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Abstract— For a linear parameter-varying (LPV) plant with
a large parameter variation region, it is often conservative to
design a single LPV controller over the entire parameter space.
This paper studies the control design of switched LPV systems
using multiple parameter-dependent Lyapunov functions to
improve performance and enhance design flexibility. Two au-
tonomous switching logics, hysteresis switching and switching
with average dwell time, are discussed. The control synthesis
conditions for both switching logics are formulated, which are
generally non-convex but can be convexified under certain
conditions. The proposed switched LPV control schemes are
applied to a magnetic bearing problem to demonstrate its
advantages over existing LPV control approach.

I. I NTRODUCTION

Linear parameter-varying (LPV) control theory is a sys-
tematic gain-scheduling design technique [14], [2], [1], [18],
[19], which has been widely used in the fields ranging from
aerospace to process control industries. Different from con-
ventional gain-scheduling techniques, LPV control theory
provides stability and performance guarantee over a wide
range of changing parameters. An LPV system is character-
ized as a group of local descriptions of nonlinear dynamics
that depend on time-varying parameters. The LPV synthesis
condition can be formulated as a linear matrix inequality
(LMI) optimization problem using a single Lyapunov func-
tion, either quadratic or parameter-dependent, in the entire
parameter space [4], [21]. However, for an LPV system
with a large parameter variation region, a single Lyapunov
function may not exist. If it does exist, it is possible to
sacrifice the performance in some parameter subregions in
order to obtain a uniform LPV controller representation over
the entire parameter region. One reasonable approach to
avoid those problems is to design several LPV controllers,
each suitable for a specific parameter subregion, and switch
among them to achieve the best possible performance. The
LPV systems then become a new class of systems, namely,
switched LPV systems.

Closely related to LPV systems, the switched systems
are described by an interaction between continuous time
systems and discrete switching events, which are usually
dependent on states or time [8]. Due to their wide ap-
plications in adaptive control, air-traffic management, and
reconfigurable control, the study of switched systems has
become an important research area in recent years. As
shown in [9], the dynamic behavior of switched systems is
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much more complicated than either continuous or discrete
dynamics. One useful tool for proving stability of switched
systems is based on multiple Lyapunov functions, which
are discontinuous [15], [16], [5], [7], [17]. However, most
of the past research are focused on switched systems with
each subsystem described by linear time invariant (LTI)
dynamics with the exception of [17], in which nonlinear
subsystems are considered. Moreover, the performance issue
of switched systems has not been adequately addressed.

The results of switched LTI systems has been ex-
tended to the analysis and control of switched LPV sys-
tems [10], which is later generalized in [11] by intro-
ducing average dwell time switching logic [6]. The sta-
bility of switched LPV systems is analyzed using mul-
tiple parameter-dependent Lyapunov functions, which are
allowed to be discontinuous at the switching surfaces.
Switched LPV control technique permits using different
controllers in different parameter subregions, and switching
among them according to the evolution of parameters. For
an LPV system, it is conceivable that parameter-dependent
switching is more practical than state-dependent or time-
dependent switching. Switched LPV control is also benefi-
cial to improve controlled performance and enhance design
flexibility.

The paper is organized as follows: Section II provides
a brief introduction of switched LPV systems. In Section
III, we study switched LPV control design problems under
hysteresis switching and switching with average dwell time
logics. The switching control synthesis conditions will
be formulated as matrix optimization problems. Section
IV uses a magnetic bearing example to demonstrate the
advantages of the newly proposed switching LPV control
techniques. Finally, the paper concludes in Section V. All
the proofs have been omitted to save space.

The notation is standard.R stands for the set of real
numbers andR+ for the non-negative real numbers.Rm×n

is the set of realm × n matrices. The transpose of a real
matrix M is denoted byMT . The orthogonal complement
of matrix M is denoted by Ker(M ). We useSn×n to
denote the real symmetricn × n matrices andSn×n

+ to
denote positive definite matrices. IfM ∈ Sn×n, thenM >
0 (M ≥ 0) indicates thatM is positive definite (positive
semidefinite) andM < 0 (M ≤ 0) denotes a negative
definite (negative semidefinite) matrix. Forx ∈ Rn, its
norm is defined as‖x‖ := (xT x)

1
2 . The space of square

integrable functions is denoted byL2, that is, for any

u ∈ L2, ‖u‖2 :=
[∫∞

0
uT (t)u(t)dt

] 1
2 is finite.



