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Abstract— Adaptive control has drawn attention for active
vibration isolation and vehicle suspensions because of its
potential to perform in the presence of nonlinearities and un-
known or time-varying parameters. Model-reference adaptive
control has been used to force the plant to track the states
or certain outputs of the ideal reference model. In this paper,
we study application of a new adaptive approach, “model-
reaching” adaptive control, to achieve the ideal multi-DOF
isolation effect of a skyhook target without using a model
reference. We define a dynamic manifold in terms of the states
of the plant, rather than the error of the plant tracking of
the reference. Then we derive an adaptive control law based
on Lyapunov analysis to make the isolation system reach the
dynamic manifold while estimating the unknown parameters.
Compared with the conventional model-reference adaptive al-
gorithm for vibration isolation, the proposed adaptive control
eliminates the need for measurement of base vibration and
has the potential to guarantee the transient performance. The
effects of geophone dynamics are also discussed. We carry
out an experimental investigation based on a realistic plant
with friction, demonstrate the effectiveness of the proposed
adaptive control, and show that the target dynamics of
the skyhook isolator are attained. The convergence of the
parameter adaptation in the experiment is also examined.

Index Terms— Vibration isolation, Vehicle suspension,
Adaptive control, Sliding control, Model reaching, Skyhook
damping

I. I NTRODUCTION

Active vibration isolation systems or suspensions have
become necessary in many applications to compensate for
the low-frequency inadequacy of passive vibration isolation.
A variety control techniques, such as PID or lead-lag
compensation, LQG/H2, H∞, µ-synthesis, and feedforward
control, have been used in active systems (e.g., [1], [2], [3],
[4], [5], [6], [7], [8], [9]).

One of the classical concepts in the literature on vibration
isolation is the “skyhook” damper proposed by Karnopp
in 1974 [10], [1]. The skyhook damper is a virtual con-
figuration where the damper is connected with a virtual
inertial “sky.” Figure 1(a) shows a SDOF skyhook isolator.
In passive systems, the damper can be connected only to
the base since there is no practical inertial sky, as shown
in Figure 1(b). The vibration transmissions of the two
configurations are compared in Figure 2. From which we
see that whereas there exists a tradeoff between high- and
low-frequency performances in (b), there is no such conflict
in the skyhook system. The skyhook configuration also
eliminates the tradeoff between rejection of disturbances
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directly acting at the payload and isolation from ground
vibration.

m

k c x

x
m

k

c

x 0

x

sky

(a) (b)

0

Fig. 1. (a) Skyhook configuration, (b) the classical configuration
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Fig. 2. Vibration transmission from ground to platform of the two
configurations (c = 2ζω, k = ω2). Skyhook with ζ = 0.7 (solid),
skyhook withζ = 0.1 (dash), classical withζ = 0.7 (dash-dot), classical
with ζ = 0.1 (dot).

Because of these advantages, the skyhook configuration
has been a target in many isolation or suspension systems.
Sliding control has been used to attain the desired skyhook
effect in the presence of uncertainties [11], [12], [13].
Adaptive control has attracted a great deal of attention
because it does not require prior knowledge of the plant
parameters and works well in systems with nonlinearities
and time-varying of parameters. Sunwoo et al [14] used
model-reference adaptive control for vehicle suspensions by
tracking the states of the desired skyhook model. Alleyne
and Hedrick [15] considered the nonlinear dynamics of an
electro-hydraulic actuator and developed an adaptive control
for tracking the ideal skyhook force of a suspension. Wang
and Sinha [16] proposed a model-reference adaptive algo-
rithm to achieve multi-DOF skyhook isolation by tracking
all of the states. Bakhtiari-Nejad and Karami-Mohammadi
[17] considered the flexible mode of a vehicle body and



used adaptive control to track the states of a reference model
of an LQ-controlled skyhook system. Zhang and Alleyne
[18] proposed a position-tracking schedule with adaptive
control to overcome the limitations of an electro-hydraulic
actuator on force tacking.

These previous studies share a common point: they use an
adaptive algorithm to track (or follow) the states or certain
outputs of the desired isolation model. This model-reference
adaptive control generally requires measurement of ground
disturbance (velocity or acceleration) as an input to the
reference model, increasing the cost and complexity of such
systems, and even making the implementation impractical
in some cases. For example, it is difficult to sense the road
surface while a vehicle is moving. (In the literature, a sensor
is usually mounted at the wheel hub, but the measurement
is valid only below approximately 10 Hz.)

