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Control Design of Switched LPV Systems Using
Multiple Parameter-Dependent Lyapunov Functions

Bei Lu and Fen Wu

Abstract—For a linear parameter-varying (LPV) plant with much more complicated than either continuous or discrete
a large parameter variation region, it is often conservative to  dynamics. One useful tool for proving stability of switched
design a single LPV controller over the entire parameter space. systems is based on multiple Lyapunov functions, which
This paper studies the control design of switched LPV systems . . '
using multiple parameter-dependent Lyapunov functions to are discontinuous [15], [16], [], [7], [17]' However, mOSt_
improve performance and enhance design flexibility. Two au- Of the past research are focused on switched systems with
tonomous switching logics, hysteresis switching and switching each subsystem described by linear time invariant (LTI)
with average dwell time, are discussed. The control synthesis dynamics with the exception of [17], in which nonlinear
conditions for both switching logics are formulated, which are subsystems are considered. Moreover, the performance issue

generally non-convex but can be convexified under certain f switched t h th d telv add d
conditions. The proposed switched LPV control schemes are Of switched systems has not been adequately addressed.

applied to a magnetic bearing problem to demonstrate its The results of switched LTI systems has been ex-
advantages over existing LPV control approach. tended to the analysis and control of switched LPV sys-
tems [10], which is later generalized in [11] by intro-
ducing average dwell time switching logic [6]. The sta-
Linear parameter-varying (LPV) control theory is a syspjlity of switched LPV systems is analyzed using mul-
tematic gain-scheduling design technique [14], [2], [1], [18]tiple parameter-dependent Lyapunov functions, which are
[19], which has been widely used in the fields ranging fromyjiowed to be discontinuous at the switching surfaces.
aerospace to process control industries. Different from coryitched LPV control technique permits using different
ventional gain-scheduling techniques, LPV control theorgontrollers in different parameter subregions, and switching
provides stability and performance guarantee over a widgmong them according to the evolution of parameters. For
range of changing parameters. An LPV system is characte{n | PV system, it is conceivable that parameter-dependent
ized as a group of local descriptions of nonlinear dynamicgyitching is more practical than state-dependent or time-
that depend on time-varying parameters. The LPV synthesigpendent switching. Switched LPV control is also benefi-
condition can be formulated as a linear matrix inequalityja| to improve controlled performance and enhance design
(LMI) optimization problem using a single Lyapunov funC-ﬂeXibi“ty_
tion, either quadratic or parameter-dependent, in the entire

parameter space [4], [21]. However, for an LPV system The paper IS 'orgamzeq as follows: Section I provu':ies
i L . . a brief introduction of switched LPV systems. In Section
with a large parameter variation region, a single Lyapuno

function may not exist. If it does exist, it is possible toMI’ we study switched LPV control design problems under

. . . "hysteresis switching and switching with average dwell time
sacrifice the performance in some parameter subregions,in . Lo . - .
. . . logics. The switching control synthesis conditions will
order to obtain a uniform LPV controller representation ove, . L T .
e formulated as matrix optimization problems. Section

the entire parameter region. One reasonable approach } . .
. . . V" uses a magnetic bearing example to demonstrate the
avoid those problems is to design several LPV controllers, L
. - . _ddvantages of the newly proposed switching LPV control

each suitable for a specific parameter subregion, and SWItF

among them to achieve the best possible performance. T, eechnlques. Finally, the paper concludes in Section V. Al
LPV systems then become a new class of systems, name

I. INTRODUCTION

R/e proofs have been omitted to save space.