II. SWITCHED L INEAR PARAMETER-VARYING SYSTEMS

Consider an open-loop LPV system governed by the
equation
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x
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u


 (1)

wherex, ẋ ∈ Rn, e ∈ Rne , d ∈ Rnd , u ∈ Rnu and y ∈
Rny . All of the state-space data are continuous functions of
the parameterρ. It is assumed thatρ evolves in a compact
setP ⊂ Rs with its parameter variation rate bounded by
νk ≤ ρ̇k ≤ νk for k = 1, 2, · · · , s. In the interests of
notational compactness, the parameter dependence will not
always be shown in the sequel.

To simplify the presentation, we also assume that

(A1) (A,B2, C2) triple is parameter-dependent stabiliz-
able and detectable for allρ ∈ P,

(A2) The matrix functions
[
BT

2 DT
12

]
and

[
C2 D21

]
have full row ranks for allρ ∈ P,

(A3) D22 = 0.

Given the open-loop LPV system (1), an LPV controller
working for the entire parameter region can be computed
using well-known LPV control theory [4], [21], which is
based on single Lyapunov function (quadratic or parameter-
dependent). However, the control design requirements are
often different and even conflicting for different parameter
regions. This could complicate the LPV control design
problem.

Suppose that the parameter setP is covered by a finite
number of closed subsets{Pi}i∈ZN

, where the index set
ZN = {1, 2, . . . , N}, andP =

⋃Pi. The adjacent parame-
ter subsets are separated by a family of switching surfaces,
and they have either overlapped or disjointed interiors.

In this paper, we are interested in the problem of design-
ing a family of LPV controllers in the form of

[
ẋk

u

]
=

[
Ak,i(ρ, ρ̇) Bk,i(ρ)
Ck,i(ρ) Dk,i(ρ)

] [
xk

y

]
, i ∈ ZN (2)

each suitable for a specific parameter subsetPi. The di-
mension of controller state isxk ∈ Rnk . Each controller
stabilizes the open-loop system with best achievable perfor-
mance in a specific parameter region, and meanwhile build a
switching logic to keep the closed-loop system stable when
switching among the controllers.

The switching occurs when the parameter trajectory hits
one of the switching surfaces. A switching signal is defined
as a piecewise constant functionσ. It is assumed thatσ is
continuous from the right everywhere. The switching signal
for the case of two parameter subsets, i.e.,ZN = {1, 2}, is
depicted in Fig. 1.

Under switched LPV control, the closed-loop LPV sys-
tem can be described by

[
ẋcl

e

]
=

[
Acl,σ(ρ, ρ̇) Bcl,σ(ρ)
Ccl,σ(ρ) Dcl,σ(ρ)

] [
xcl

d

]
(3)
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Fig. 1. A switching signal in the case of two parameter subsets

wherexcl ∈ Rn+nk , and

[
Acl,σ Bcl,σ

Ccl,σ Dcl,σ

]
=




A 0 B1

0 0 0
C1 0 D11




+




0 B2

I 0
0 D12




[
Ak,σ Bk,σ

Ck,σ Dk,σ

] [
0 I 0
C2 0 D21

]
(4)

Note that the resulting closed-loop system is a switched
LPV system, which could have discontinuity and multiple
values at switching surfaces due to the use of multiple LPV
controllers.

III. SWITCHING CONTROL VIA MULTIPLE

PARAMETER-DEPENDENTLYAPUNOV FUNCTIONS

A discontinuous Lyapunov function consisting of multi-
ple parameter-dependent Lyapunov functions is useful for
stability analysis and control design of switched LPV sys-
tems. If there exist a family of positive-definite matrix func-
tions {Xi(ρ)}i∈ZN

, and each of them is smooth over the
corresponding parameter subsetPi. The multiple parameter-
dependent Lyapunov functions can then be defined as

Vσ(x, ρ) = xT Xσ(ρ)x (5)

where the value of switching signalσ represents the active
operating regionPi and thus determines the corresponding
matrix functionXi(ρ).