In this paper we experimentally study a novel adaptive
control scheme for vibration isolation without employing
model-reference tracking [13]. The idea is to design a dy-
namic manifold in terms of the states of the plant which cor-
responds to the isolation targetthen to use adaptive control
to drive the system onto this manifold while updating the
system parameters. This adaptive algorithm eliminates the
foregoing shortcoming of reference-tacking based adaptive
control, and it also has advantages for transient perfor-
mance. The effect of geophone dynamics on the stability
is also examined. We carry out an experimental study
based on a realistic plant with friction and demonstrate the
effectiveness of the proposed adaptive control for vibration
isolation. The convergence of parameter estimates is also
discussed.

II. A DAPTIVE CONTROL FORV IBRATION ISOLATION

WITHOUT MODEL REFERENCE

A. Isolation Plant and Target Dynamics

Suppose ann-degree-of-freedom isolated platform is
subject to excitation from vibration of the ground or base.
The governing equation takes the form:

Mẍ + C(ẋ− ẋ0) + K(x− x0) + Frc = Bu (1)

where M , C, and K are mass, damping, and stiffness
matrices of dimensionn × n; Frc is the friction force
matrix; B is a r × n (r ≥ n) matrix determined from
actuator placement with full-raw rank;x is the vector of
displacements;x0 is the vector of ground disturbances;
andu is the control force vector. Although many elaborate
friction models to account for static, dynamic, and Stribeck
frictions are available, in the present study we take the force
Frc to obey the Coulomb friction model

Frc = Fsgn(ẋ− ẋ0)

where sgn denotes the signum function. The parameters of
the M , C, K, andF matrices are generally unknown. The
matrix B is determined by the geometric location of the
actuators and sensors, which is relatively easy to obtain.

The ideal “skyhook” system is selected as the target. The
target dynamics of ann-th order skyhook isolator take the
form

M̄ẍ + C̄ẋ + K̄(x− x0) = 0

Because the mass matrix̄M is positive definite, we can
simplify the skyhook target to the form

ẍ + C̄ẋ + K̄(x− x0) = 0 (2)

where usuallyC̄ andK̄ are block-diagonal matrices, which
suggests that we achieve the skyhook isolation for each of
the variablesxi, i = 1, 2, ...n.

B. Model-Reaching Adaptive Control of Isolation

As mentioned in the introduction, the conventional way to
achieve the skyhook effect using an adaptive algorithm is to
control the plant to follow the states or output of the target
and use the tracking errors for parameter adaptation. In
this section, we describe a new adaptive control algorithm,
which we call model-reaching adaptive control [13].

Define a dynamic manifold in the state space

σ = ẋ + (sI + C̄)−1K̄(x− x0) (3)

wheres is the Laplace operator. Then on the manifoldσ =
0, we have

ẋ + (sI + C̄)−1K̄(x− x0) = 0 (4)

which is exactly the target skyhook isolation

ẍ + C̄ẋ + K̄(x− x0) = 0

In the following, we will describe a method by which
adaptive feedback control can drive the dynamics of the
plant to reach the manifoldσ = 0 when the parameters of
K, C, andM are not known.

Let us first rearrange the unknown parameters in the
matricesM , C, andK into a column vectora and denote

K(x− x0) + C(ẋ− ẋ0)−M(sI + C̄)−1K̄s(x− x0)
+Fsgn(ẋ− ẋ0) := Y a (5)

whereY is a matrix with proper dimension composed ofẋ,
x−x0, andẋ−ẋ0, which can be measured. (In practice, the
relative velocityẋ− ẋ0 can also be estimated fromx−x0.)
Note that in (5) the unknown matricesK, C, M , and F
show up linearly.

Next, using Lyapunov analysis and Barbalat’s lemma, we
derive the control and adaptation laws using a procedure
similar to that in [19]. We choose a positive-definite Lya-
punov function as

V (σ, ã) =
1
2
σ(t)T Mσ(t) +

1
2
ã(t)T P−1ã(t) (6)

where the vectorσ(t) is defined by (3),M is the (positive
definite) mass matrix of the system,P is a pre-selected
(constant) symmetric positive definite matrix, and the vector
of ã(t) is the error vector of on-line estimates of the
parametersa. The time derivative ofV (σ, ã) is

V̇ (σ, ã) = σ(t)T Mσ̇(t) + ˙̃a(t)T P−1ã(t) (7)



Using (1) and (3), we obtain

V̇ (σ, ã)=σ(t)T [Mẍ+M(sI+C̄)−1K̄(ẋ−ẋ0)]+ ˙̃a(t)T P−1ã(t)
=σ(t)T [Bu−K(x−x0)−C(ẋ−ẋ0)−Fsgn(ẋ−ẋ0)

