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Abstract −−−− Brushless DC motors have been widely used as 
actuators in mechatronic systems. A non-dynamic motor inverse 
model, which neglects the electrical dynamics of the motor, is 
usually employed to achieve torque control of the motor. 
Variations of the motor parameters due to environmental factors, 
temperature, build variations, aging, etc. directly impart 
inaccuracies in the inverse motor model, and thus the dynamic 
performance of the system suffers. A multi-parameter estimation 
scheme is proposed in this paper. Improvements for the dynamic 
performance of the estimator are discussed. Comparison of closed 
loop simulations for voltage control BLDC motor in an electric 
power steering system confirms a lower bound of error of the 
estimated parameter and faster adaptation with the proposed 
improved estimation scheme. 

 

I. INTRODUCTION 
Motors are the most commonly used actuators in 

mechatronic systems. Variations of the motor parameters such 
as coil resistance, coil inductance, torque constant directly 
impart inaccuracies in the control scheme based on the nominal 
values of parameters. The motor parameter variations generate 
output inaccuracies as a function of build, life, and temperature 
variations.  To ensure adequate torque control and acceptable 
frequency domain performance, often it is desirable to 
compensate the control of the motor for variations in motor 
parameters including, but not limited to, motor resistance 
R and motor torque constant eK . 

Mir [1, 2] proposed on-line single parameter estimation for 
a brushless DC (BLDC) motor and verified the algorithm 
experimentally. Klienau et al [3] have proposed a current 
feedback error based single parameter estimation scheme for 
voltage controlled BLDC motors. However, when there exist 
errors in more than one parameter, performance of the single-
parameter estimation schemes will deteriorate, and the 
accuracy of the control system will also suffer. Moseler [4] 
proposed a parameter estimation technique for a BLDC motor 
driven by a PWM inverter, where several parameters can be 
estimated by measuring the motor’s input and output signals.  

In this paper, a multi-parameter estimation algorithm is 
derived for the motor inverse model. Open loop simulation 
verified the effective-ness of the algorithm. Improvements for 
the algorithm are proposed for compensation of errors 
introduced by two assumptions in derivation of the estimation 
scheme. Closed-loop simulations presented for an electric 
power steering system plant demonstrate a lower bound on the 
error of the estimated parameter and a faster response time 
with the improved estimation algorithm.   

II. ADAPTIVE MULTI-PARAMETER ESTIMATION 
SCHEME 

Fig.1 shows a typical plant controlled in the closed loop. As 
shown in Fig. 1, an approximate inverse of the motor [5] 
neglecting the motor dynamics is used in the controller so that 
the fast motor dynamics are approximately cancelled by the 
controller to provide the expected torque output. Variations of 
the motor parameters will cause discrepancy between the motor 
inverse model used in the controller and the actual motor 
dynamics, therefore, the system in Fig. 1 has a motor-current 
based parameter estimation scheme. 
 

 
Fig. 1. The schematic diagram of a mechatronic system with motor current 

based parameter estimation 

  

2.1 Non-dynamic motor inverse model 

As a load control actuator of a mechatronic system, a three-
phase BLDC motor can be modeled by following equation[6, 
7]  
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where,   
 dq ii ,  − q  and d  axis currents mapped from the three phase 

currents,  
R  − Motor coil resistance, 

eK  − Torque and back EMF constant of the motor, 

L  − Motor coil inductance, 
V  − Input voltage to the motor, 

eω  − Angular velocity of electro-magnetic field, 

mω − Angular velocity of armature, 2pme N⋅= ωω , pN is 

the number of magnetic poles, 

outT − Motor torque output, 

δ − Phase advance 





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R
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It is desired that the torque output of the motor tracks the 
desired torque ( comT ) from the controller. comT  defines the 

desired q-axis motor current   by the following equation 

e
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Neglecting the electrical dynamics of the motor, i.e. 

