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Abstract—Advantages and limitations of washout filters the linearized model. Static state feedback, however, does
in feedback control of both continuous-time and discrete- not apply to problems in which the dynamics and the
time systems are discussed, and generalizations that allevi- 1o.4ated operating point are uncertain. Moreover, static state
ate the limitations are presented. The generalized washout . .
filters presented involve feedback through auxiliary state feedback changes th? operating conditions of the open-loop
variables that are intercoupled. This is in contrast to the System. This results in wasted control effort and may also
more traditional washout filter-aided control, in which these result in degrading system performance.
variables couple to the system state but not to each other.  To overcome these problems, washout filters have been
The generalized washout filter results obtained in the paper used in many applications (e.g., [1], [2], [3], [4], [5], [6],

include a systematic feedback control design procedure, which . -
is not available for traditional washout filter-aided control. [7]). A washout filter (also sometimes called a washout

Some previously unpublished results in the Ph.D. dissertation Circuit) is a high pass filter that washes out (rejects) steady
of one of the authors (Lee, 1991) are presented in the context state inputs, while passing transient inputs [1]. The main
of their relation to the generalized results and to recent penefit of using washout filters is that all the equilibrium

publications on delayed feedback control. We observe that points of the open-loop system are preserved (i.e., their

delayed feedback control for discrete-time systems, used in a o o . S
number of control of chaos studies, is a special case of washout location isn’t changed). In addition, washout filters facilitate

filter-aided feedback. Moreover, the limitations of delayed automatic following of a targeted operating point, which
feedback control can be overcome by the use of washout filter- results in vanishing control energy once stabilization is
aided feedback, which gives rise to the possibility of stabilizing achieved and steady state is reached.
a much larger class of systems. Although washout filters have been successfully used in
I. INTRODUCTION many control applications, there is no systematic way to
choose the constants of the washout filters and the control

arameters. Recently, Bazanella, Kokotovic and Silva [8]

systems and n feedback contrgl deS|gn to assume that_ F'Oposed a technique to control continuous-time systems
equilibrium point (or the operating point) of the system g .. unknown operating point. The operating point (or

accurately known or does not change over the OperatlrEQquilibrium point) was treated as an uncertain parameter and

regime. However, models of physical dynamical systemg certainty equivalence adaptive controller was proposed. In

are in general uncertain. Therefore, static feedback Comrf?'lis work. we discuss benefits and limitations of washout
is ineffective in addrleslilng problims where the Opzrit'nﬂter—aided feedback for both continuous-time and discrete-
poglt 'S_SOt ar::curat? y Known or tdere '% pgrsmeter M time systems . We also discuss extensions of washout filter-

onsider the nonlinear system described by aided feedback to overcome the limitations of washout

It is a common practice in the analysis of nonlinea

i = f(z,u) (continuous-time) (1) filters and at the same time maintain their benefits. Our
extensions are similar to that of [8], although we do not
or invoke a singular perturbation framework.
: ; The paper proceeds as follows. In Sec. I, we discuss
k+1) = k), u(k discrete-time 2 " . . i .
a(k+1) fa(k), uk)( ) @ washout filters for both continuous-time and discrete-time
wheref(-, -) is uncertainy is the scalar input and € " is  systems. In Sec. Ill, we discuss linear washout filter-

the state vector. Due to the uncertaintyfinthe equilibrium aided feedback control and present limitations of feedback
points (if any) of the system (1) and the fixed points (ifthrough stable washout filters. In Sec. IV, we discuss
any) of (2) are also in general uncertain. Typically, onelelayed feedback control for discrete-time systems and its
expandsf(-,-) about the operating point of interest, sayrelation to washout filter-aided feedback. In Secs. V and VI,
z,, and then applies linear feedback design techniques ¢@neralizations of washout filters are presented.
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1. WASHOUT FILTERS evaluated atc,, and h(-,-) represents higher order terms,
iiter is a hi i Le., h(0,0) = 0 and 2400 = ¢
A washout filter is a high pass filter that washes out (re-€-: (Y, o :