Generally speaking, for a switched LPV system to be
stable, the value of the discontinuous Lyapunov function
Vσ is not necessarily to decrease over the entire parameter
trajectory. In fact, it is often enough to require that the
value of Vσ decreases in the active parameter regionPi

provided proper switching logic is adopted. This will lead
to relaxed stability condition and provides enhanced design
flexibility. In this section, we consider the synthesis condi-
tions of switched LPV systems with two different switching
logics, both of which rely on multiple parameter-dependent
Lyapunov functions.

A. Hysteresis Switching

For the hysteresis switching logic, it is assumed that any
two adjacent parameter subsets are overlapped, as shown
in Fig. 2. Thus there are two switching surfaces between
two adjacent parameter subsets. We useSij to denote the
switching surface specifying the one-directional move from
subsetPi to Pj .
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Fig. 2. Hysteresis switching regions

The switching event occurs when the parameter trajectory
hits one of the switching surfacesSij or Sji. The evolution
of the switching signalσ is described as follows: Let
σ(0) = i if ρ(0) ∈ Pi. For eacht > 0, if σ(t−) = i
and ρ(t) ∈ Pi, keep σ(t) = i. On the other hand, if
σ(t−) = i but ρ(t) ∈ Pj , i.e., hitting the switching surface
Sij , let σ(t) = j. Repeating this procedure, we generate a
piecewise constant signalσ which is continuous from the
right everywhere. Sinceσ changes its value only after the
continuous trajectory has passed through the intersection of
adjacent subsetsPi andPj , chattering is avoided. Also due
to bounded parameter variation rates, only finite number of
switches will happen in any finite time interval.

Now we consider the switched closed-loop system (3).
Assume the matrix functionXi(ρ) is related to the Lya-
punov function of the closed-loop system when theith
controller is active. If on the switching surfaceSij , we have

Xi(ρ) ≥ Xj(ρ) (6)

i.e. the Lyapunov function of the closed-loop system (3)
is non-increasing when switching fromPi to Pj . Then the
jth controller is activated. We will partition the Lyapunov
function matrices of the closed-loop system (3) according
to the plant and controller state dimensions as

Xi(ρ) =
[

Si(ρ) Ni(ρ)
NT

i (ρ) ?

]

X−1
i (ρ) =

[
Ri(ρ) Mi(ρ)
MT

i (ρ) ?

]

where Mi(ρ)NT
i (ρ) = I − Ri(ρ)Si(ρ), and “?” means

the elements we don’t care. By choosingMi(ρ) = Ri(ρ)
and Ni(ρ) = R−1

i (ρ) − Si(ρ), the synthesis condition of
switched LPV control based on hysteresis switching logic
can be stated in the following theorem.

Theorem 1:Given an open-loop LPV system (1), the
parameter setP and its overlapped covering{Pi}i∈ZN

, if
there exist positive-definite matrix functionsRi(ρ), Si(ρ) :
Rs → Sn×n

+ , i ∈ ZN , such that for anyρ ∈ Pi,

N T
R








RiA
T + ARi

−
s∑

k=1

{νk, ν̄k} ∂Ri

∂ρk





RiC
T
1 B1

C1Ri −γiI D11

BT
1 DT

11 −γiI



NR < 0

(7)

N T
S








AT Si + SiA

+
s∑

k=1

{νk, ν̄k} ∂Si

∂ρk





SiB1 CT
1

BT
1 Si −γiI DT

11

C1 D11 −γiI



NS < 0

(8)[
Ri I
I Si

]
≥ 0 (9)

where

NR = Ker
[
BT

2 DT
12 0

]
, NS = Ker

[
C2 D21 0

]
,

and for anyρ ∈ Sij

Ri ≤ Rj (10)

Si −R−1
i ≥ Sj −R−1

j (11)

then the closed-loop LPV system (3) is exponentially sta-
bilized by switched LPV controllers in the entire parameter
setP, and its inducedL2 performance fromd to e is less
thanγ = max {γi}i∈ZN

given initial conditionx(0) = 0.
Remark 1:The notation

∑s
k=1 {νk, ν̄k} ∂

∂ρk
in (7)-(8)

represents the combination of derivative terms in the form
of νk

∂
∂θk

when νk is taken as eitherνk or ν̄k. Therefore
each inequality means2s different LMIs which must be
checked.

