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Abstract— Advantages and limitations of washout filters
in feedback control of both continuous-time and discrete-
time systems are discussed, and generalizations that allevi-
ate the limitations are presented. The generalized washout
filters presented involve feedback through auxiliary state
variables that are intercoupled. This is in contrast to the
more traditional washout filter-aided control, in which these
variables couple to the system state but not to each other.
The generalized washout filter results obtained in the paper
include a systematic feedback control design procedure, which
is not available for traditional washout filter-aided control.
Some previously unpublished results in the Ph.D. dissertation
of one of the authors (Lee, 1991) are presented in the context
of their relation to the generalized results and to recent
publications on delayed feedback control. We observe that
delayed feedback control for discrete-time systems, used in a
number of control of chaos studies, is a special case of washout
filter-aided feedback. Moreover, the limitations of delayed
feedback control can be overcome by the use of washout filter-
aided feedback, which gives rise to the possibility of stabilizing
a much larger class of systems.

I. I NTRODUCTION

It is a common practice in the analysis of nonlinear
systems and in feedback control design to assume that the
equilibrium point (or the operating point) of the system is
accurately known or does not change over the operating
regime. However, models of physical dynamical systems
are in general uncertain. Therefore, static feedback control
is ineffective in addressing problems where the operating
point is not accurately known or there is parameter drift.

Consider the nonlinear system described by

ẋ = f(x, u) (continuous-time) (1)

or

x(k + 1) = f(x(k), u(k)) (discrete-time) (2)

wheref(·, ·) is uncertain,u is the scalar input andx ∈ <n is
the state vector. Due to the uncertainty inf , the equilibrium
points (if any) of the system (1) and the fixed points (if
any) of (2) are also in general uncertain. Typically, one
expandsf(·, ·) about the operating point of interest, say
xo, and then applies linear feedback design techniques to

the linearized model. Static state feedback, however, does
not apply to problems in which the dynamics and the
targeted operating point are uncertain. Moreover, static state
feedback changes the operating conditions of the open-loop
system. This results in wasted control effort and may also
result in degrading system performance.

To overcome these problems, washout filters have been
used in many applications (e.g., [1], [2], [3], [4], [5], [6],
[7]). A washout filter (also sometimes called a washout
circuit) is a high pass filter that washes out (rejects) steady
state inputs, while passing transient inputs [1]. The main
benefit of using washout filters is that all the equilibrium
points of the open-loop system are preserved (i.e., their
location isn’t changed). In addition, washout filters facilitate
automatic following of a targeted operating point, which
results in vanishing control energy once stabilization is
achieved and steady state is reached.

Although washout filters have been successfully used in
many control applications, there is no systematic way to
choose the constants of the washout filters and the control
parameters. Recently, Bazanella, Kokotovic and Silva [8]
proposed a technique to control continuous-time systems
with unknown operating point. The operating point (or
equilibrium point) was treated as an uncertain parameter and
a certainty equivalence adaptive controller was proposed. In
this work, we discuss benefits and limitations of washout
filter-aided feedback for both continuous-time and discrete-
time systems . We also discuss extensions of washout filter-
aided feedback to overcome the limitations of washout
filters and at the same time maintain their benefits. Our
extensions are similar to that of [8], although we do not
invoke a singular perturbation framework.

The paper proceeds as follows. In Sec. II, we discuss
washout filters for both continuous-time and discrete-time
systems. In Sec. III, we discuss linear washout filter-
aided feedback control and present limitations of feedback
through stable washout filters. In Sec. IV, we discuss
delayed feedback control for discrete-time systems and its
relation to washout filter-aided feedback. In Secs. V and VI,
generalizations of washout filters are presented.