jects) steady state inputs, while passing transient inputs [1&. Next, washout filters are used in the feedback loop. The
In continuous-time setting, the transfer function of a typicaflynamic equations of the washout filters can be written as

washout filter is

y(s) s 21 = 7d121 —+ Z Cz'jLEj (10)
G(s) = 5= . (3 j=1

x(s) s+d
Here,d is the reciprocal of the filter time constant which is"V1€re= is the state of theth washout filter; =1, - -, m,

positive for a stable filter and negative for an unstable filteﬁndm smnisa posn.lve Integer. Notg that (10), where
With the notation more than one state is used as an input to the washout

1 filter, is more general than (5). The relationship between
2(s) = (s) (4) the operating point of interest of the open-loop system and

= T
s+d the operating point of the washout filters is as follows:
the dynamics of the filter can be written as n
1
i=gx—dz, (5) Yoi = o D cijtos (11)
1 le

along with the output equation
9 put €q In vector form, the closed-loop system can therefore be

y=x—dz. (6) written as
In discrete-time, the dynamics of a washout filter can t{ax > _ < A0 )( x ) n ( b >u+<h(%u) )(12)

written as z ¢ D)\ = 0 0
k+1) = a(k)+(1—d)z(k) 7) WwhereC = [cij] is anm x n matrix, which consists of
’ nonzero row vectorsD = diag(d;),i=1,---,m.
along with the output equation The control inputu is taken as a linear function of the
y(k) = x(k) — dz(k) ®) washout filter’ outputs obtained from the right side of (10)
For a stable washout filter, the filter constant satisfies v = —diz + Zcijxi' (13)
d<2. =1

Note that the output of the washout filter (for both . . o
. . . : : : The following two lemmas give general guidelines for
continuous-time and discrete-time cases) vanishes in stea . : o
. ' : choosing the matrice§’ and D based on controllability
state. Therefore, using washout filters in feedback contrgl =~ .
o . considerations.
does not move the equilibrium points of the open-loop
system. As will be discussed below, there are limitations in Lemma 1:([3]) If any two diagonal entries of the matrix
using stable washout filters in feedback control, and some @f are the same, the linearization of the closed-loop sys-
these limitations can be overcome using unstable washagim (12) is not controllable regardless of the controllability

filters. of the pair(A4,b).

I1l. LINEAR FEEDBACK THROUGHWASHOUT FILTERs ~ Proof:See [3], [9].

Below, we consider linear feedback through washout Note that controllability of the closed-loop system (12)
filters for both continuous-time and discrete-time systemsloes not imply that the eigenvalues of system (9) can be
and we mention limitations of using stable washout filtersarbitrarily assigned by feedback through washout filters.
Some of these limitations, such as Lemma 3, are being
reported in the current literature, although the results dat/?
back to the thesis of H.-C. Lee [3]. The results for the

Lemma 2:([3]) Suppose thak; is an eigenvalue of both
and D, and that

discrete-time case are new. ) < )\110— A 8 ) <n (14)
A. Continuous-time case
Then, the linearization of the closed-loop system (12) is not

Supposer, is an unstable operating condition for sys-
tem (1). In a small neighborhood af,, system (1) can be
rewritten as

controllable.
Proof: See [3], [9].

Since washout filter-aided feedback can be viewed as a
form of output feedback (see [9]), where the outputs of the
wherexz now denotest — z, (is the state vector referred washout filters instead of the open-loop system states are
to x,), v is a scalar inputA is the Jacobian matrix of used in the feedback, some of the capabilities of direct state
evaluated atr,, b is the derivative off with respect tou  feedback are lost. This is due to the restriction iag 0.
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The following lemma summarizes some of the capability Lemma 4:If any two diagonal entries of the matriX are
limitations of feedback through stable washout filters.  the same, the linearization of the closed-loop system (18) is