Note that the termR−1
i appears in the condition (11),

so the synthesis condition for switching LPV controllers
is generally non-convex. After solving matrix functions
Ri(ρ) and Si(ρ), the gains of switching LPV controllers
can be constructed using the formula in [3]. However, to
comply with hysteresis switching logic, we need to choose
a particular realization of LPV controllers withMi(ρ) =
Ri(ρ) andNi(ρ) = R−1

i (ρ)− Si(ρ).
The non-convex switching LPV synthesis condition is

usually difficult to solve. However, if we enforce the matrix
variablesRi(ρ) to be continuous on the switching surfaces,
then for anyρ ∈ Sij

Ri(ρ) = Rj(ρ) (12)

Si(ρ) ≥ Sj(ρ) (13)

This implies that the dynamic controller on each switching
surface has a different state-estimate gain, but has the same
state-feedback gain. The equality constraint (12) can be
rewritten as an LMI condition through a relaxation process

−εI < Ri(ρ)−Rj(ρ) < εI (14)

whereε is a small positive number.
Alternative approach to avoid the non-convex condition

on the switching surfaces is to use multiple state-feedback
LPV control lawsui = Fi(ρ)x if all the states are available
for feedback control use. Then the closed-loop LPV system
is given by

[
ẋcl

e

]
=

[
A(ρ) + B2(ρ)Fσ(ρ) B1(ρ)

C1(ρ) + D12(ρ)Fσ(ρ) D11(ρ)

] [
xcl

d

]
(15)



The following corollary shows that the switching state-
feedback LPV control problem is solvable by convex opti-
mization.

Corollary 1: The closed-loop LPV system (15) is expo-
nentially stabilized by state-feedback switching LPV con-
trollers in the entire parameter setP and‖e‖2 ≤ γ‖d‖2 with
γ = max {γi}i∈ZN

, if there exist positive-definite matrix
functionsRi(ρ) such that for anyρ ∈ Pi,

N T
R








RiA
T + ARi

−
s∑

k=1

{νk, ν̄k} ∂Ri

∂ρk





RiC
T
1 B1

C1Ri −γiI D11

BT
1 DT

11 −γiI



NR < 0

(16)

whereNR = Ker
[
BT

2 DT
12 0

]
, and for anyρ ∈ Sij

Ri ≤ Rj (17)

Furthermore, the switching state-feedback LPV gains are
given by

Fi = − (
DT

12D12

)−1 [
γiB

T
2 R−1

i + DT
12C1

]

for any i ∈ ZN .

B. Switching with Average Dwell Time

If the overlapped region between two adjacent parameter
subsets shrinks, it eventually becomes a single switching
surface, as shown in Fig. 3. Different from hysteresis
switching, hereSij and Sji represent the same switching
surface between subsetsPi and Pj no matter which di-
rection the parameter trajectory moving from. It is obvious
that there must be a continuous Lyapunov function if the
condition (6) on the switching surface is to be satisfied. To
relax continuity requirement of Lyapunov functions across
the switching surfaces, we will consider another switching
logic with average dwell time [6], [11]. However, only
restricted number of switchings is allowed between a finite
time interval.

Sij
Pi

Pj

Fig. 3. Switching regions with dwell time

Denote Nσ(T, t) as the number of switchings among
subsetsPi on an interval(t, T ). The switching signalσ has
average dwell timeτa if there exist two positive numbers
N0 andτa such that

Nσ(T, t) ≤ N0 +
T − t

τa
∀T ≥ t ≥ 0 (18)

where N0 is called the chatter bound. This idea relaxes
the concept of dwell time, allowing the possibility of
switching fast when necessary and then compensating for
it by switching sufficiently slow later on. If we choose the
particular structure ofXi(ρ) similar to that in Section III-
A, then the next theorem gives the synthesis condition of
switching LPV control with average dwell time.

