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Recursive | dentification of Hysteresisin Smart Materials

Xiaobo Tarf and John S. Baras

Abstract— This paper studies recursive identification of This paper deals with recursive identification of the
hysteresisin smart materials. A Preisach operator with apiece-  Preisach operator. Two classes of identification schemes are
wise uniform density function is used to model the hysteresis. gy hj0red, one based on the hysteresis output, the other based

Per sistent excitation conditions for parameter convergence are . . . o
discussed in terms of the input to the Preisach operator. Two O the time difference of the output. Persistent excitation

classes of recursive identification schemes are explored, one  (P.E.) conditions for parameter convergence are studied

based on the hysteresis output, the other based on the time in terms of the input to the hysteresis operator. Practical

difference of the output. Experimental results based on a jssues in implementation are also discussed. Experimental

magnetosirictive actuator are presented. results based on a magnetostrictive actuator, together with
simulation results, are presented.

|. INTRODUCTION The remainder of the paper is organized as follows. The

g’reisach operator is briefly reviewed in Section Il, where

Smart materials, e.g., magnetostrictives, piezoelectric§, =, i . X o .
and shape memory alloys (SMA), exploit strong couplin discretization scheme is also included. Recursive identi-
between applied electromagnetic/thermal fields and straifi§@tion algorithms are presented in Section IIl. Persistent

for actuation and sensing. The ubiquitous presence of hy€Xcitation conditions are discussed in Section IV. Simu-
teresis in smart materials, however, poses a significant ch®ion and experimental results are reported in Section V.
lenge for the effective use of these materials in sensors ahd@lly some conclusions are provided in Section VI.
actuators. To address this problem, a proper mathematical
model for the hysteresis is necessary. ) o _ o _
Hysteresis models can be roughly classified into physics- The Prelsa_ch operator is briefly rewewe(_j in this section.
based models and phenomenological models. Physics-badednore detailed treatment can be found in [14], [15]. A
models are built based on first principles of physics, an eX@SiC element of the Preisach operator is a delayed relay
ample of which is the Jiles-Atherton model of ferromagnetiVith @ pair of switching thresholdgs, a), as illustrated
hysteresis [1]. Phenomenological models, on the other hantl, Fi9- 1. Such an element is called fysteron, and is
are used to produce behaviors similar to those of physicAenoted here byy; .. Let C([0,T1]) denote the space of
systems without necessarily providing physical insight int¢entinuous functions o, T]. Foru € C([0,7]) and an
the problems. The most popular hysteresis model used féHitial configuration¢ € {-1,1}, the output of the hysteron
smart materials has been the Preisach operator [2], [3], [4F denoted as(t) = 4p.a[u, I(1), V¢ € [0, 7).
[5], [6], [7], [8], which is of the phenomenological type. .
A similar type of operator called Krasnosel'skii-Pokrovskii S
(KP) operator has also been used [9], [10].
Hysteretic behaviors of smart materials often vary with B | Hg—u
time, temperature and some other ambient conditions.
Therefore, online identification of the hysteresis model is —
of practical interest. The idea of adaptive inverse control
was studied for a class of hysteresis models with piece- Fig. 1. An elementary hysterofy o[-, .
wise linear characteristics in [11], where the hysteresis
parameters (and the inverse hysteresis model) are updated’he Preisach operator is a weighted superposition of all
recursively. More recently, similar ideas were applied tqossible hysterons. Defirg, 4 {(B,a) € R?: 3 < a}.
control of hysteresis in smart materials [12], [13], wherep, is called thePreisach plane, and each(3,a) € Py is
the KP operator and the Prandtl-Ishlinskii operator weredentified with the hysterofs .. Foru € C([0,7]) and an
used as the hysteresis model, respectively. initial configuration¢, of all hysterons¢y : Py — {—1,1},

the output of the Preisach operaioiis defined as:
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Il. THE PREISACH OPERATOR

* Corresponding author. X. Tan is with the Institute for Systems o ) ) _(1)
Research, University of Maryland, College Park, MD 20742, ugiz-  where the weighting functiop(-, -) is called the Preisach
tan@nd. edu density function. It is assumed that > 0. Furthermore,