II. WASHOUT FILTERS

A washout filter is a high pass filter that washes out (re-
jects) steady state inputs, while passing transient inputs [1].
In continuous-time setting, the transfer function of a typical
washout filter is

G(s) =
y(s)
x(s)

=
s

s + d
. (3)

Here,d is the reciprocal of the filter time constant which is
positive for a stable filter and negative for an unstable filter.
With the notation

z(s) :=
1

s + d
x(s) (4)

the dynamics of the filter can be written as

ż = x− dz, (5)

along with the output equation

y = x− dz. (6)

In discrete-time, the dynamics of a washout filter can be
written as

z(k + 1) = x(k) + (1− d)z(k), (7)

along with the output equation

y(k) = x(k)− dz(k). (8)

For a stable washout filter, the filter constant satisfies0 <
d < 2.

Note that the output of the washout filter (for both
continuous-time and discrete-time cases) vanishes in steady
state. Therefore, using washout filters in feedback control
does not move the equilibrium points of the open-loop
system. As will be discussed below, there are limitations in
using stable washout filters in feedback control, and some of
these limitations can be overcome using unstable washout
filters.

III. L INEAR FEEDBACK THROUGH WASHOUT FILTERS

Below, we consider linear feedback through washout
filters for both continuous-time and discrete-time systems,
and we mention limitations of using stable washout filters.
Some of these limitations, such as Lemma 3, are being
reported in the current literature, although the results date
back to the thesis of H.-C. Lee [3]. The results for the
discrete-time case are new.

A. Continuous-time case

Supposexo is an unstable operating condition for sys-
tem (1). In a small neighborhood ofxo, system (1) can be
rewritten as

ẋ = Ax + bu + h(x, u) (9)

wherex now denotesx − xo (is the state vector referred
to xo), u is a scalar input,A is the Jacobian matrix off
evaluated atxo, b is the derivative off with respect tou

evaluated atxo, and h(·, ·) represents higher order terms,
i.e., h(0, 0) = 0 and ∂h(0,0)

∂x = 0.
Next, washout filters are used in the feedback loop. The

dynamic equations of the washout filters can be written as

żi = −dizi +
n∑

j=1

cijxj (10)

wherezi is the state of theith washout filter,i = 1, · · · ,m,
and m ≤ n is a positive integer. Note that (10), where
more than one state is used as an input to the washout
filter, is more general than (5). The relationship between
the operating point of interest of the open-loop system and
the operating point of the washout filters is as follows:

zoi =
1
di

n∑

j=1

cijxoj (11)

In vector form, the closed-loop system can therefore be
written as(

ẋ
ż

)
=

(
A 0
C D

)(
x
z

)
+

(
b
0

)
u+

(
h(x, u)

0

)
(12)

where C = [cij ] is an m × n matrix, which consists of
nonzero row vectors,D = diag(di), i = 1, · · · , m.

The control inputu is taken as a linear function of the
washout filter’ outputs obtained from the right side of (10)

yi = −dizi +
n∑

j=1

cijxj . (13)

The following two lemmas give general guidelines for
choosing the matricesC and D based on controllability
considerations.

Lemma 1: ([3]) If any two diagonal entries of the matrix
D are the same, the linearization of the closed-loop sys-
tem (12) is not controllable regardless of the controllability
of the pair(A, b).

Proof: See [3], [9].

Note that controllability of the closed-loop system (12)
does not imply that the eigenvalues of system (9) can be
arbitrarily assigned by feedback through washout filters.

Lemma 2: ([3]) Suppose thatλ1 is an eigenvalue of both
A andD, and that

ρ

(
λ1I −A b

C 0

)
≤ n. (14)

Then, the linearization of the closed-loop system (12) is not
controllable.
Proof: See [3], [9].

Since washout filter-aided feedback can be viewed as a
form of output feedback (see [9]), where the outputs of the
washout filters instead of the open-loop system states are
used in the feedback, some of the capabilities of direct state
feedback are lost. This is due to the restriction thatdi 6= 0.



The following lemma summarizes some of the capability
limitations of feedback through stable washout filters.

Lemma 3: ([3]) If A has an odd number of eigenvalues
with positive real part, then (9) cannot be stabilized using
stable washout filters. This holds even if the eigenvalues of
A with positive real part are linearly controllable.

Proof: See [3], [9].

Corollary 1: If the open-loop system possesses a zero
eigenvalue, it cannot be moved using washout filter-aided
feedback.
Proof: Follows from Lemma 3.

