ-analysis to
derive sufficient conditions for network stability. Future
work will extend these conditions, such that explicit de-
pendence on network parameters can be evidenced.
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