0≈
dt

diq
, 0≈

dt

did , the voltage V  to be applied to the motor 

in order to get the desired torque comT  at the output is obtained 

[3] from (1) as 
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2.2 Feedback estimation of multiple parameters 

While using (3), it is assumed that the motor parameters R , 
L , and eK  are constant and the parameters used in the 

controller have the same values as those in the motor. 
However, aging and changing environmental factors, such as 
temperature, humidity, etc. will change the values of the 
parameters in the motor. It is necessary to take some corrective 
action so that the value of one or more parameters in the 
controller is as close as possible to the actual value in the 
motor. 

Let’s investigate the integration of the feedback current 
error scheme to estimate the two parameters R  and eK  in the 

controller represented by, 
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where, )(ˆ tR∆  and )(ˆ tKe∆  are the estimated error, 1)(1 <tk  

and 1)(2 <tk  are the weighting functions. We denote the 

parameters and variables used for computation in the controller 

by suffix c . The estimated error )(ˆ tR∆  and )(ˆ tKe∆  will be 

derived in the following paragraphs. 
Applying the voltage V computed from (3) with parameter 

and variable values in controller to the motor model, we have  
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Define  

cRRR −=∆          (7a)  

ecee KKK −=∆         (7b)  

qqcomq iii −=∆         (7c) 

ddcomd iii −=∆         (7d) 

ecee ωωω −=∆         (7e) 

mcmm ωωω −=∆        (7f) 

Assuming the system is in equilibrium: 0,0 ==
dt

di

dt

di dq
, 

and neglecting the high order error, we get (8) from (6).  

edcomdemeq

meeqqcomeq

iLiLKiR

KiR

ωωω
ω

∆−∆+∆−∆

=∆+∆
,   (8) 

where eqR∆  and eeqK∆  are the errors under equilibrium 

condition. For most real motors, RL <<  and eKL << ; 

because of mechanical inertia, qi∆<<∆ω . Therefore, the last 

3 terms in the right side of (8) can be possibly neglected if 
compare to the first term. In the mean time, it is reasonable to 
assume that these errors will not change significantly in one 
sampling period of 0.002 second. Thus we can find the value 
of eqR∆  and eeqK∆ by solving following equations 
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The estimated error )(ˆ tR∆  and )(ˆ tKe∆ for the estimation 

scheme in (4) and (5) via feedback current error integration 
was proposed based on heuristics as 
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The single parameter estimation scheme can be proven to be 
stable using theorems about bounded-ness of perturbation [8]. 
It may be possible to extend the proof to multi-parameter 
estimation algorithm. Here we only confirm the stability by 
simulation. Fig. 2 shows the performance of above estimation 
scheme in an open-loop simulation.  

In order to evaluate the estimation scheme, simulated 
random required torque comT  and motor speed mω  (with a 

lower dominant frequency than that of comT ) are fed into the 

motor inverse model, the parameter estimation model and the 
motor model. To avoid the error caused by singularity points in 
(10), )(1 tk and )(2 tk in (10) are set as following: 
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where )()1()1()()det( kkikkik mqcommqcom ωω +−+= . Root 

mean square (RMS) value of the state variables is used to 
approximate the bound on each error, as shown in 

)(6)( ∆⋅=∆ RMSb .      (12) 
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cR  and ecK , beginning at the initial error of ±10% and 

±6%, reached the bound of -4107.1656)( ×=∆Rb  and 
-4102.5125)( ×=∆ eKb  within 80 seconds.  

 

 
Fig. 2 Open-loop simulation of two-parameter  

estimation scheme. 