switched LPV systems. The notation is standardR stands for the set of real

Closely related to LPV systems, the switched systenfdumbers and®. for the non-negative real numbei.™*"
are described by an interaction between continuous tinte the set of reakn x n matrices. The transpose of a real
systems and discrete switching events, which are usualjatrix M is denoted by ™. The orthogonal complement
dependent on states or time [8]. Due to their wide ap?f matrix M is denoted by Kem{/). We useS"*" to
plications in adaptive control, air-traffic management, angenote the real symmetria x n matrices andS*" to
reconfigurable control, the study of switched systems h&ienote positive definite matrices. M € S"*", then M >
become an important research area in recent years. AdM > 0) indicates that}/ is positive definite (positive

shown in [9], the dynamic behavior of switched systems i§émidefinite) and\/ < 0 (M < 0) denotes a negative
definite (negative semidefinite) matrix. Far € R", its

B. Lu and F. Wu are with Dept. of Mechanical and Aerospace Ennorm is defined agjz| := (a:Ta;)%. The space of square

gineering, North Carolina State University, Raleigh, NC 27695 Email; ; i ;
blu@unity.ncsu.edu, fwu@eos.ncsu.edu integrable functlonoso is denoted lb§22,_t_hat is, for any
F. Wu, Corresponding author. w € Lo, |lullz == [[57 u? (t)u(t)dt] * is finite.
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Il. SWITCHED LINEAR PARAMETER-VARYING SYSTEMS 1o

Consider an open-loop LPV system governed by the 2 — —
equation
1 —-—-0
& Alp)  Bilp) Bap) | |=
el = |Ci(p) Du(p) Di2lp)| |d (1) : : : : >
Y C2(p) Dai(p) Daap)] |u peb, peb, Peb Pebh
wherez,z € R", e € R", d € R", u € R"™ andy ¢ Fig. 1. A switching signal in the case of two parameter subsets

R™v. All of the state-space data are continuous functions of
the parametep. It is assumed that evolves in a compact
setP c R® with its parameter variation rate bounded bywherez; € R"*", and

v, < pr <7 fork =1,2---,s. In the interests of A 0] B
notational compactness, the parameter dependence will no{Aclaa B(«’lva} -1 0o ol o
always be shown in the sequel. cl,o cl,o [
To simplify the presentation, we also assume that 0 B,
(A1) (A, By, (y) triple is parameter-dependent stabiliz- +1 71 o0 {A’w Bkvo} { 0 110 } (4)
able and detectable for gll € P, 0 Do Cro Diol | C2 0| D

(A2) The matrix functiondB;  DT,] and[Cy Do

have full row ranks for alp € P, Note that the resulting closed-loop system is a switched

LPV system, which could have discontinuity and multiple

A3) Doy =0. L :
( . ) 22 values at switching surfaces due to the use of multiple LPV
Given the open-loop LPV system (1), an LPV controller.qrollers.

working for the entire parameter region can be computed

using well-known LPV control theory [4], [21], which is [1l. SWITCHING CONTROL VIA MULTIPLE

based on single Lyapunov function (quadratic or parameter- PARAMETER-DEPENDENTLYAPUNOV FUNCTIONS

dependent). However, the control design requirements areA discontinuous Lyapunov function consisting of multi-

often different and even conflicting for different parameteple parameter-dependent Lyapunov functions is useful for

regions. This could complicate the LPV control desigrstability analysis and control design of switched LPV sys-

problem. tems. If there exist a family of positive-definite matrix func-
Suppose that the parameter $&is covered by a finite tions {X;(p)},.,,, and each of them is smooth over the

number of closed subse{s?;},., , where the index set corresponding parameter sub%et The multiple parameter-

Zy ={1,2,...,N}, andP = |JP;. The adjacent parame- dependent Lyapunov functions can then be defined as

ter subsets are separated by a family of switching surfaces, T

and they have either overlapped or disjointed interiors. Vo(,p) = 2" Xo(p)z ®)
In this paper, we are interested in the problem of designwhere the value of switching signal represents the active

ing a family of LPV controllers in the form of operating regior?; and thus determines the corresponding
5 Aripp) Beilp)] [ matrix function X;(p).
[;} - { C’ff ?/’))p D’“(g)} {ﬂ ., i€Zy (2) Generally speaking, for a switched LPV system to be
ki ki :

