Proceeding of the 2004 American Control Conference ThP19.4
Boston, Massachusetts June 30 - July 2, 2004

Piecewise Quadratic Lyapunov Functions for
Piecewise Affine Time-Delay Systems

Vishwesh Kulkarni Myungsoo Jun do Hespanha

Abstract—We investigate some particular classes of hybrid Lyapunov functions when the subsystem dynamics are
systems subject to a class of time delays; the time delays canknown to be affine time invariant; an independent inter-
be constant or time varying. For such systems, we present \etation of this result is given in [3]. For some practical
the corresponding classes of piecewise continuous Lyapunov L . . .
functions. applications, however, the piecewise affine structure must be

Index Terms— Lyapunov functions, hybrid systems, stability ~modified to address modelling uncertainties and time delays

[6]. For such systems, consequently, the stability conditions
laid down by [4] get modified as we will demonstrate.
. INTRODUCTION The paper is organized as follows. The notation and the

Construction of Lyapunov functions is a fundamentakey relevant concepts are introduced in Section Il. The
problem in system theory — its importance stems from thproblems are formulated in Section 1l and the relevant
fact that the internal stability of a system is concluded if aprior art is described in Section IV. Our main results
associated Lyapunov function is shown to exist. This papearre presented in Section V and discussed in Section VI.
concerns such a construction for a class of systems thblhe paper is concluded in Section VII. Formal proofs are
are hybrid in the sense that the state trajectory evolution ipresented in the Appendix.
governed by different dynamical equations over different
polyhedral partitionsX; of the state-spaceX; i.e., the Il. PRELIMINARIES
system is modelled by an ensemble of subsystems, eachlhe notation is introduced as and when necessary. Capital
of which is a valid representation of the system over a ségtter symbols, such a8 and, denote operators whereas
of such partitions. A motivating application for the study ofsmall letter symbols, such asandy, denote real signals
such systems is described in [6]. which may possibly be vector valued or matrix valued. The

Conceptually, perhaps the simplest solution izam- set of all real (complex) numbers is denotedC) and the
mon quadraticLyapunov function, i.e. a quadratic function set of all integers is denoted. The notation= stands for
which is a global Lyapunov function for the subsystemsgefined as’. The inner product;, y) g/ y(t) T z(t) dt.
comprising the hybrid system [3]. However, the construction —0
of such a Lyapunov function is aN“P-hard problem even The Euclidean norm|z|| = \/(x, z). The vector space of
when the subsystems are linear time invariant [1]. Furthepignals for which the Euclidean norm exists is denofgd
more, the existence of such a function is, in principle, afhe vector spac&€; is generally referred to as,. Fourier
overly restrictive requirement to deduce the stability [4transform ofz is denoted:. Conjugate transpose of a vector
Section IV]. or matrix (i) is denoted(-)*; its transpose is denoted)”

Conservatism introduced byglobal Lyapunov function and ((-)?)" is denoted(-)?”. Given z € R™*", z = 0
V can be reduced by searching for a &t} of local implies that every element afis nonnegative. Théi, j)-th
Lyapunov functions and by ensuring that the Lyapunoelement of a matriX-) is denoted as eithef); ; or (-);5,
functions matchin the sense that the values of Lyapunowdepending on the ease of reading. Time derivative of the
functions V; and V; are equal when the state trajectorysignalz is denotedi.
leaves a cellX; and enters a celK;, whereV; is a local Definition 1 (Piecewise Affine Systems, [4])he class
Lyapunov function in the celk; andV; is a local Lyapunov Sy of hybrid systems is defined by a family of ordinary
function in the cellX; (see [2] and [7]). In this context, an differential equations as:
elegant result has been recently derived by [4] to construct #(t) = Aiw(t) + s, Y a(t) € X
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retarded ordinary differential equations as:
.’E(t) :Aix(t)+Adix(t—T)+ai7 Vl’(t) e X;

where A;,Aq; € R"*" a; € R*, 0 < 7 € R and
{X;}ier C R™ is a partition of the state-space as
The set of cells that include the origin is denotkd i.e.
a; =0, Vi€ Iy; its compliment is denoted; . O
Definition 3 (Piecewise Affine Time-Delay Systeé¥ng ):
The classS,.;, is obtained from EheeSTC by replacing the

term Agz(t — 7) with the termZAdW:(t — 77) where

=1
Agr e R"™™ 0<mpeR,and0 < L € Z. O
Definition 4 (Piecewise Affine Time-Delay SysteSns):