B. Discrete-time case

Supposexo is an unstable operating condition for sys-
tem (2). In a small neighborhood ofxo, system (2) can be
rewritten as

x(k + 1) = Ax(k) + bu(k) + h(x(k), u(k)) (15)

wherex now denotesx − xo (is the state vector referred
to xo), u is a scalar input,A is the Jacobian matrix off
evaluated atxo, b is the derivative off with respect tou
evaluated atxo, and h(·, ·) represents higher order terms,
i.e., h(0, 0) = 0 and ∂h(0,0)

∂x = 0.
Next, washout filters are used in the feedback loop. The

dynamic equations of the washout filters can be written as

zi(k + 1) = (1− di)zi(k) +
n∑

j=1

cijxj(k) (16)

wherezi is the state of theith washout filter,i = 1, · · · ,m,
andm ≤ n is a positive integer. The relationship between
the operating point of the open-loop system and the oper-
ating point of the washout filters is as follows:

zoi =
1
di

n∑

j=1

cijxoj (17)

In vector form, the closed-loop system can therefore be
written as(

x(k + 1)
z(k + 1)

)
=

(
A 0
C I −D

)(
x(k)
z(k)

)
+

(
b
0

)
u(k)

+
(

h(x(k), u(k))
0

)
(18)

where C = [cij ] is an m × n matrix, which consists of
nonzero row vectors,D = diag(di), i = 1, · · · ,m.

The control inputu is taken as a linear function of the
washout filter’ outputs obtained from the right side of (16)

yi(k) = −dizi(k) +
n∑

j=1

cijxj(k). (19)

The following two lemmas give general guidelines for
choosing the matricesC and D based on controllability
considerations. The results are analogous to the continuous-
time results presented in the previous section.

Lemma 4: If any two diagonal entries of the matrixD are
the same, the linearization of the closed-loop system (18) is
not controllable regardless of the controllability of the pair
(A, b).
Proof: See [9].

Note that controllability of the closed-loop system (18)
does not imply that the eigenvalues of system (15) can be
arbitrarily assigned by feedback through washout filters.

Lemma 5:Suppose thatλ1 is an eigenvalue of bothA
andI −D, and that

ρ

(
λ1I −A b

C 0

)
≤ n. (20)

Then, the linearization of the closed-loop system (18) is not
controllable.
Proof: See [9].

The following lemma summarizes some of the capability
limitations of feedback through stable washout filters.

Lemma 6: If A possesses an odd number of real eigen-
values (counting multiplicities) in(1,∞) (i.e., if det(I −
A) < 0) then it cannot be stabilized using stable washout
filters.
Proof: See [9].

Corollary 2: If the linearization of the open-loop state
dynamics matrixA possesses an eigenvalue of1 (i.e., I−A
is singular), then this eigenvalue cannot be moved using
washout filter-aided feedback.
Proof: Follows from Lemma 6.

IV. D ELAYED FEEDBACK CONTROL AS A SPECIAL

CASE OFWASHOUT FILTER-A IDED FEEDBACK

Delayed feedback control (DFC) was proposed by Pyra-
gas [10] as a technique for control of chaos. Since then,
DFC has been used by many authors in control of chaos
studies [11], [12], [13], [11], [14], [15], [16], [17], [18],
[19]. We have shown that DFC in discrete-time systems
is a special case of washout filter-aided feedback control,
and that some of the results in the literature on limitations
of DFC are actually special cases of results in the Ph.D.
dissertation of one of the authors [3]. In addition, we have
shown how these limitations of DFC may be overcome
using washout filters and generalized washout filters (as
introduced below). The details are not included here due
to space limitations, but they are available on the web in
the technical report [9].

We proceed in the next two sections to give a generaliza-
tion of washout filter-aided feedback for both continuous-
time and discrete-time systems.