J. S. Baras is with the Institute for Systems Research and the Departmtent implify the di . thath t
of Electrical & Computer Engineering, University of Maryland, College 0 SImplify the discussion, assume h@ as a compac

Park, MD 20742, USAbar as@ sr . und. edu support, i.e.u(B,«) = 0if 8 < By or a > o for some
0-7803-8335-4/04/$17.00 ©2004 AACC 3857



0o, ap. In this case it suffices to consider a finite triangular In this paper two classes of identification algorithms are
areaP 2 {(B,0) € PolB > Bo,a < ap}, andP will also examined, one based on the hysteresis output, and the other
be called the Preisach plane when no confusion arises. based on the time difference of the output (catléfterence-

At any timet, P can be divided into two regions: based hereafter).
N Output-based identification: The outputy[n] of the dis-
Pr(t) = {(B,a) € P|output of4g , attis + 1}, cretized Preisach operator (corresponding to the case illus-
P_(1) A {(8,a) € P| output of 5., attis — 1}. trated in Fig. 2(b)) at time instant can be expressed as
L 7

Under mild conditions, each of,(t) and P_(t) is a y[n] :ZZWZ'J’[”]D;J" )
connected set, and the boundary between them, ctiked =1 j=1
memory curve, characterizes the memory of the Preisach - i
operator. whereW;,;[n] denotes the state (1 el) of the hysteron in

orfell (4,7) attimen, andz;; denotes the hysteron’s Preisach
wveighting mass. Stacking/; ; [n] andy; ; into two vectors,
[n] = [Wiln] - Wk[n]]T andv* = [vf - vi]T, where
%1) is the number of cells, one rewrites (2) as

In identification of the Preisach density a discretizati
step is involved in one way or another (see [16] for a revie
of identification methods). One discretization scheme is t
divide the input range intd. intervals uniformly (called K=

discretization of level L), which results in a discretization K
grid on the Preisach plane. Denote the discrete input levels y[n] = Z Wi[n]vi = Wn]tv*. (3)
bywu;, 1<i<L+1,ie., k=1

Ui = Unnin + (1 — 1) Ay, Let 2[n] = [t1[n]---Pk[n]]T be the estimate of* at

i . o ~ time n, and let
whereA,, = Ymes—tmin The cells in the discretization grid

K
are labeled, as illustrated in Fig 2(a) for the casd of 4. " . .
9 2(a) oln) = S Wilnlonln) = W) Tol) (@)
a a k=1
}us i be the predicted output based on the parameter estimate at
@1)[@2 S,S) @3 ey time n. The gradient algorithm [17] to update the estimate
(31) (3,23, : : iS ~
Ul G w o L e A . (§[n] — y[n)W1n]
ey |e ii 777777777 B o il_lf 777777777 B V[’I’L + 1] = V[?’l] - W[’I’L]TW[’I’L] ) (5)
¢ . ful 73u1 where( < v < 2 is the adaptation constant. To ensure that

b the weighting masses are nonnegative g + 1] = 0 if
(@) (b) the k-th component of the right hand side of (5) is negative.
i ] ) o ) Difference-based identification: An alternate way to
Fig. 2. lllustration of the discretization scheme £ 4): (a) Labeling of

the disretization cells; (b) Weighting masses sitting at the centers of celllg[e?tlfyhy is using the time difference(n] of the output
y\n|, where

A natural way to approximate a Preisach operator is to A . T &
assume that inside each cell of the discretized Preisach” ™ Y[ ~ ¥ = 1= (Win] = Win —1])7v". (6)
plane, the Preisach density function is constant. Note thaet §[n~] andg[n — 1] be the output predictions at time
such an operator is still an infinite-dimensional operatomandn — 1 based on[n — 1], respectively, i.e.,

If one assumes that the Preisach weighting function inside o’ R A o

each cell is concentrated at the center as a weighting mag&? | = Winl" 2[n — 1], g[n —1] = Win — 1" #[n — 1.
(Fig. 2(b)), the corresponding Preisach operator becomgsafine

a weighted combination of a finite number of hysterons.
Equivalently the input takes values in the finite set} 2L, 2[n] = g[n~]=g[n—1] = (W[n]-Wn—1))"#[n—1]. (7)
VAN