Lemma 1 (Theorem 1, [4])Consider symmetric matri-
cesT, U;, andW; such thatl; and W, have non negative
entries while P, = FI'TF;, for all i € I, and Pj =
FJTTFj, for all j € I, satisfy

ATP,+ PA+EI'UE, < 0 )
Pj — E]TWJEJ > 0 (5)

for all i € I, and for allj € I;. Then, every piecewise
continuous trajectory oy tends to zero exponentially]
Remark 1:An independent interpretation, and a slight

The classS,,, of hybrid systems is defined by a family of improvement, of this result is given in [3]. a

retarded ordinary differential equations as:

(t) = Ajx(t) + Agix(t — 7(t)) + a5, Va(t) € X;

where the time varying time delay is constrained as
0<7(t)<h, 7(t)<d<1 Vt € R,

for someh,d € R, A;,;Aq; € R"™™ a; € R" and
{Xi}ier C R™ is a partition of the state-space as &
The set of cells that include the origin is denotkgl i.e.
a; =0, Vi€ Iy; its compliment is denoted, . O
Definition 5 (Piecewise Affine Time-Delay Systetns;):
The classS., . is obtained from theSEv by replacing the

term Ag;z(t — 7(t)) with the termZAdigx(t — (1))

where the time varying time delay iés:%:onstrained as
0<m(t) < hgy, 7(t)<di<l1 Vvt € R,

Agie € R™™ 0 < 14(t) e R, and0 < L € Z. O

I1l. PROBLEM FORMULATION

Remark 2:To ensure that the local Lyapunov functions
match on the cell boundaries, [4] takes the predetermined
matrices F; and F; as the given variables, the predeter-
mination being as given by (1), and uses the elements
of the matrixT as the free variables. Now, the condition
(1) allows for a number of choices af; and F; which
might violate the matching condition, thereby incurring an
unnecessarily high cost of computation. This can be avoided
by working directly with the local Lyapunov functions;
and P; as the unknown variables and by stipulating that
P, — P; = 2herm (Fj; K;;), V i, j where the element&;;
are known variables. O

V. MAIN RESULTS

It is not possible to consider an aggregate stgte =
[z(t) x(t — 7)]T and apply the arguments of [4] in a
straightforward manner to the system of dynamical equa-
tions described in terms @f This is so because, in general,
it is difficult to deduce the cell containing(t—7) given that

Problem 1: Determine a set of computationally tractable® Particular cell containg(t) and, hence, it is difficult to

analytical conditions under whic8,. is stable. O

state the correct matching conditions for the local Lyapunov

Problem 2: Determine a set of computationally tractablelunctions. We now present solutions to Problem 1 and

Problem 2. Denote

analytical conditions under whic8,.y, is stable. O
Problem 3: Determine a set of computationally tractable A= Ag 0
analytical conditions under whic8,, is stable. | b= 10 ol

Problem 4: Determine a set of computationally tractable

analytical conditions under whic8,,, is stable. O

IV. PRIORART
An elegant result on the stability analysis®f is given

Lemma 2 (Solution to Problem 1onsider symmetric
matricesT’, U; and W; such thatU; and W; have non-
negative entries whileP;, = FZTTFi, for all i+ € I,
and P; = F[TFj, for all j € I, satisfy the following

by [4]. Briefly speaking, the development is as followsinequalities:

Denote

i Ai a
]

Let E; = fl] F, = [lﬂ where [el} = H Vi€ I,

such that
EZ|:T:|EO, VCCEXT;,Z.EI;
_ |z — |z .
F; 1 =F; e VeeX;NX;, 4,j€l(1)

H; TP, TATATRA? |

TF; —TR 0 <0 ©)
TA2TRALA; 0 TAYRAZ - Q]
P,—EI'W,E; >0, Q>0, R>0

E[_j ij_ TAT AL RAY;

TP; —TR 0 <0 %
:rﬁﬁiéﬁdj{ij 0 TA?ZJTR{E]. - Q]
P;—ETW,E; >0, Q>0, R>0
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forall i € Iy and allj € I; where ‘ ‘ _com

E-;A-+Adi, Aj = A; + Ay,
= ATP, + PA; +Q+7ATAY RA;A; + ETUE;,
= ATP; + PjA; + Q + TAT AL RAyA; + ETUSE;.