V. GENERALIZATION OF CONTINUOUS-TIME WASHOUT

FILTER-A IDED FEEDBACK

Next, we consider a generalization of washout filters in
which the individual washout filters are coupled through
a constant coupling matrix. Consider system (1) withxo



as the operating condition. System (1) can be rewritten as
follows in a small neighborhood ofxo:

ẋ = Ax + Bu + h(x, u) (21)

We are interested in designing a control law that stabilizes
this system while maintaining all its equilibrium points.

The generalized washout filter-aided feedback proposed
here results in the closed-loop system

ẋ = Ax + Bu + h(x, u) (22)

ż = P (x− z) (23)

u = K(x− z) (24)

Here P is a nonsingular matrix andK is a feedback gain
matrix. Since in steady state, the control input vanishes (i.e.,
u ≡ 0), the equilibrium points of the open-loop system are
not shifted by this type of feedback control. Suppose that
the pair(A, B) is stabilizable. Are there matricesK andP
such that the closed-loop system is stable?

To answer this question, we consider the effect of matri-
cesK andP on the linearization of the closed-loop system

(
ẋ
ż

)
=

(
A + BK −BK

P −P

)(
x
z

)

=: Ac

(
x
z

)
(25)

Proposition 1: ([8]) The determinant of the closed-loop
state dynamics matrixAc satisfies

det(Ac) = det(A) det(−P ) (26)
Proof: See [8], [9].

Corollary 3: If the matrixA has a zero eigenvalue, then
the closed-loop system state dynamics matrixAc will also
have a zero eigenvalue.
Proof: Follows from Proposition 1.

Since this type of feedback doesn’t shift equilibria, it
shouldn’t be surprising that it can’t modify a zero eigenvalue
(this would also modify any stationary bifurcation in the
system).

The following result gives some conditions on the con-
troller matrix P for the controller to be stabilizing. This
result is akin to Lemma 3 pertaining to washout filter-aided
feedback. In words, the result means that if the open-loop
system possesses an odd number of unstable eigenvalues,
then a necessary condition for the closed-loop system to be
stable is that the controller must also have an odd number
of unstable eigenvalues.

Lemma 7: [8] Let the number of unstable eigenvalues
of A be odd. Then, for the closed-loop matrixAc to be
Hurwitz, −P must also have an odd number of unstable
eigenvalues.
Proof: See [8], [9].

We will show that if A is nonsingular and(A,B)
is stabilizable, then there is a pairP , K such thatAc

is Hurwitz. Recall that eigenvalues are preserved under
similarity transformations.

Let T1 =
(

I 0
0 P−1

)
. Then we have

Ac1 := T1AcT
−1
1 =

(
A + BK −BKP

I −P

)
(27)

Next, let T2 =
(

I M
0 I

)
. It is easy to see thatT−1

2 =
(

I −M
0 I

)
. Applying the transformationT2 to Ac1 gives

Ac2 := T2Ac1T
−1
2

=

(
A + BK + M −AM−BKM−M2−BKP−MP

I −M − P

)

Consider the(1, 2) block term ofAc2. SupposeP = εP1

and M = M0 + εM1 + O(ε2) with ε > 0 and sufficiently
small. It is straightforward to show, after setting the(1, 2)
block of Ac2 to zero, i.e.,

AM + BKM + M2 + BKP + MP = 0 (28)

and collecting terms with same power inε, thatO(1) terms:

(A + BK + M0)M0 = 0. (29)

This holds ifM0 = 0 or M0 = −A − BK. Taking M0 =
−A−BK and finding theε1 terms gives

M1(A + BK) + AP1 = 0 (30)

SinceA + BK can be guaranteed invertible (by restricting
K so that0 /∈ σ(A+BK)), we find thatM1 = −AP1(A+
BK)−1. Since M1 can be determined uniquely through
matrix inversion, it is clear that the Implicit Function
Theorem implies that (28) has a locally unique solution
M(ε) = M0+εM1+O(ε2) nearM0. Therefore,M = M0+
εM1 + O(ε2) = −A−BK − εAP1(A + BK)−1 + O(ε2).
SubstitutingM andP in Ac2 yields

Ac2 =
( −εAP1(A + BK)−1 + O(ε2) 0

I Ac2(2, 2)

)

whereAc2(2, 2) = A+BK + ε(AP1(A+BK)−1−P1)+
O(ε2).