+M(sI + C̄)−1K̄s(x− x0)] + ˙̃a(t)T P−1ã(t) (8)

Substituting the expression (5) into the above equation, we
obtain

V̇ (σ, ã) = σ(t)T (Bu− Y a) + ˙̃a(t)T P−1ã(t) (9)

We choose the control-force vector as

u = B−1[Y â(t)− kd σ(t)] (10)

where the matrixkd is a selected positive definite matrix of
n× n, the vector̂a is the on-line estimate of the unknown
parameters ofa, and the estimation error̃a = â− a. Then
we substitute (10) into (9) and obtain

V̇ (σ, ã)=−σT kd σ + σT Y (â− a) + ˙̃a
T
P−1ã

=−σT kd σ + (σT Y + ˙̃a
T
P−1)ã (11)

Hence, if we choose the parameter adaptation law as

˙̂a(t) = ˙̃a = −PY T σ(t) (12)

we have
V̇ (σ, ã) = −σ(t)T kd σ(t) (13)

ThenV̇ (σ, ã) is negative semi-definite. We can further prove
that V̈ (σ, ã) is bounded. Thus, according to the Lyapunov
theorems and Barbalat’s lemma [20], we conclude that
σ(t) → 0 as t →∞. Therefore, using the adaptive control
(10) and (12), we drive the states of the system to reach
the manifold (3) upon which the plant achieves the target
dynamics of shyhook isolation (2). We call this adaptive
algorithm model-reaching adaptive control. Note that we
do not need a measurement of base vibration.

Furthermore, the manifold (3) is dynamic, in the sense
that there is a Laplace operator therein. So theoretically we
can choose its initial state such thatσ(t = 0) = 0 and
transient performance is guaranteed.

The adaptive control works even if payload mass or other
parameters change (slowly). The selection of the constant
matrices ofP and kd can be used to adjust the time of
adaptation and the time to reach the manifold. Like model-
reference adaptive control, the adaptation law (12) cannot
ensure that the parameters converge to their true values
unless the system is persistently excited (e.g., [20]); that
is, there existα andδ such that

∫ t0+δ

t0

Y T Y dt ≥ αI, ∀ t0 ≥ 0 (14)

C. Effect of Geophone Dynamics

In the foregoing derivation of the adaptive controller, we
assume that the absolute velocity of the isolated platform
can be measured. But in practice, velocity measurements
are only valid above a certain frequency. For a geophone

sensor the measured outputˆ̇xi and the actual velocitẏxi

generally take the form

ˆ̇x =
s2

s2 + 2ζgωgs + ω2
g

ẋ (15)

whereωg andζg are the resonance frequency and damping
ratio of the geophone sensor. With the measurementˆ̇x, the
actual dynamic manifold becomes

σ̂ = ˆ̇x + (s + C̄)−1K̄(x− x0) (16)

Suppose that the target dynamics for all the degrees
of freedom are selected as skyhooks with frequency
ωs and dampingζs; that is, K̄ =diag([ω2

s , ω2
s , ...wω2

s ])
and C̄ =diag([2ζsωs, 2ζsωs, ...2ζsωs]). Using the Routh-
Hurwitz criterion, we conclude that the dynamics ofx on
the actual dynamic manifold̂σ = 0 are stable if

ωs

ωg
>

ζs

ζg
+

ζg

ζs
(17)

This suggests that the geophone resonance frequency should
be smaller than half of the resonance frequency of the target
skyhook isolator.

III. E XPERIMENT AND RESULTS

In order to verify the control strategy and to demonstrate
the effectiveness of the proposed adaptive control, we
carry out an experimental investigation. An electromagnetic
shaker is adapted so that the armature (mounted via flexures
to the stator) and a mass block fixed on it compose a
SDOF isolated platform and the voice coil serves as ac-
tuator. A magnetically-shielded geophone is mounted onto
the platform to measure its absolute velocityẋ0, and an
eddy-current gap sensor is used to measure the relative
displacementx− x0, as seen in Figure 3(a). The shaker is
set on a wood benchtop. Because the mass of the platform
is far less than that of the base (stator and bench), we can
ignore the effect of the control forceu on base vibration.
A second geophone is set on the base to monitor its
vibration, but is not used in control. The sensor signals
are connected to 16-bit analog-to-digital converters (ADC)
after gain adjustment. Low-pass filters (at 3 kHz) are used to
reduce high-frequency noise and aliasing. A 14-bit digital-
to-analog converter (DAC) and a voltage-to-current power
amplifier are used for actuation. The control is implemented
using a dSpace 1103 board hosted by a PC. We set the
sampling frequency to 10 kHz. The whole system is shown
in Figure 3.