 

III. IMPROVING THE DYNAMIC PERFORMANCE OF 
THE ADAPTIVE ALGORITHM 

The basic parameter estimation scheme of (10) is derived 
from the non-dynamic motor inverse model of (3) and the 
current error feedback scheme in (9). The non-dynamic motor 
inverse model neglected motor electrical dynamics and 

introduced an error corresponding to neglected dynamics 
dt

diq
 

and 
dt

did . If the dynamics are not neglected while solving (1) 

to obtain an algorithm for the applied voltage V, it is possible 
to reduce errors introduced in the earlier estimation approach. 
The estimation scheme of (10) neglected the effect of mω∆  

and eω∆ , which were caused by the sampling delay. This also 

introduced error to the basic parameter estimation scheme. If 
the motor speed error can be taken into the estimation scheme, 
the performance of the adaptive algorithm can be possibly 
improved.  

3.1. Motor electrical dynamics 

An analytical solution of (1) is not available because of its 
nonlinearity, as mω  and eω  are functions of time. However, 

since the motor is driving the mechanical inertia, the electrical 
states can change significantly in duration of the order of the 
electrical time constant τ, whereas the mechanical states, e.g. 
the motor speed mω , can hardly change over the same period 

due to slow dynamics of the mechanical system. It is possible 
to approximate the motor electrical dynamics by assuming mω  

is a constant during each sampling interval T, which is of the 

order of the electrical time constant τ. With this assumption, 
(1) becomes a finite dimensional linear time-invariant state 
equation during the sampling interval T.  This equation can be 
solved exactly via the state transition matrix [9]. 

Now consider (1) in matrix form as following equation 
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Equations (13) can be solved with the state transition matrix 
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With this state transition matrix, the solution of (13) is: 
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G and u in the above equation can be treated as constants 
during each sampling interval because of the zero-order-hold 
sampling.  

Given the desired torque )(kTcom , which is the expected 

output at Tkt )1( += , the value of the state variable )1( +kiq  

is expected to be )(kiqcom . This value can be obtained from 
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Compared to the non-dynamic motor inverse model in (3), 

the state transition matrix method approximated the electrical 
dynamics of the motor. Therefore, when the motor speed is 
constant or changed at a lower frequency compare to the 
torque, the algorithm with the state transition matrix method 
can track the required torque with higher fidelity if the 
parameters in the controller match the actual values in the 
motor. If there is discrepancy between the parameter value in 
motor and in the controller, the output current error will more 
likely represent this discrepancy. Consequently, the 
performance of the estimation scheme and the controller will 
be improved.  

 Fig. 3 shows comparison of the performance of estimation 
scheme with the non-dynamic motor inverse model and the 
dynamic motor inverse model in the open-loop simulation.  A 
random comT  and constant mω  were fed into the motor 

inverse algorithm so as to compare the performances of the 
non-dynamic algorithm and the state transition matrix 
algorithm. The gain )(1 tk and )(2 tk are set to the same value 

for both model, as in (11).  
In the model with the approximate dynamic motor inverse 

model (case 2), the steady state error bounds (after 150s) are 
65 10365.3)(,10492.4)( −− ×=∆×=∆ eKbRb , which are about 

17.5% and 29.4% of corresponding values in the model of 
basic scheme (case 1). The overshoot of ecK in case 2 is 47% 

of that in case 1. The rise time of cR  in case 2 is about 10 

seconds shorter than in case 1.  

 
Fig. 3 Performance comparison of the two-parameter estimation scheme 

between case 1 and case 2 

 

3.2. Motor speed sampling delay 

While calculating the voltage using (3) or (16), the desired 
q-axis current during the next sampling period is known but the 
motor velocity during the next sampling period is not. The 
error mω∆  is caused by the use of the latest available sampled 

motor velocity instead, and, it is unavoidable. The parameter 
estimation scheme of (9) neglected this error caused by the 
sampling delay.  It is possible to reduce the bound of error 
during estimation if mω∆ is taken into account.  

The motor velocity is not constant during the next sampling 
period but is varies from )(kmω  to )1( +kmω . It is reasonable 

to approximate the motor velocity error by 
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period. Therefore, the estimation scheme becomes 
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where )()()()()( kkiLkKkiRkS edcommeq ωω ∆−∆−∆=∆ . 