Lemma 3:([3]) If A has an odd number of eigenvaluesnOt controllable regardless of the controllability of the pair

with positive real part, then (9) cannot be stabilized usmé’rt;o)f.'See [9]
stable washout filters. This holds even if the eigenvalues of =~ '

A with positive real part are linearly controllable. Note that controllability of the closed-loop system (18)
Proof: See [3], [9]. does not imply that the eigenvalues of system (15) can be

arbitrarily assigned by feedback through washout filters.
Corollary 1: If the open-loop system possesses a zero

eigenvalue, it cannot be moved using washout filter-aided Lemma 5:Suppose thaf\; is an eigenvalue of both

feedback. and — D, and that
Proof: Follows from Lemma 3. | _

p<“0 4 8>§n (20)
B. Discrete-time case

Supposeco iS an unstable Operating condition for SyS_Then, the linearization of the Closed-loop system (18) is not

tem (2). In a small neighborhood of,, system (2) can be controllable.
rewritten as Proof: See [9].

w(k+1) = Az(k) + bu(k) + h(z(k),u(k)) (15) The following lemma summarizes some of the capability
) limitations of feedback through stable washout filters.
wherexz now denotest — z, (is the state vector referred )
to x,), u is a scalar inputA is the Jacobian matrix of Lemma 6:1f A possesses an odd number of real eigen-
evaluated atr,, b is the derivative off with respect toy ~ values (counting multiplicities) i1, co) (i.e., if det(l —
evaluated atr,, and h(-,-) represents higher order terms,4) < 0) then it cannot be stabilized using stable washout
i.e., h(0,0) =0 and 22009 — filters.
Next, washout filters are used in the feedback loop. ThHBOf: See [9].

dynamic equations of the washout filters can be written as Corollary 2: If the linearization of the open-loop state

n dynamics matrix4 possesses an eigenvalueldf.e., I — A
zi(k+1) = (1—d;)zi(k) +Zcij:cj(k) (16) is singular), then this eigenvalue cannot be moved using
j=1 washout filter-aided feedback.
wherez; is the state of théth washout filter; = 1,--.,m, Proof:Follows from Lemma 6. L

andm < n is a positive integer. The relationship between |\, b aAvED FEEDBACK CONTROL AS A SPECIAL

the operating point of the open-loop system and the oper-  ~,se oFWASHOUT FILTER-AIDED FEEDBACK

ating point of the washout filters is as follows:
ap Delayed feedback control (DFC) was proposed by Pyra-

P licm ‘ 17) gas [10] as a technique for control of chaos. Since then,
o d; &= DFC has been used by many authors in control of chaos
=t studies [11], [12], [13], [11], [14], [15], [16], [17], [18],

In vector form, the closed-loop system can therefore bag]. We have shown that DFC in discrete-time systems
written as is a special case of washout filter-aided feedback control,
z(k+1)\ (A 0 z(k) b i and that some of the results in the literature on limitations
z2(k+1) )  \C I-D z(k) o u(k) " of DFC are actually special cases of results in the Ph.D.
h(z(k), u(k)) dissertation of one of the authors [3]. In addition, we have
+ ( 0 > (18)  shown how these limitations of DFC may be overcome
using washout filters and generalized washout filters (as
where C' = [c;;] is anm x n matrix, which consists of introduced below). The details are not included here due
nonzero row vectorsp = diag(d;), i =1,---,m. to space limitations, but they are available on the web in

The control inputu is taken as a linear function of the the technical report [9].
washout filter’ outputs obtained from the right side of (16) e proceed in the next two sections to give a generaliza-
n tion of washout filter-aided feedback for both continuous-

yilk) = —dizi(k) + Y _ cija;(k). (19)  time and discrete-time systems.
) _]_1 . V. GENERALIZATION OF CONTINUOUS-TIME WASHOUT
The following two lemmas give general guidelines for FILTER-AIDED FEEDBACK
choosing the matrice§’ and D based on controllability

considerations. The results are analogous to the continuousN€Xt, We consider a generalization of washout filters in
time results presented in the previous section. which the individual washout filters are coupled through

a constant coupling matrix. Consider system (1) with
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as the operating condition. System (1) can be rewritten @& Hurwitz. Recall that eigenvalues are preserved under

follows in a small neighborhood af,: similarity transformations.
I 0
& = Az+ Bu+ h(z,u) (21) lLetTi= ( 0 p- ) Then we have