Theorem 2:Given scalarsλ0 > 0, µ > 1, an open-
loop LPV system (1), the parameter setP and its partition
{Pi}i∈ZN

, if there exist positive-definite matrix functions
Ri(ρ), Si(ρ) : Rs → Sn×n

+ , such that for anyρ ∈ Pi,

N T
R




RiA
T + ARi −

s∑

k=1

{νk, ν̄k} ∂Ri

∂ρk
+ λ0Ri

C1Ri

BT
1

RiC
T
1 B1

−γiI D11

DT
11 −γiI


NR < 0 (19)

N T
S




AT Si + SiA +
s∑

k=1

{νk, ν̄k} ∂Si

∂ρk
+ λ0Si

BT
1 Si

C1

SiB1 CT
1

−γiI DT
11

D11 −γiI


NS < 0 (20)

[
Ri I
I Si

]
≥ 0 (21)

where

NR = Ker
[
BT

2 DT
12 0

]
, NS = Ker

[
C2 D21 0

]
,

and for anyρ ∈ Sij

1
µ

Rj ≤ Ri ≤ µRj (22)

1
µ

(
Sj −R−1

j

) ≤ Si −R−1
i ≤ µ

(
Sj −R−1

j

)
(23)

then the closed-loop LPV system (3) is asymptotically sta-
bilized by switching LPV controllers in the entire parameter
setP for every switching signalσ with average dwell time

τa >
ln µ

λ0
(24)

and its inducedL2 performance fromd to e is less than
γ = max {γi}i∈ZN

given initial conditionx(0) = 0.
Using average dwell time switching logic, the Lyapunov

function is not required to monotonically decrease over
switching surfaces. In fact, it allows the change of Lyapunov
function byµ(> 1) times of its value before switching. As a
consequence, the average switching frequency over a finite
time interval is limited to 1

τa
to compensate for possible

increase of Lyapunov functions. The hybrid LPV control
with average dwell time switching logic is also studied
in [12]. In comparison, our synthesis condition not only



guarantees the stability of the closed-loop system, but also
provides an upper bound of the inducedL2 performance
over the entire parameter space. However, our synthesis
condition for switching control with average dwell time is
non-convex. Since there are coefficientsµ and 1

µ involved
in (22), the synthesis conditions with average dwell time
switching logic cannot be convexified by simply setting
Ri = Rj on the switching surfaces. But the non-convex
condition can be avoided by switching state feedback con-
trol law.

Note that the switching LPV synthesis condition for this
switching logic is different from hysteresis switching LPV
control results. The(1, 1) term in (19 – 20) implies that the
open-loop plant can be thought as a shifted system with its
A matrix changing toA+ λ0

2 I. It is the same for controller
Ak matrix. Therefore, if the matrix functionsRi(ρ) and
Si(ρ) can be solved, then the gains of the switching LPV
controllers will be constructed by replacingA and Ak in
the standard LPV controller formula [3] byA + λ0

2 I and
Ak + λ0

2 I.

IV. EXAMPLE

In this section, we apply the proposed switching LPV
control synthesis technique to an active magnetic bearing
(AMB) system and demonstrate its advantages over con-
ventional LPV control designs.

Owing to the linear dependence of the rotor speed in the
plant dynamics, the nonlinear gyroscopic equations of AMB
can be simplified to a set of linear time-varying differential
equations as [13], [20]

`θ̈ = −ρJa

Jr
`ψ̇ +

1
m

(−4c2`θ + 2c1φθ + fdθ) (25)

`ψ̈ =
ρJa

Jr
`θ̇ +

1
m

(−4c2`ψ + 2c1φψ + fdψ) (26)

Nφ̇θ = eθ + 2d2`θ − d1φθ (27)

Nφ̇ψ = eψ + 2d2`ψ − d1φψ (28)

whereρ denotes the rotor speed.θ, ψ are the Euler angles
denoting the orientation of rotor centerline.Ja, Jr are the
moment of inertia of the rotor in axial and radial direc-
tions, respectively.φθ, φψ are the differential magnetic flux
from electromagnetic pairs,eθ, eψ are the corresponding
differences of electric voltage.fdθ, fdψ are disturbance
forces caused by gravity, modeling errors, imbalances, etc.
The constantsc1, c2, d1, d2 and m depend on the AMB’s
geometry and parameters, which are given in [20].