This is a single-DOF isolation platform. If we take the
control signalu as voltage,B is a scalar with units of
N/volt. We normalizeB to one and write the plant model
as

mẍ + c(ẋ− ẋ0) + k(x− x0) + fsgn(ẋ− ẋ0) = u

wherek, c, m, and f are unknown. Note that due to the
normalization ofB, the units ofk, c, m and f are now
N/m/(N/volt), N·s/m/(N/volt), kg/(N/volt) and N/(N/volt),
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Fig. 3. (a) Photograph showing details of isolated platform, geophone mounting and eddy-current sensor; (b)Experiment Setup.

respectively. According to the parameterization (5) in Sec-
tion 2, we write

a = [k, c, m, f ]′ (18)

Y =
[
x− x0, ẋ− ẋ0,− k̄s

s + c̄
(x− x0), sgn(ẋ− ẋ0)

]
(19)

where ẋ − ẋ0 is estimated by passingx − x0 through
a filter s/(1 + τs) with a pole at 1.5 kHz. The passive
isolation system (open-loop) has a natural frequency of
around 12 Hz, and we set our target as a skyhook isolator
with a natural frequency of 1.2 Hz and damping ratio of
0.7. To satisfy the condition (17) we correct our geophone
corner frequency from 5 Hz to 0.5 Hz and damping to 0.7
using a second-order circuit. In the following results we
select the constantkd as 3000 and the constant matrixP
as diag([1e14, 1e10, 3e8, 1e3]).

We employ a second shaker as a reaction-mass actuator
to excite the base. Figure 4 shows the time responses when
the adaptive control is turned on while the base is excited
at 10 Hz by the second shaker in addition to ambient
excitation. The initial guesses of the parametersk, c, m,
and f are selected as zeros. In this figure, we show the
measured velocitẏx of the platform, measured velocitẏx0

of base vibration, and the calculated velocityẋs of target
skyhook isolator. We see that the vibration of the passive
isolated platform (control off) is amplified, since the base
vibration is close to the resonant frequency of 12 Hz. After
the control turns on, the platform isolation tends to the
target skyhook output in a few seconds. Figure 6 shows the
zoomed time response of the controlled isolator. We see that
the proposed adaptive algorithm can effectively control the
platform to match the target skyhook isolation.

In the zoomed velocity plots there are pulses when
the velocity crosses zero; this is because the Coulomb
friction model is not valid at zero velocity. The other
small residual errors are due to sensor noise and some
unmodelled dynamics (such as the 3 kHz low-pass filters for
the sensors). For comparison, we also implement the model-
reaching adaptive control by ignoring the friction term in the
model. Figure 5 shows the zoomed time response of such
a controlled isolator with the sameP and kd. Comparing
Figure 6 and 5, we see that although the Coulomb friction
model is not valid at zero velocity, we obtain a performance
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Fig. 4. Time response of isolation system when adaptive control turns on
under 10 Hz base excitation. Base velocity (dot), platform velocity (solid),
target skyhook velocity (dash)

improvement by taking it into account. The effect of the
friction compensation can also been seen in the control
effort (in voltage) shown in Figure 7.
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Fig. 5. Zoomed time response of isolation system with adaptive control
under 10 Hz base excitation. Base velocity (dot), platform velocity (solid),
target skyhook velocity (dash)

The parameter convergence for 10 Hz base excitation is
shown in Figure 8. The stiffness, damping, and friction con-
verge to reasonable values close to their off-line estimates.
But the estimated mass is negative. This can be explained by
using the condition (14) to check for persistent excitation
by starting at any timet0 ≥ 0 and checking the integral
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Fig. 6. Zoomed time response of isolation system with adaptive control
without accounting friction in the model under 10 Hz base excitation. Base
velocity (dot), platform velocity (solid), target skyhook velocity (dash)
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over any time intervalδ. One typical value of the integral∫ t0+δ

t0
Y T Y dt over 2 seconds for 10 Hz base excitation is




2.638e− 11 3.512e− 11 −1.455e− 9 2.483e− 8
3.512e− 11 3.783e− 7 −3.095e− 8 7.759e− 4
−1.455e− 9 −3.095e− 8 8.275e− 8 −6.156e− 5
2.483e− 8 7.759e− 4 −6.156e− 5 2.0000