We are interested in designing a control law that stabilizes
this system while maintaining all its equilibrium points. Ag =T AT = <

A+ BK —-BKP > @7)
The generalized washout filter-aided feedback proposed

I -pP

here results in the closed-loo tem
restis i S P sys Next, letT, = ( é ]\I/[ ) It is easy to see thaf, ' =
& = Azx+ Bu+ h(x,u) (22) Y
= P(z—2) (23) ( 0 I ).Applymg the transformatiofi;, to A.; gives
u = K(z—2) (24)

Ao = TQAdT{l

Here P is a nonsingular matrix andk is a feedback gain _ (A+BK+M —AM—-BKM—-M?-BKP—-MP
matrix. Since in steady state, the control input vanishes (i.e., I -M —P

u = 0), the equilibrium points of the open-loop system are . B
not shifted by this type of feedback control. Suppose thaggr]'\?dfr]\t;e(l’ 2}\)4blocg te;rm QELACQ' %uppc(j)sel;___ d?[ }
the pair(A, B) is stabilizable. Are there matricds andp ~ @N9 M = Mo+ ey + (¢°) with ¢ > 0 and sufficiently
such that the closed-loop system is stable? small. It is straightforward to show, after setting thie 2)

To answer this question, we consider the effect of matrpIOCk of Az t0 zero, ie.,

cesK and P on the linearization of the closed-loop system AM + BKM + M?2+BKP+MP =0 (28)
( x ) = ( A+PBK _B]f( > ( z ) and collecting terms with same powerdnthatO(1) terms:
z — z
" (A+ BK + My)My = 0. (29)
A (%) (25)
Z This holds if My = 0 or My = —A — BK. Taking M, =

—A — BK and finding thec! terms gives
Proposition 1: ([8]) The determinant of the closed-loop

state dynamics matri¥. satisfies M(A+ BK)+ AP =0 (30)
det(A.) = det(A)det(—P) (26) SinceA+ BK can be guaranteed invertible (by restricting
Proof: See [8]’ [9] K so thatO ¢ U(A+BK)), we find thatMl = —APl(A-l-

Corollary 3: If the matrix A has a zero eigenvalue, then BK)~". Since M, can be determined uniquely through
the C|osed_|oop System state dynamics maHLXW”I also matrix inVerSion, it is clear that the |mp|ICIt Function
have a zero eigenvalue. Theorem implies that (28) has a locally unique solution
Proof: Follows from Proposition 1. m  M(e) = My+eM;+0(e*) nearMy. Therefore M = Mo+

eM; + O(e?) = —A — BK — eAP,(A+ BK)~! + O(€2).

Since this type of feedback doesn't shift equilibria, itsypstitutingds and P in A, yields
shouldn’t be surprising that it can’t modify a zero eigenvalue . )

(this would also modify any stationary bifurcation in the 4 , — ( —eAP1(A+ BK)™ + O(¢€%) 0 )
system). I Aea(2,2)

The following result gives some conditions on the CONwhere A,»(2,2) = A+ BK + (AP, (A+ BK)~' — P) +
troller matrix P for the controller to be stabilizing. This () e2). o

result is akin to Lemma 3 pertaining to washout filter-aided agsyme thatd has no zero eigenvalues. To make,
feedback. In words, the result means that if the Open'lomurwitz, we need to choos®, such that-AP; (A+BK)~!
system possesses an odd number of unstable eigenvalygs.,rwitz. Clearly such &, exists (€.g.P; = A~ (A +
then a necessary condition for the closed-loop system to lgaK))_ Also we need to choos& such thatA + BK is
stable is that the controller must also have an odd numbgj,witz with eigenvalues away from zero. SuchFa is
of unstable eigenvalues. guaranteed to exist since the péit, B) is assumed to be
Lemma 7:[8] Let the number of unstable eigenvaluesstabilizable.
of A be odd. Then, for the closed-loop matrik. to be
Hurwitz, —P must also have an odd number of unstableS
eigenvalues.
Proof: See [8], [9].