Assume thatA has no zero eigenvalues. To makeAc2

Hurwitz, we need to chooseP1 such that−AP1(A+BK)−1

is Hurwitz. Clearly such aP1 exists (e.g.,P1 = A−1(A +
BK)). Also we need to chooseK such thatA + BK is
Hurwitz with eigenvalues away from zero. Such aK is
guaranteed to exist since the pair(A,B) is assumed to be
stabilizable.

Proposition 2: Consider the closed-loop system (25).
Suppose that the matrixA has no eigenvalues at0. Sup-
pose also that the pair(A,B) is stabilizable. Then there
exists a nonsingularP ∈ Rn×n and K ∈ Rm×n such
that (xT

o , xT
o )T is asymptotically stable equilibrium point

of (25).



VI. GENERALIZATION OF DISCRETE-TIME WASHOUT

FILTER-A IDED FEEDBACK

The results of this section are counterparts of the
continuous-time results of the previous section for the
discrete-time case. Consider system (2) withxo as the
operating condition. System (2) can be rewritten as follows
in a small neighborhood ofxo:

x(k + 1) = Ax(k) + Bu(k) + h(x(k), u(k)) (31)

We are interested in designing a control law that stabilizes
this system while maintaining all its equilibrium points. The
generalized washout filter-aided feedback proposed here
results in the closed-loop system

x(k + 1) = Ax(k) + Bu(k) + h(x(k), u(k)) (32)

z(k + 1) = Px(k) + (I − P )z(k) (33)

u(k) = G(x(k)− z(k)) (34)

Here P is a nonsingular matrix andG is a feedback gain
matrix. Since in steady state, the control input vanishes (i.e.,
u ≡ 0), the equilibrium points of the open-loop system are
not shifted by this type of feedback control. Suppose that
the pair(A,B) is stabilizable. Are there matricesG andP
such that the closed-loop system is stable?

To answer this question, we consider the effect of matri-
cesP andG on the linearization of the closed-loop system
(

x(k + 1)
z(k + 1)

)
=

(
A + BG −BG

P I − P

)(
x(k)
z(k)

)

=: Ac

(
x(k)
z(k)

)
(35)

Proposition 3: The determinant ofI −Ac satisfies

det(I −Ac) = det(I −A) det(P ) (36)
Proof: See [9].

Corollary 4: If the open-loop matrixA has an eigenvalue
of 1 (i.e., if (I −A) is singular), this eigenvalue cannot be
shifted using this type of dynamic feedback.
Proof: Follows from Proposition 3.

Lemma 8:Let the number of unstable eigenvalues ofA
that are real and greater than1 be odd (i.e.,det(I−A) < 0).
Then, for the closed-loop state dynamics matrixAc to be
Schur stable,I − P must also have an odd number of real
eigenvalues greater than1 in value.
Proof: See [9].

We will show that there exist aP , G such thatAc is
Schur stable. Recall that eigenvalues are preserved under
similarity transformations.

Let T1 =
(

I 0
0 P−1

)
. Then we have

Ac1 := T1AcT
−1
1

=
(

A + BG −BGP
I I − P

)
.

Next, let T2 =
(

I M
0 I

)
implying T−1

2 =
(

I −M
0 I

)
. Applying the transformationT2 to Ac1 gives

Ac2 := T2Ac1T
−1
2

=
(

A + BG + M Ac2(1, 2)
I −M + I − P

)

where

Ac2(1, 2) =−AM−BGM−M2−BGP +M−MP. (37)

Consider the block termAc2(1, 2). SupposeP = εP1 and
M = M0 + εM1 +O(ε2) with ε > 0 and sufficiently small.
It is straightforward to show, after setting theAc2(1, 2) to
zero and collecting terms with same power inε that the
O(1) terms yield

(A + BG− I + M0)M0 = 0 (38)

This holds if M0 = 0 or M0 = −A − BG + I. Taking
M0 = −A−BG + I and finding theε1 terms gives

M1(A + BG− I) + (A− I)P1 = 0 (39)