stable, the value of the discontinuous Lyapunov function
each suitable for a specific parameter sutBetThe di- Vo is not necessarily to decrease over the entire parameter
mension of controller state is;, € R"™*. Each controller trajectory. In fact, it is often enough to require that the
stabilizes the open-loop system with best achievable perforalue of V,, decreases in the active parameter regiyn
mance in a specific parameter region, and meanwhile buildxovided proper switching logic is adopted. This will lead
switching logic to keep the closed-loop system stable whel@ relaxed stability condition and provides enhanced design
switching among the controllers. flexibility. In this section, we consider the synthesis condi-
The switching occurs when the parameter trajectory hitéons of switched LPV systems with two different switching
one of the switching surfaces. A switching signal is definetpgics, both of which rely on multiple parameter-dependent
as a piecewise constant function It is assumed that is  Lyapunov functions.
continuous from the right everywhere. The switching signak Hysteresis Switching

for the case of two parameter subsets, By, = {1,2}, is . o L
depicted in Fig. 1 P = {12} For the hysteresis switching logic, it is assumed that any
Under switched LPV control, the closed-loop LPV sys-.tWo _adjacent parameter subsets are overlapped, as shown
: in Fig. 2. Thus there are two switching surfaces between
tem can be described by .
two adjacent parameter subsets. We Sgeto denote the
[:ﬁcl] _ {Aclﬁ(p, ) Bcl,g(p)] [xd] 3) switching surface specifying the one-directional move from

e Caos(p) Daoslp)| | d subsetP; to P;.
3876



ATSZ' + S;A

- 51 950 SiB1  Cf
N +;{Zk’”’“}apk Ns <0

\ S
TQ. A T
N B S; vl Dy
~ Gy Dyy —vl
(8)
Fig. 2. Hysteresis switching regions R, 1 >
e
where

The switching event occurs when the parameter trajectory
hits one of the switching surface; or S;;. The evolution Az =Ker[Bf D{, 0], Ns=Ker[C, Dy 0],
of the switching signalo is described as follows: Let
o(0) = i if p(0) € P;. For eacht > 0, if o(t~) = ¢ @ndforanypeS;
and p(t) € P;, keepo(t) = 4. On the other hand, if R < R, (10)
o(t™) =1 but p(t) € P;, i.e., hitting the switching surface 1 ! 4
S,j, let o(t) = j. Repeating this procedure, we generate a Si— R 28— Ry 1)
piecewise constant signal which is continuous from the then the closed-loop LPV system (3) is exponentially sta-
right everywhere. Since changes its value only after the pjjized by switched LPV controllers in the entire parameter

continuous trajectory has passed through the intersection @t p and its inducedC, performance fromi to e is less
adjacent subset®; andP;, chattering is avoided. Also due than~y = max {7i};e, given initial conditionz(0) = 0.

to bounded parameter variation rates, only finite number of Ramark 1: The notation >3 _, {vy,, 7} 52 in (7)-(8)
: =1 1= Pk

switches will happen in any finite time interval. represents the combination of derivative terms in the form

Now we con5|d'er the ;Wltched'closed-loop system (3hf ,, % when v, is taken as either, or 7. Therefore
Assume the matrix functionY;(p) is related to the Lya- each ‘inequality meang® different LMIs which must be
punov function of the closed-loop system when tte necked.