Then, every piecewise continuous trajectorySef tends to
zero exponentially. O
Proof: See the proof in the Appendix section. =
Remark 3:Lemma 1 may be derived as a special case
of our Theorem 1 by setting = 0, Ay = 0,Q = 0.
This is so because the Lyapunov function used by [4] can
be derived as a special of our Lyapunov function, given by G))
(A.1), by setting thela(-) and V5(-) terms to zero. [

Remark 4:A conservative delay-independent condition 2

is formulated as follows: i

I AGi P; -Q (8)

P,—EI'W,E; >0, Q>0 T

ATP + PjA;+Q+ ETU;E; PjAy “0

i ALP -Q )

P —ETW,;E; >0, Q>0
forall i € Iy andj € I. O R T

Remark 5:A further conservative condition, stated by (b)

the small gain theorem, is obtained by_sett@g: I U Fig. 1. State trajectories of the system in Example 1 withr(a) 0.020,
Remark 6: A lower bound on the maximum delay for  and (o)~ = 0.021.

which the systens, is stable can be obtained by checking
whether the conditions laid down by Theorem 1 are satisfied
as 7 increases, starting with — 0: the least valuer= e condition

for which the conditions laid down by Theorem 1 are not H, TP A A; TP AL
satisfied, is a conservative estimate of the maximum delay TAzT;%é;Pi -7Q 0 <0 (10
r under which the systerS, is stable. O TAG Pi 0 —-TR

Example 1:Consider the following piecewise linear whereH, — ATP +PA
time-delay systemi(t) = A;z(t) + Agx(t — 7) with the
cell decomposition expressed Bz > 0,

A;+7Q+7R+ETU,E;. Application

delay margin ist* = 0.0136, which is more conservative

-1 1 -1 1 than the conditions in Lemma 2. O
-1 _1} e [ 1 1] : Theorem 1 (Solution to Problem 2 onsider symmet-

) ) ric matricesT, U; and W, such thatU; and W, have
The system matrices are given by nonnegative entries whilg; = FT TF; satisfy the condition
01 0 01 0 (11) for all ¢ € Iy where
A1A3{ 0 —0.1]’ AQA‘*{ 0 —0.1}’ N L
0 5 0 1 Xo= Al ReAgie, Ai= A+ Z Adie,

Ag1 = Aaz = {_1 O} , Adge=Aa = [_5 O] :

E1:—E3:[

=1
L L
The system is reduced to Example 1 in [4] whee 0. It = ATP, + P A, + > Q@+ nAl XA + EfUE;.

can be verified from Eqg. (8) that the system is not stable =1 =1

regardless of delay. By applying Lemma 2, the estimatethe conditions forj € I; is formulated similarly. Then,
delay margin ist* = 0.0142. We can observe from sim- every piecewise continuous trajectory®f.; tends to zero
ulations that the system becomes unstable with time- del@y(ponem.any O
betweer).020 and0.021 with initial valuexy = [ 2 0] Proof. See the proof in the Appendix section. ®
See Figure 1. | Lemma 3 (Solution to Problem 3Consider symmetric
Remark 7:By applying the delay-dependent conditionmatricesT, U; and W; such thatU; and W; have non-
in [5] and [8], the same procedure as in Lemma 2 yieldsegative entries whileP, = FITF;, for all i € I,

of the condltlon to the above example shows the estimated
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_ . . ;
H; nk o TP > AT X Aan i > AT X AuiL
=1 =1
kb —11 Ry 0 0 L. 0
TLPi 0 —TLRL 0 T 0
L L L <0
ZTZAgilXZAi 0 e 0 Z TgA?;“XgAdil - Ql e Z TEA(Ti;lXZAdi,L
=1 =1 =1
; : : : : ; : -
S mAL XA 0 0 S mAL XeAan > TeALp XeAsin — QL
L =1 =1 =1 i
Pi—EiTWiEi>0, Q¢ >0, Ry > 0, {=1,---,L

11)

and P; = F]TF;, for all j € I, satisfy the following the development of efficient switching controllers. It so
inequalities: turns out that the vehicle dynamics can be represented by a

- finite number of modes, each of which is represented by a
Hi hF; hAT A RAG; low order transfer function and a constant time delay. The
hP; —hR 0 <0 problem of highway safety analysis then gets translated into

|hAZTRA4A; 0 hA3TRAZ +(d—1)Q that of the stability analysis of a time delay hybrid system.