>

[1l. RECURSIVEIDENTIFICATION SCHEMES Let V[n] be the time difference of hysteron stat&gy|

The discrete-time setting is considered in this paper. A 2] = W[n — 1]. Then one can obtain the following
Preisach operator with discrete weighting masses is easier'@igntification scheme based ofr.]:
analyze than a Preisach operator with a piecewise uniform Sl — ~Clnl=zn)Vin] i

s L . _ ) ] ==y VIRl #0
weighting density; however, these two types of operators¥[n +1] = ¢ .

Lo ! pin] if V[n] =0

bear much similarity and essential results for one can be
easily translated into those for the other. Hence recursive As in the output-based scheme, an parameter projection
identification of Preisach weighting masses is first studiedtep will be applied if any component 6frn+1] is negative.
and then the extension needed for identifying the density Having discussed the methods for recursive identification
directly is briefly discussed. of weighting masses for a Preisach operator, we now point
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out how to change the previous algorithms for identification The sequence¥[n] and W[n] are almost equivalent in
of the (piecewise uniform) Preisach density. In this casehe sense that, for anyy > 0, {V[n]}X_; can be con-
the outputy[n] can still be expressed as (2) or (3), butstructed from{W[n]}2_,, and converselyyW[n]}2_, can
with different interpretations forW; ;[n] and v} ;. Each be constructed froniV[0] and{V[n]})_,. However, there
component¥; ;[n] of W[n] no longer represents the stateare motivations to introduce the difference-based scheme
(1 or —1) of the hysteron at the center of the céllj); (8). For ease of discussion, consider the case of identifying
instead it represents treigned area of the cell: Preisach weighting masses (corresponding to Fig. 2(b)). In
this case whild¥[n] has components1, the components

of V[n] are+2 or 0. Often times most components6fn|

are 0 sinceVi[n] # 0 only if the k-th hysteron changed

its state at time:. This has two consequences: (1) The P.E.
n(1:_onditi0n ofV[n] is easier to analyze than that@f[n]; (2)

J -~ I : he convergence of the difference-based scheme (assuming
the cell (i, j). Similarly, #[n] is now the vector of density that P.E. is satisfied) is expected to be faster than that of

. . . A
vaIu_es ?stlmated at t|r[1e DeflneV[n] ~ W[n]_W["__l]' the output-based scheme sinegn] carries more specific
Definej[n], z[n], andZ[n] as in (4), (6), (7), respectively. i tormation about/*.

Based on these definitions, the output-based algorithm (5)
and the difference-based algorithm (8) can be applied Witf’Ea
out modification to identifyv*.

W; j[n] = area ofC;",[n] — area ofC;[n],

WhereCifj (Ci,7, resp.) denotes the portion of céll j)
occupied by positive (negative, resp.) hysterons. Each co
ponentw; ; of v* now represents the true density value o

It is of practical interest to express the P.E. conditions in
rms of the input:[n] to the hysteresis operator. The P.E.
condition for the difference-based algorithm is equivalent
IV. PERSISTENTEXCITATION CONDITIONS to that {V[n]}7e4,"~" spansR* sinceV'[n] can take only
i N . a finite number of possible values. Recall that| takes
Define the parameter errafin] = o[n] — v*. Then for \ajues in a finite sefu;,1 < i < L + 1}. In the analysis
the output-based algorithm (5) (letting= 1 without loss |y it is assumed that the input does not change more
of generality), than one level during one sampling time. The assumption
oln + 1] = Fn]o[n), 9) is not rgstrlctlve consudermg the rate-independence [15] _of
the Preisach operator, but it helps to ease the presentation.