controller is active. If on the switching surfacg;, we have Note that the termR; ! appears in the condition (11),
Xi(p) = X;(p) ©6) so the synthesis condition for switching LP\/ contrqllers
is generally non-convex. After solving matrix functions
i.e. the Lyapunov function of the closed-loop system (3)%(p) and Si(p), the gains of switching LPV controllers
is non-increasing when switching frof; to ;. Then the can be constructed using the formula in [3]. However, to
jth controller is activated. We will partition the Lyapunovcomply with hysteresis switching logic, we need to choose
function matrices of the closed-loop system (3) according particular realization of LPV controllers with/;(p) =

to the plant and controller state dimensions as Ri(p) and N;(p) = R; " (p) — Si(p)-
The non-convex switching LPV synthesis condition is
Xi(p) = { S;(P) Ni(ﬂ)} usually difficult to solve. However, if we enforce the matrix
Ni(p) 7 variablesR; (p) to be continuous on the switching surfaces,
X1(p) = [5?8) Mi?(p):| then for anyp € S;;
’ Ri(p) = R;(p) 12)
where M;(p) N} (p) = I — Ri(p)Si(p), and “?" means Si(p) = S;(p) (13)

the elements we don't care. By choosing (p) = Ri(p)
and N;(p) = R;(p) — Si(p), the synthesis condition of This implies that the dynamic controller on each switching

?

switched LPV control based on hysteresis switching logigurface has a different state-estimate gain, but has the same
can be stated in the following theorem. state-feedback gain. The equality constraint (12) can be

parameter seP and its overlapped coveringP;},_, , if —el < R(0) — Rilp) < €I 14
there exist positive-definite matrix functiod (p), S; (p) - ‘ i) = Bylp) <e (14)
R* — S87*" i € Zy, such that for any € P;, wheree is a small positive number.

Alternative approach to avoid the non-convex condition

]jiAT +AR; on the switching surfaces is to use multiple state-feedback
_Z (v, 74} OR; RCT B LPV control lawsu; = F;(p)z if all the states are available
Ni 1 e Oprk Nr <0 for feedback control use. Then the closed-loop LPV system
ClRi _’YZI Dll is given by
B Dh =l o] < [ Bt B[]
@ e |7 i) + Do) Falp) Dulp)] | d
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The following corollary shows that the switching state-where N, is called the chatter bound. This idea relaxes
feedback LPV control problem is solvable by convex optithe concept of dwell time, allowing the possibility of
mization. switching fast when necessary and then compensating for

Corollary 1: The closed-loop LPV system (15) is expo-it by switching sufficiently slow later on. If we choose the
nentially stabilized by state-feedback switching LPV conparticular structure ofX;(p) similar to that in Section Ill-
trollers in the entire parameter setand||e||l2 < v||d|l2 with A, then the next theorem gives the synthesis condition of
v = max {7i},c,. if there exist positive-definite matrix switching LPV control with average dwell time.
functions R;(p) such that for any € P;, Theorem 2:Given scalarsho > 0,u > 1, an open-
loop LPV system (1), the parameter getand its partition

T
IS%Z-A + ARaiR . {Pi}icz, if there exist positive-definite matrix functions
— i i B . . . RS nxn )
AT ! = R,C] 1 Ny <0 Ri(p), Si(p) : R* — S, such that for any € P;,
k=1 s
CLR; —ul  Dn R AT + AR; — Z {vg, vk} ng + Ao R;
BT DY, -~ NE =1 Pk
(16) CiR;
hereNr = Ker[Bf DY, 0], and f S 5
where = Ker , and Tor anyp € o;,;
R 2 12 yp j RCT B
R, < Rj (17) —’}/iI Dy NR <0 (19)
Dﬂ =il

Furthermore, the switching state-feedback LPV gains are s oS,
given by ATS; +SiA+Z{gk,ﬁk} — + XoS;
k=1 Opr

—1 _ =
Gy
for anyi € Zy.
yrean s;B, CT

B. Switching with Average Dwell Time —wl Diy | Ns<0 (20)

If the overlapped region between two adjacent parameter D =l
subsets shrinks, it eventually becomes a single switching | i I} >0 1)
surface, as shown in Fig. 3. Different from hysteresis I S| =

switching, hereS;; and S;; represent the same switchingyhere

surface between subse® and P; no matter which di-

rection the parameter trajectory moving from. It is obvious Nz = Ker[B3  Df, 0], Ns =Ker[Cy Dy 0],
that there must be a continuous Lyapunov function if th%