Pi—E'W,E; >0, Q@>0, R>0 Effectively, the mode changes partition the state space into

- . W, WAT AT R A2 cells that share, at most, only each other’s boundaries, and

J J 3 it the hybrid system has a piecewise affine form in each of
hp; —hR 0 <0 the cells. A detailed case study is given in [6].
LhAG RAgA; 0 hAGFRAG+(d-1)Q VII. CONCLUSION
P; — ETW;E; >0, Q>0, R>0

We have derived classes of piecewise continuous Lya-

for all i € I and allj € I; where punov functions for classes of time-delay hybrid systems
A= A+ Ay, Aj = A;+ Ay, inspired by a highway safety application described in [6].
Our Theorem 1 and Theorem 2 extend the well known [4,

H; = AP, + PA; + Q+ hAT AT RA4 A + ETULE;,
Hj = AJTPJ + ijij + Q + hAZAZ;RAdeJ + EJTUJEJ
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r L
H; h1P; hiP; Z he AT XoAain
=1
hiP; —hi1 Ry 0 0
hrP; 0 —hr Ry, 0
L L
Z thZi;leAi 0 s 0 Z héAgilX[Adil + (d1 — I)Ql
=1 =1
L L
> h AL XeA 0 0 > AL XoAan
L e=1 =1
P,—EI'W,E; >0, Q¢>0, R;>0, (=1,---,L

L
> heAT XeAdir
=1
0
0
L
Z heAL XoAgir
=1
L
> i Afp XpAgir + (d — 1)Qy
=1 |
(13)
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APPENDIX. FORMAL PROOFS
A. Proof of Lemma 2
Consider the Lyapunov function

Vix,t,7) = Vi(z,t) + Vao(z, t,7) + V3(z,t,7) (A1)

where
Vi(z,t) = x(t)TPix(t),

V(. t,7) = / £(6)TQu(¢)de,

() /_ /+< )T AT RALW(€)de dC,
W(E) = A 2(€) + Ag (€ — 7).

The termVj is to account for the delay dependency. Let

o [Hi+TRRP - ETUE,  rATALRAS
TAZT RA 4 A, —Q+TAZTRAZ |

It can be easily verified that’(z,¢,7) is continuous inx

andt, piecewise continuously differentiable inand
allz(t)]| < V(z,t,7) < =), Vt=0

for somea > 0 and 3 > 0. Now, note that

0<x®)'EIUE; =(t), Vazt)eX;,, (A2)
—2a™bh < inf (aTXa + bTXflb),
X>0
_ t
t—1

complement, that

ov

= 20(t)T P, A;z(t) — 22(t)T P Ag; / t W(E) de

()T Qu(t) — x(t — 1) Qu(t — 7)
()T AT RA(E) — / W(6)T AL RAL Y (€)de

< 2(t)" (AT P, + PA; + Q + TP,R™'P,)x(t)
—x(t—T)TQ:E(t—T)-l-T\I/( ) A RAdz ( )

_ [ e 7T =
|zt —1) x(t—1T)
< 0.
Hence the proof. [ ]
B. Proof of Theorem 1
Proof: Choosing the Lyapunov function
V(I7ta7-> = Vl(‘r t) + V2(‘T7t77—) + %(I’,t,T) (A3)
with Vi(a,t) = z(t)" Pa(t),
L
Vet = Y / ()7 Qua(e)de,
=1 t—Tp
L
APRRSI o / / T AL, Ry A gy (€)d€ d
=1
¥(E) = Aix(€ (A.4)

)+ ZAdiZ z(§ = 7o),
{=1

the proof follows on the lines of the proof of Lemma &
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