where Fln] = Ix — % and I represents the  Theorem 4.1 (Necessary condition for PE.): If {V[n]}
identity matrix of dimensionlé. It is well-known [17] is P.E., then there exist&/ > 0, such that for anyny,
that the convergence of the algorithm (5) depends on tHer any: € {1,2,---, L}, u[n] achieves a local maximum

persistent excitation (P.E.) condition of the sequen&&[n].  atu;y; or a local minimum atu; during the time period
The sequencéV[n] is persistently exciting if, there exist [no,n0 + N — 1].
an integerN > 0 andc} > 0, ¢, > 0, such that for anyiy,  Proof. Let us call a hysteroactive at timen if it changes
state at timen. Since the input changes at most one level
no+N-—1 T X ) X
P Win]Win] / each time, ifu[n] > u[n — 1], the set of active hysterons
Adlx < Y - < lk. (10) "

Win|"Win| must have the forn®;", = {(, ), (i, + 1), -+, (i,4)} for
somei,j with 1 < i < L and1 < j < i (refer to the
Xabeling scheme in Fig. 2(a)), and the component¥ pf]
corresponding to elements chj are 2 and other compo-
nents equal 0. Similarly, if:[n] < u[n—1], the set of active
allg < Gn(ng) < eolk, (11) hysterons has the forti, ; 2 {U,3), G+1,9),--+, (4, 4)}

for somesi, j, and the components df[n| corresponding

whereG y (no) is the observability grammian of the systeM;q elements ofS~ are —2 and other components equal O.
(9) defined as -

n=no

Due to the equivalence of uniform complete observabilit
under feedback [17], [18], from (10), there exist >
0, c2 > 0 such that for any,

If, for somei’, u; 41 is not a local maximum and; is not

no+N-1 ®[n, o) TW [n]W [n]T ®[n, no] a local minimum,S;fﬂ;, or S; ;» will not become the set of
Gn(no) = Z : W TWn] —, active hysterons duringo, no+ N —1]. In particular, when
n=ng the hysteror(i’, ') changes state from1 to 1, so does the

and ®[n,no] is the state transition matrix@[n,no] = hysteron(i’ —1,#'); and when the hysterofi’, i) changes
[’} F[k]. It can be shown [17] that when (11) is state froml to —1, so does the hysterofi’,i’ + 1). This

sa];i:s;‘lioed implies that the contribution to the output from the hysteron
’ _ _ i i notN=1 does not
N < VI 12 (i',4") cannot be isolated, and heng, } > "~
|70+ N < VI=erl#ln]ll, CEIN o
from which exponential convergence ig* can be con- Remark 4.1: From Theorem 4.1, for a Preisach operator

cluded. Similarly one can write down the error dynamicswith discretization levelL, it is necessary that the input
equation, the P.E. condition d¥i[n], and the convergence u[n| hasL reversals at different input levels for parameter
rate estimate for the difference-based scheme (8). convergence. This is in analogy to (but remarkably different
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from) the result for linear systems, where the input ionditions given in the theorem, any vector{ifr[n]}"_;
required to have at least frequency components for must also be present ifiV’[n ]}:;thjg’ L corresponding to
identification ofn parameters [17], [18]. u'[n]. Hence{V’[n]} is P.E.. Finally P.E. of V[n|} follows
Theorem 4.1 implies that the input levels andur,; since{u/[n]}2o V=1 belongs to the P.E. equivalence class
must be visited for P.E. to hold. When the input hits,  of {u[n]}1efN=1. O
all hysterons have output1 and the Preisach operator is Theorem 4.2 is not conservative, and it covers a wide
in negative saturation; similarly, when the input hitg  ;, class of P.E. inputs. For example, it can be easily ver-
the Preisach operator is in positive saturation. For eithefied that a (periodic) first order reversal input [14](see
case all the previous memory is “erased” and the operat®ig. 3(a) for casel = 4), which has been widely used for
is “reset”. Starting from these reset points, one can keegentification of Preisach density function, and a (periodic)
track of the memory curve)[n] (the state of the Preisach oscillating input with decreasing amplitude (Fig. 3(b) for
operator) according to the input:]. caseL = 4) both satisfy the conditions in Theorem 4.2,
Consider an input sequende:[n]}7,, , n, < ny. If and are thus P.E.. In these two casdgs] itself satisfies the
there existn,,ns,n3 and ny with n, < n; < ng < conditions imposed for.’[n] in the theorem. Fig. 4 shows
ny < ng < np such that the memory curvg[n,] = an example where one can conclude the P.E. of a periodic
¥[ns] and y[ns] = t[n4], one can obtain another input u[n] by inspecting a P.E. equivalent input[n]. Note that
sequencgu/[n]}" . by swapping the sectiofu[n]}72, The_ort_am 4.2 does not requitgn] to be periodig, althoggh
with the section{u[n]}" We write {u[n]}" P.E. periodic examples are chosen here for easy illustration.
n=ng: nZn, The P.E. conditions (Theorems 4.1 and 4.2) can be