Let xT =
[
`θ `ψ `θ̇ `ψ̇ φθ φψ

]
, dT =[

fdθ fdψ

]
, and uT =

[
eθ eψ

]
, then the linearized

equations (25)–(28) can be written as an LPV systemPρ

ẋ = A(ρ)x + B1d + B2u

e = C1x + D11d + D12u

y = C2x + D21d + D22u

where the state-space data are

A(ρ) =




0 0 1 0 0 0
0 0 0 1 0 0

− 4c2
m 0 0 −ρJa

Jr

2c1
m 0

0 − 4c2
m

ρJa

Jr
0 0 2c1

m
2d2
N 0 0 0 −d1

N 0
0 2d2

N 0 0 0 −d1
N




B1 =
1
m




02×2

I2

02×2


 , B2 =

1
N

[
04×2

I2

]

C1 =
[

I2 02×4

02×6

]
, D11 = 04×2, D12 =

[
02×2

I2

]

C2 =
[
I2 02×4

]
, D21 = 02×2, D22 = 02×2

The design objective of switching LPV control is to
stabilize the system over large range of rotor speeds and
to minimize the disturbance effect. The weighted open-
loop interconnection is given in Fig. 4, where the weighting
functions are chosen as

Wz(s) =
200(s + 100)

s + 0.01
I2, Wu(s) =

0.001s

0.05s + 1
I2

P� Wz

Wu

d

eu

ez

yu

Fig. 4. Weighted open-loop interconnection for the AMB system

The rotor speed is assumed to vary between 315 rad/s
to 1100 rad/s, and its variation rate is less than 100 rad/s2.
The rotor dynamics exhibits strong gyroscopic effects in
this speed range. Due to large variations of rotor speed,
it is conservative to use a single LPV controller over the
whole parameter region. For hysteresis switching logic, the
parameter space is divided into two overlapped subsets,
[315 720] and [700 1100].

As mentioned before, the synthesis condition (7)–(11) for
hysteresis switching control is nonconvex. To avoid solving
non-convex problem, we assume all states are available for
feedback control use, and the resulting synthesis condition
(16)–(17) becomes convex and globally solvable. The mul-
tiple parameter-dependent Lyapunov functions are specified
as affine functions of scheduling parameters. That is, we
assume for each parameter subset

Ri(ρ) = R0
i + R1

i ρ

where matricesRk
i with k = 0, 1 are new optimization

variables to be determined. The performance levelγi in each
parameter subsets are3.2868 × 10−3 and 3.2730 × 10−3,



respectively. Then theγ value over the entire parameter set
is max {γ1, γ2}, which represents the “worst-case” LPV
control performance. As a comparison, the performance
level achieved using single parameter-dependent Lyapunov
function is3.3098× 10−3, which is slightly worse than the
switching control.

We then conduct simulation for AMB using switching
LPV control. A time-varying rotor speed profile is chosen
as shown in Fig. 5. Note that the rotor speed trajectory
is deliberately chosen to cross the intersection of two
parameter subsets[315 720] and [700 1100] back and
forth to illustrate the effect of LPV control switching.
Disturbancesfdθ andfdψ are chosen as unit step inputs with
opposite signs. As shown in Fig. 5, the switching occurs
at 1.9 s and 5.5 s, respectively. The simulation result is
presented in Fig. 6, where the subplots are zoomed view
of responses around the switching time. Although there are
small glitches during controller switching, the performance
for entire time history is nevertheless acceptable.
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V. CONCLUSION

In this paper, control design of switched LPV systems
using multiple parameter-dependent Lyapunov functions is
proposed. A family of LPV controllers are designed, each
suitable for a specific parameter region. The possible tran-
sient instability caused by switching among controllers is

avoided by choosing suitable switching logics. The synthe-
sis conditions for two switching rules, hysteresis switching
and switching with average dwell time, are derived. They
are generally non-convex and can be convexified for two
special cases, 1) output-feedback control with same control
gain and different estimate gain at the switching surface, 2)
state-feedback control problem. The state-feedback control
with hysteresis switching logic is then applied to a magnetic
bearing control problem, and promising simulation results
are obtained.
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