Proposition 2: Consider the closed-loop system (25).
uppose that the matrid has no eigenvalues &t Sup-
pose also that the paitA, B) is stabilizable. Then there
exists a nonsingulal® € R"*™ and K € R™*™ such
We will show that if A is nonsingular and(A, B) that (27, 21)7 is asymptotically stable equilibrium point

‘0o

is stabilizable, then there is a palf, K such thatA. of (25).
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VI. GENERALIZATION OF DISCRETETIME WASHOUT Next, let T, = (é ]\14) implying 7, =

FILTER-AIDED FEEDBACK

I -M . . .
The results of this section are counterparts of th{ 0 I >.Apply|ng the transformatioft; to A., gives
continuous-time results of the previous section for the

discrete-time case. Consider system (2) with as the Aw = ToAaTy!
operating condition. System (2) can be rewritten as follows B A+ BG+ M Aa(1,2)
in a small neighborhood of,: o I -M+1-P

z(k+1) = Ax(k)+ Bu(k) + h(z(k),u(k)) (31) where

We are interested in designing a control law that stabilizesic2(1,2) =—AM — BGM —M? - BGP+M —MP. (37)

this system while maintaining all its equilibrium points. Thecgnsider the block terml.(1,2). SupposeP = eP; and
generalized washout filter-aided feedback proposed hefg _ Mo + €M, + O(2) with 6’> 0 and sufficiently small.

resuls in the closed-loop system It is straightforward to show, after setting thi,(1,2) to

w(k+1) = Ax(k)+ Bu(k) + h(z(k),u(k)) (32) Z2€r0 and col_lecting terms with same powerdrthat the
dh+1) = Pa(k)+ (- P)=(k) (33 (1) terms yield

uwk) = G(a(k) — z(k)) (34) (A+ BG — I+ Mo)Mo =0 (38)

This holds if My = 0 or My = —A — BG + I. Taking

Here P is a nonsingular matrix and’ is a feedback gain -0 1 .
—A — BG + I and finding the:" terms gives

matrix. Since in steady state, the control input vanishes (i.el}?o =
u = 0), the equilibrium points of the open-loop system are M(A+BG—-1)+(A-1)P, =0 (39)
not shifted by this type of feedback control. Suppose thaéince A+ BG — I can be guaranteed nonsingular (by
the pair(A, B) is stabilizable. Are there matric&s and P restricting K so thatl ¢ o(A + BG)), we find that
such that the closed-loop system is stable? M, = —(A—I)P,(A+ BG — I)~!. Since M; can be
To answer this question, we consider the effect of matridetermined uniquely through matrix inversion, it is clear

cesP andG on the linearization of the closed-loop systenthat the Implicit Function Theorem implies that (37) has a
locally unique solution)M (¢) = My + eM; + O(e®) near

z(k+1) _ A+BG -BG (k) My. Therefore, M = My + eM; + O(e2) = —A — BG +
z(k+1) P I-P 2(k) I—e(A—I)Pi(A+ BG —I)~! 4+ O(€?). Substitutinghl
(k) and P in A, yields
= A (35) . )
(k) Ao [1—e(A=DP(A+BG-1)""+0() 0
2= I Ac(2,2)
Proposition 3: The determinant of — A satisfies where
det(l — Ac) = det(I — A)det(P) (36) A.(2,2) = A+BG+e(A-DP(A+BG-1)"'—P)
Proof: See [9]. +0(€%).