{u'In]};,, (called equivalent in terT“S.Of PE) sm_ce extended in a straightforward manner (with minor modi-
the two sequences carry same excitation information fojr

the purpose of parameter identification. The set of al ications) to the case where a piecewise uniform density

input sequences obtained frofu[n]}2, ~as explained unction is to be identified,
above (with possibly zero or more than one swappings) um] umy

form the P.E. equivalence class of {u[n]}}", , denoted % %

as {u[n]}n2, . Note that in particular,{u[n ] ne,. € LLE t:

{uln[}nz,,.. We are now ready to present a sufficient U m

condition for P.E. in terms of the input{n]. U+ no Uy n
Theorem 4.2 (Sufficient condition for P.E.): If there ex- @ (®)

ists N > 0, such that for anyng, one can find
’ no+N—1 no+N—1 iofygi inn- Fig. 3. Examples of P.E. inputd(= 4, showing one period): (a) The

{u [n]}n:.no . € {u[n]}ns, Sat'Smeg thf fOIIO\ivmg first order reversal input; (b) An oscillating input with decaying amplitude.

there exist time indicesy < n, < n] < ny < ny, <

n§“<'-'<n;<n:“<'~§nb§no+N—1or

nognagnf<nf<n§r<n§< <n <n; < u[n] un
- < ny < np+N-—1, such that'[n; ]lsalocal maximum U |- U |
andu/[n; ] is a local minimum of{u [n]}ne,,, for eachi, t pE
these local maxima and minima include all input levels i — i
1<i<L+1, and either U SR n u 3 -
@) {u'[n]]} is non—increasingu’[nj] > /[n] for nj < AR B A BRE
n < m, uw'[nf] differs fromu’[n,] by no more tham,, Fig. 4. An example of P.E. inputl{ = 4, showing one period). The
and {u/[n, ]} is non- decreasmg¢ [ni] < W'[n] forng < inpi u'[n], P.E. equivalent tau[n], is obtained by swapping two sections
n < ny, u'[n; ] differs fromu/[n; ] by no more tham\,; A — B andA’ — B’ of u[n].
or
(b) {u'[nﬂ} is non-decreasingy’[n;] < u'[n] for nj <
n < my, o'[n}] differs fromu’'[n;, ] by no more thamu, V. SIMULATION AND EXPERIMENTAL RESULTS
and {u'[n; ]} is non-increasingy’[n;’] > u/[n] for n; < A Comparison of the output-based scheme with the
n < ng, u [ ;] differs fromu/[n; 4] by no more tham\,,,  difference-based scheme
thenV'[n] corresponding ta:[n] is P.E.. In this subsection the output-based scheme is compared
Proof. Construct a new input sequengeln]}” -1 (for some with the difference-based one through simulation. As shown

7 > 1) which achieves the local maxima:’ [ 71} and the in (12), the minimum eigenvalue of the observability gram-
local minima {v'[n; ]} with the same order as in’'[n], mian (i.e.,c; in (11)) is directly related to the convergence
but @[n] varies monotonically from a maximum to the nextrate of the output-based scheme. The same statement holds
minimum or from a minimum to the next maximum. For for the difference-based scheme provided thEfn| is

such an input, it can be seen through memory curve analysieplaced withV'[n] in the related equations. In Table | we