" o . o nd for an Sii
condition (6) on the switching surface is to be satisfied. To VP < o

relax continuity requirement of Lyapunov functions across lR- < R; < uR; (22)
the switching surfaces, we will consider another switching po o=
logic with average dwell time [6], [11]. However, only 1 1 -1 1

: o ! . —(S;—R;")<S;— R, <u(S;,—R; 23
restricted number of switchings is allowed between a finite (5 J ) < i=n(s J ) (23)
time interval.

then the closed-loop LPV system (3) is asymptotically sta-
bilized by switching LPV controllers in the entire parameter
setP for every switching signaé with average dwell time
Ta > lni,u (24)
Ao
and its inducedC, performance fromd to e is less than
v = max {7i};c, given initial conditionz(0) = 0.

Using average dwell time switching logic, the Lyapunov
function is not required to monotonically decrease over
o switching surfaces. In fact, it allows the change of Lyapunov

Denote N, (T,t) as the number of switchings amongynction by.(> 1) times of its value before switching. As a
subsets?; on an interval#, T'). The switching signab has  ;onsequence, the average switching frequency over a finite
average dwell timer, if there exist two positive NUMbETS time interval is limited to-L to compensate for possible
No and, such that increase of Lyapunov functions. The hybrid LPV control
T—1 with average dwell time switching logic is also studied
VI'2t20 18) 5 [12]. In comparison, our synthesis condition not only
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guarantees the stability of the closed-loop system, but algdhere the state-space data are
provides an upper bound of the inducéd performance

. . 0 0 1 0 0 0
over the entire parameter space. However, our synthesis 0 0 0 1 0 0
condition for switching control with average dwell time is deo 0 0 _pl 20 0
non-convex. Since there are coefficiepteind L involved 4 p) = m ses pl Jr m 20,
in (22), the synthesis conditions with average dwell time 28 m 0 % m
switching logic cannot be convexified by simply setting ~ 0 0 0 -5 O
R; = R; on the switching surfaces. But the non-convex 0 o 0 0 %

condition can be avoided by switching state feedback con- 0ax2
1 L [O4x2

trol law. Bi=—| L |, By = ~ |1

Note that the switching LPV synthesis condition for this 1000 2
switching logic is different from hysteresis switching LPV Iy Ogys 0252
control results. Thél, 1) term in (19 — 20) implies that the ~ C1 = [ Onws } » D11 = 04x2, D12 = [ I }
open-loop plant can be thought as a shifted system with its

P PP g 4 Cy=[I, 03x4], D21 = 022, Doz = 02x2

A matrix changing tod + %I. It is the same for controller
Ay matrix. Therefore, if the matrix function®;(p) and The design objective of switching LPV control is to
Si(p) can be solved, then the gains of the switching LP\4tabilize the system over large range of rotor speeds and
controllers will be constructed by replacing and A5 in to minimize the disturbance effect. The weighted open-
the standard LPV controller formula [3] byt + %I and loop interconnection is given in Fig. 4, where the weighting

A + %I. functions are chosen as
200(s + 100) 0.001s
IV. EXAMPLE Was) = — o001 Wuls) = 5055 +1°7°
In this section, we apply the proposed switching LPV
control synthesis technique to an active magnetic bearing ey
(AMB) system and demonstrate its advantages over con- W
ventional LPV control designs.
Owing to the linear dependence of the rotor speed in the d » v e
plant dynamics, the nonlinear gyroscopic equations of AMB 2 :
can be simplified to a set of linear time-varying differential
equations as [13], [20]
u y
. pJa . 1
0 =— 7 0 + — (—4call + 2¢160 + fao)  (25)
oJ r 1 m Fig. 4. Weighted open-loop interconnection for the AMB system
() = =200 + — (—dealip + 2c10y 26
v JIr + m( e+ 20100 + fav) (26) The rotor speed is assumed to vary between 315 rad/s
N¢'9 = ey + 2d200 — di¢g (27) to 1100 rad/s, and its variation rate is less than 100 tad/s
N(ﬁw ~ ey + 2ol — drrg (28) The rotor dynamics exhibits strong gyroscopic effects in