Since A + BG − I can be guaranteed nonsingular (by
restricting K so that 1 /∈ σ(A + BG)), we find that
M1 = −(A − I)P1(A + BG − I)−1. Since M1 can be
determined uniquely through matrix inversion, it is clear
that the Implicit Function Theorem implies that (37) has a
locally unique solutionM(ε) = M0 + εM1 + O(ε2) near
M0. Therefore,M = M0 + εM1 + O(ε2) = −A − BG +
I − ε(A− I)P1(A + BG− I)−1 + O(ε2). SubstitutingM
andP in Ac2 yields

Ac2 =

(
I − ε(A− I)P1(A + BG− I)−1 + O(ε2) 0

I Ac(2, 2)

)

where

Ac(2, 2) = A + BG + ε((A− I)P1(A + BG− I)−1 − P1)

+O(ε2).

Assume thatI − A is nonsingular (i.e.,1 /∈ σ(A)). To
make Ac2 Schur stable, we need to chooseP1 such that
I−ε(A−I)P1(A+BG−I)−1 is Schur stable. Clearly such
a P1 exists. Also we need to chooseG such thatA + BG
is Schur stable with eigenvalues away from1. Such aG is
guaranteed to exist since the pair(A,B) is assumed to be
stabilizable.

Proposition 4: Consider the closed-loop system (35).
Suppose that the matrixI − A is nonsingular. Suppose
also that the pair(A, B) is stabilizable. Then there exists a
nonsingularP ∈ Rn×n, a G ∈ Rm×n and anε̄ > 0 such
that∀ε ∈ (0, ε̄], (xT

o , xT
o )T is an asymptotically stable fixed

point of (35).

Example 1:Consider the two-dimensional map [20]
(

x1(k + 1)
x2(k + 1)

)
=

(
1.9 1
0.5 0

)(
x1(k)
x2(k)

)
−

(
x3

1(k)
0

)

+
(

1
0

)
u(k) (40)



The uncontrolled system (40) has three fixed pointsxo1 =
(0, 0), xo2 = (

√
1.4,

√
1.4/2) andxo3 = −xo2, and indeed

displays chaotic motion (see [20]). The fixed pointxo1 is
unstable: the eigenvalues of the linearization at the origin
are λ1 = 2.1343 and λ2 = −0.2343. Sinceλ2 > 1, the
origin cannot be stabilized using DFC nor using stable
washout filters. It is straightforward to show that the origin
of (40) can be stabilized using one unstable washout filter
with d = −0.05 and control gainγ = −1.8 (see [9] for
details).

Next, we show that the origin can be stabilized using the
generalized washout filter design calculations. We choose
the gain vectorG so that A + bG is Schur stable. A
stabilizing control gain vector isG = [−1.6343 − 0.7657].
Choosing

P = 0.1(A− I)−1(A + BG− I)

=
( −0.1674 −0.5469
−0.5837 0.7265

)
,

yields

Ac =
(

A + BG −BG
P I − P

)

=




0.2657 0.2343 1.6343 0.7657
0.5000 0 0 0
−0.0167 −0.0547 1.0167 0.0547
−0.0584 0.0727 0.0584 0.9273


 .

The eigenvalues of Ac are
{−0.2343, 0.7277, 0.8164, 0.9000}. Thus, the closed-
loop system is asymptotically stable. Figure 1 demonstrates
the effectiveness of the controller. Note that the control
input vanishes after stabilization of the origin is achieved.

0 100 200 300 400 500 600 700 800
−2

0

2

x 1(k
)

0 100 200 300 400 500 600 700 800
−2

0

2

x 2(k
)

0 100 200 300 400 500 600 700 800
−0.2

0

0.2

k

u(
k)

(a) 

(b) 

(c) 

Fig. 1. Time series (with initial condition (0.3,-0.6)) of (a)x1 (b) x2 and
(c) control inputu. The control is applied when the trajectory of the open-
loop system enters the neighborhood{x = (x1, x2) ∈ <2 : ‖x‖ < 0.15}
of the origin.
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