on the Preisach plane that the correspondingn]}”_, list the corresponding,/T —¢; (the bound on the norm
spansRX. From the wayu[n] is constructed and the of parameter error drop over one period) under the two
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gradient schemes (with = 1) for different discretization only among the active hysterons. Simulation in Fig. 5(a) is
levels L with the (periodic) first order reversal input. re-conducted where a noise is added to the output, the noise
From Table I, the difference-based scheme converges fastmagnitude being % of the saturation output of the Preisach
as expected. Simulation has been conducted for the casperator. From Fig. 5(b), in this case, the parameter error
L = 10. Fig. 5(a) compares the decrease of the norm afill not converge to zero under either algorithm. However,
parameter error over periods when there is no measuremehe ultimate error of the output-based algorithm is much
noise, and the conclusion is consistent with Table I. lower than that of the difference-based scheme.

TABLE | B. Experimental results

COMPARISON OF CONVERGENCE RATES FOR THE OUTPLBASED Experiments have been conducted on a magnetostrictive
ALGORITHM AND THE DIFFERENCEBASED ALGORITHM. actuator to examine the identification schemes. The hys-

Parameter error

— - Output-based
— Difference—based

20 30

40 50 60

Period number

@)

Parameter error

— - Output-based
— Difference—based

0 10 20 30

40 50 60

Period number

(b)

L o\{l ?b«n § D,ﬁx/l - Clb g teretic relationship between the displacement output of the
. ( i )| O R actuator and its current input can be modeled by a Preisach
10 0.9908 09784 operator when the current input is quasi-static [7].
15 0.9958 0.9874 A periodic first order reversal current input is used for
20 0.9976 0.9912 e ot ; ; ;

recursive identification of the Preisach density function. A
o~ Sooan o073 ecursive identification of the Preisach density functio

practically important issue is the choice of the discretization
level L. Although it is expected that the higher discretiza-
tion level L, the higher model accuracy, there are two
factors supporting a moderate value bfin practice: the
computational complexity and the sensor accuracy level.
Since the number of cells on a discretization grid scales
as L?, so is the computational complexity of the recursive
identification algorithm. It should also be noted that, from
Table |, the convergence rat¢l — c; decreases as in-
creases. Furthermore, in the presence of the sensor noise and
unmodeled dynamics, higher discretization level may not
necessarily lead to improved performance. Fig. 6 compares
the measured hysteresis loops against the predicted loops
based on the identified parameters for differenlthough

the scheme with, = 10 achieves much better match than
the scheme withl, = 5, there is little improvement when

L is increased to 15. Hence for the particular actuator
(and the sensor used), it is determined that 10 is an
appropriate discretization level. Fig. 7 shows the identified
density distribution forL = 10 after eight periods. The
output-based gradient algorithm is used with= 1.

VI. CONCLUSIONS

This paper has been focused on recursive identification
of hysteresis in smart materials. A Preisach operator with
piecewise uniform density function was used to approx-
imate smart material hysteresis. On the theoretical side,
a necessary condition and a sufficient condition for the
parameter convergence were presented in terms of the input
to the Preisach operator. In contrast to the results for
linear systems, the conditions here center around the local

Fig. 5.  Comparison of parameter convergence for the output basgdaxima/minima of the input.

algorithm and the difference-based algorithm. (a) Case I: noiseless mea-

surement; (b) Case Il: noisy measurement.

Practical implementation issues were studied through
both simulation and experiments. Two types of adaptive gra-
dient identification algorithms were compared. It was found

Despite the apparent advantage of faster convergence, ttiat the difference-based method has a higher convergence

difference-based scheme is more sensitive to the measurate, but it is more sensitive to the measurement noise. The
ment noise: the noise gets magnified when one takes tleboice of the level of discretization was also discussed.

output difference (analogous to taking the derivative of a Recently an adaptive inverse control algorithm has been
noisy continuous-time signal), and the disturbance is sharatkveloped using the output-based recursive identification,
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which will be reported in another paper. For future work,
it will be of interest to extend the results here to the cases
1 where the hysteresis output is not directly measurable. Such
| cases happen if, e.g., the high-frequency dynamics of the
smart material actuator is not negligible, or the actuator is
used to control some other plant.

—-— Measured hysteresis
Predicted hysteresis

Displacementy( m)
8
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