this speed range. Due to large variations of rotor speed,
where p denotes the rotor speef, ¢ are the Euler angles it is conservative to use a single LP\_/ coqtrol_ler over the
denoting the orientation of rotor centerling,, J, are the Whole parameter region. For hysteresis switching logic, the
moment of inertia of the rotor in axial and radial direc-Parameter space is divided into two overlapped subsets,
tions, respectivelysy, ¢, are the differential magnetic flux 315 720] and[700 1100]. _ .
from electromagnetic pairss, e, are the corresponding /S mentioned before, the synthesis condition (7)~(11) for
differences of electric voltagefss, fu, are disturbance hysteresis switching control is nonconvex. To avoid solving

forces caused by gravity, modeling errors, imbalances, efg®n-convex problem, we assume all states are available for
The constants:,, 2, dy,d> and m depend on the AMB’s feedback control use, and the resulting synthesis condition

geometry and parameters, which are given in [20]. (16)-(17) becomes convex and globally solvable. The mul-
Let 27 = [59 Wl gy o ] Jar = tiple parameter-dependent Lyapunov functions are specified
[fao faw], and u? = [es ey thoen tﬁe’ linearized &S affine functions of scheduling parameters. That is, we

equations (25)—(28) can be written as an LPV sysigm assume for each parameter subset

Ri(p) = R} + Rip

&= A(p)x + B1d + Bau
¢ — Ciz+ Di1d+ Do where matricesk} with & = 0,1 are new optimization
! H 12 variables to be determined. The performance leyéh each

y = Cox + Dard + Dazu parameter subsets aBe2868 x 10~3 and 3.2730 x 1073,
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respectively. Then the value over the entire parameter setavoided by choosing suitable switching logics. The synthe-
is max {v1,72}, which represents the “worst-case” LPVsis conditions for two switching rules, hysteresis switching
control performance. As a comparison, the performancand switching with average dwell time, are derived. They
level achieved using single parameter-dependent Lyapunave generally non-convex and can be convexified for two
function is3.3098 x 103, which is slightly worse than the special cases, 1) output-feedback control with same control
switching control. gain and different estimate gain at the switching surface, 2)

We then conduct simulation for AMB using switching state-feedback control problem. The state-feedback control
LPV control. A time-varying rotor speed profile is choserwith hysteresis switching logic is then applied to a magnetic
as shown in Fig. 5. Note that the rotor speed trajectorearing control problem, and promising simulation results
is deliberately chosen to cross the intersection of tware obtained.

parameter subset$15 720] and [700 1100] back and
forth to illustrate the effect of LPV control switching.
Disturbanceg 4 and f4,;, are chosen as unit step inputs with (1]
opposite signs. As shown in Fig. 5, the switching occurs
at 1.9 s and 5.5 s, respectively. The simulation result ig2]
presented in Fig. 6, where the subplots are zoomed view
of responses around the switching time. Although there are,
small glitches during controller switching, the performance

for entire time history is nevertheless acceptable. n

780

(5]

7601

7401 650+50(t—0.5)

(6]

775-50(t-4)

<
N
S

(7]
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=]
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(8]

oL+ [9]

time (s)

Fig. 5. Time histories of parameter [10]
(11]
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[14]

displacement (m)
o -
]‘f
. &
ek @
N
N
~
IS
N
o
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b
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-3r -0.5 | [16]

-1
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[17]
Fig. 6. Time history of rotor displacement and x>

(18]

V. CONCLUSION
[19]

In this paper, control design of switched LPV systems
using multiple parameter-dependent Lyapunov functions g%
proposed. A family of LPV controllers are designed, eaclpi]
suitable for a specific parameter region. The possible tran-
sient instability caused by switching among controllers is
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