whose singular values are 2.0, 8.64e-8, 7.18e-8, and 0. The
integrals of other time intervals are similar. This indicates
that the system is not persistently excited. Examining the
expression forY given by (19), we can understand this
result more intuitively. With our choice of skyhook target
with a corner frequency of 1.2 Hz and a damping ratio of
0.7, k̄s

s+c̄ is a high pass filter at 1.68 Hz. Thus for 10 Hz

excitation, the third element− k̄s
s+c̄ (x − x0) of Y closely

approximates−k̄(x−x0), which is proportional to the first
elementx − x0 of Y . Hence the mass adaptation error
can be approximately cancelled by a contribution from the
stiffness, and therefore their adaptation needn’t converge
the actual values. However, the parameter convergence is
not important so long as we achieve the desired skyhook
isolation.

Figure 9 shows the time responses of the isolated plat-
form when the adaptive control is turned on while the
base is subject to random excitation by the shaker plus
the ambient disturbance. (The actual spectrum of the base
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Fig. 8. Convergence of parameter estimations under 10Hz base excitation:
stiffnessk̂, dampingĉ, massm̂, and friction f̂
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Fig. 9. Time response of isolated platform when adaptive control turns
on under random excitation. Base velocity (dot), platform velocity (solid),
target skyhook velocity (dash)

vibration is not white, because of the bench dynamics and
the bandwidth limitation of reaction-mass excitation by the
second shaker.) The initial parameters are selected as zero.
We see that the desired isolation effect of the skyhook target
is reached very quickly.

To examine the effect of the matrixP , we reduceP
by a factor of 10, from diag([1e14, 1e10, 3e8, 1e3]) to
diag([1e13, 1e9, 3e7, 1e2]). Figures 10 and 11 respectively
show the time response and parameter estimates when
the adaptive control turns on under 10 Hz base isolation.
Comparing these two figures with Figures 4 and 8, we see
that the transient time has become longer. The final values
of the parameter adaptation are similar to those obtained
before.

IV. CONCLUDING REMARKS

In this paper we experimentally study a new adaptive
algorithm to achieve target dynamics (skyhook isolation)
without model reference. This algorithm eliminates the ne-
cessity of base or ground vibration measurement and has the
potential to improve transient performance. Its derivation
is also based on Lyapunov analysis and Barbalat’s lemma.
The main idea here is to design a dynamic manifold for
the target, rather than control the plant to follow the model



0 10 20 30 40 50 60 70 80 90
−400

−300

−200

−100

0

100

200

300

400

Time (sec)

Am
pl

itu
de

 ( 
µm

/s
ec

)

Fig. 10. Time response of isolated platform when adaptive control turns
on, with a smallerP under 10 Hz base excitation with a smallerP . Base
velocity (dot), platform velocity (solid), target skyhook velocity (dash)

0 20 40 60 80

0

2000

4000

6000

8000

10000

12000

14000

Time (sec)

S
tif

fn
es

s 
E

st
im

at
io

n

0 20 40 60 80
−10

0

10

20

30

40

Time (sec)

D
am

pi
ng

 E
st

im
at

io
n

0 20 40 60 80
−3

−2

−1

0

1

Time (sec)

M
as

s 
E

st
im

at
io

n

0 20 40 60 80
−0.01

−0.005

0

0.005

0.01

0.015

0.02

Time (sec)

F
ric

tio
n 

E
st

im
at

io
n

Fig. 11. Convergence of parameter estimations under 10 Hz base
excitation with a smallerP : stiffness k̂, damping ĉ, and massm̂, and
friction f̂

reference, so it can be taken as an extension of model-
reaching sliding control [21], [22], [13] and adaptive sliding
control [19].

The control and adaptation laws are derived for general
single- or multi-DOF isolation systems, and the effects of
geophone dynamics are also examined. We further carry out
an experimental investigation based on a realistic plant with
friction. The experiments indicate that this control strategy
is highly effective for active vibration isolation without prior
knowledge of system parameters. We also note that the
choice of the matricesP and kd is very important for the
transient time. The strategy of performing real-time updates
of the matrixP (see, [23]) might be used, or some slow
updating schedule (to save computation) might be further
explored.

In the foregoing we have assumed that the actuator
placement matrixB is known; this requires us to have
knowledge of the locations of the actuators and sensors.
Although this is often the case, it might be more practical
if we could extend the proposed adaptive control to include
online estimation of the actuator-placement matrixB.
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