Corollary 4: If the open-loop matrix4 has an eigenvalue Assume thatl — A is nonsingular (i.e.l ¢ o(A)). To
of .1 (i.e., if (I —_A) is singular), t.his eigenvalue cannot bemake A, Schur stable, we need to .cﬁooﬁﬁe such. that
ISDr;gt;f?Fl:)TIIgv%strf“rzrtrzl%eroogoi}iltri](?:]éc. feedback. I —e(A'—I )P (A+BG—1I)~tis Schur stable. Clearly such

a P, exists. Also we need to choosgé such thatA + BG

Lemma 8:Let the number of unstable eigenvalues4f is Schur stable with eigenvalues away framSuch aG is
that are real and greater thame odd (i.e.det(I—A) < 0). guaranteed to exist since the pgit, B) is assumed to be
Then, for the closed-loop state dynamics mattix to be stabilizable.

Schur stable/ — P must also have an odd number of real Proposition 4: Consider the closed-loop system (35).
eigenvalues greater thanin value. Suppose that the matriX — A is nonsingular. Suppose
Proof: See [9]. also that the paifA, B) is stabilizable. Then there exists a

We will show that there exist &, G such thatA. is nonsingularP € R"*", a G € R™*™ and ané > 0 such

Schur stable. Recall that eigenvalues are preserved undeatVe (0, ¢, (22, 27)7 is an asymptotically stable fixed

similarity transformations. point of (35).
I 0 . . .
LetT) = ( 0 p-l ) Then we have Example 1:Consider the two-dimensional map [20]
zi(k+1)\ (19 1 (k) \ [ at(k)
Ag = TATI! wa(k+1) ) L 05 0 zo(k) 0
_ ( A+BG —-BGP 1
o ( I I-P ) +<0>u(k) (40)
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The uncontrolled system (40) has three fixed poins =
(0,0), o2 = (V1.4,4/1.4/2) andz,3 = —x,2, and indeed
displays chaotic motion (see [20]). The fixed poiny is
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unstable: the eigenvalues of the linearization at the origifffice of Naval Research.

are \; = 2.1343 and A\, = —0.2343. Since \» > 1, the
origin cannot be stabilized using DFC nor using stable
washout filters. It is straightforward to show that the origin [1]
of (40) can be stabilized using one unstable washout filter
with d = —0.05 and control gainy = —1.8 (see [9] for
details). [3]
Next, we show that the origin can be stabilized using the
generalized washout filter design calculations. We choosgy
the gain vectorG so that A + bG is Schur stable. A
stabilizing control gain vector i6& = [—1.6343 — 0.7657].

Choosing Bl
P = 01(A-—I)""(A+BG-1I) [6]
[ —0.1674 —0.5469 7]
— \ —05837 07265 )’
. [8]
yields
4 _ (A+BG -BG (9]
¢ = P I-P
0.2657  0.2343 1.6343 0.7657 (10]
3 0.5000 0 0 0 [11]
= | —0.0167 —0.0547 1.0167 0.0547
~0.0584  0.0727 0.0584 0.9273 12
The eigenvalues of A, are

{—0.2343, 0.7277, 0.8164, 0.9000}. Thus, the closed- [13]
loop system is asymptotically stable. Figure 1 demonstrates
the effectiveness of the controller. Note that the contrdh4]
input vanishes after stabilization of the origin is achieved.

[15]
2
(@)
2, [16]
>
_2 Il Il Il Il Il I I [17]
0 100 200 300 400 500 600 700 800
® 2
< [18]
x
> ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 100 200 300 400 500 600 700 800 [19]
© 02
2 A
5 0 \
[20]
_0-2 1 1 1 1 1 Il Il
0 100 200 300 400 500 600 700 800
k

Fig. 1. Time series (with initial condition (0.3,-0.6)) of (@) (b) z2 and

(c) control inputu. The control is applied when the trajectory of the open-
loop system enters the neighborhopd= (x1,x2) € R? : ||z|| < 0.15}

of the origin.
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