Fig. 4 shows the performance comparison of the estimation 

scheme with and without the approximate mω∆ compensation. 

Inputs for the open-loop system simulation are a random comT  

and a random mω . 

 
Fig 4. Performance comparison of estimation scheme with and without 

mω∆ compensation 

 

Time (s) 
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As shown in Fig. 4, the scheme with mω∆ compensation 

(case 3) has lower steady state error bounds (after 150s): 
410638.1)( −×=∆Rb , 51039.6)( −×=∆ eKb , which are about 

19.6% and 42.8% of corresponding values in the basic 
estimation model (case 1). 

Since the two ways of performance improvement discussed 
before are working on motor inverse model and parameter 
estimation algorithm respectively, it is possible to combine 
them together and tighten the bound of error, thereafter further 
improve the precision of the system.  

IV. CLOSED-LOOP SYSTEM SIMULATIONS 

In the above open loop simulations, uncorrelated mω  and 

comT  were used to compare the performance of the adaptive 

algorithm. However, in the application of the closed-loop 
control of a system, mω and comT  cannot be completely 

uncorrelated because that mω  and comT  are both excited by 

the plant input in Fig.1. In order to demonstrate the 
performance of the derived algorithm in a closed loop setting, 
its application to an electric power steering system is 
considered. 

As shown in Fig. 5, the closed-loop automotive electric 
power steering system consists of a controller, a BLDC motor, 
torque sensor, a steering hand wheel, and the rack and pinion. 
The torque of the motor is transferred to the steering column 
via a worm and worm gear assembly. Torque on the steering 

column is measured by the torque sensor ( sT ). The motor 

speed is measured by a tachometer. These signals along with 
motor position are collected by the controller, which generates 

comT  accordingly and calculates the voltage to be applied to 

the motor. The steering system plant is modeled by a two-mass 
mechanical system with viscous friction [10]. The controller is 
designed to stabilize the system. 

 
Fig. 5. Schematic diagram of the automotive electric  

power steering system [10]. 

 
In the closed-loop model, the nominal parameter values are 

as following: 0.0001H=L , Ω= 0.05R  and 
/s)0.05V/(rad=Ke . A random hand-wheel torque is applied 

to the plant model. Consequently, correlated mω  and sT  are 

measured by the tachometer and the torque sensor, and are sent 
to the controller as inputs. A low pass filter with a cut-off 

frequency Hzfc 8.0≈ is added to the input of estimation 

scheme to suppress the measurement noise and act as an anti-
aliasing filter. Fig. 6(a) shows the comT  generated from the 

controller and mω  measured from the plant. Fig. 6(b) 

compares the bounds of error ( R∆ , eK∆  and qi∆ ) in the four 

different cases of estimation scheme in the closed-loop 
simulation.  

 
 (a). Input: comT  and mω  

 
 (b). parameter estimation performance 

Fig. 6.  Closed loop simulation : 
  

 
If mω∆  is neglected from the parameter estimation and 

frequency of mω  is high, high error will be introduced. This 

error should be theoretically symmetric about zero for 
uncorrelated random signals comT  and mω . However, comT  

and mω  are excited by the same driver torque input, resulting 

in similarity of phases of these two signals, as shown in Fig. 
6(a). This may result in offset error for the estimated 
parameters, as in Fig. 6(b). Case 3 and case 4 both 
implemented the approximate mω∆ compensator, which 
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resulted in a lower bound of error. Compared to case 3, case 4 
implemented the approximate dynamic motor inverse model, 
which helped to tighten the bound of error in parameter 

implementation. Table 1 compares the bound of errors with the 
four cases of parameter estimation scheme in the closed loop 
simulation.  

 
TABLE. 1 COMPARISON OF THE BOUND OF ERRORS IN CLOSED LOOP SIMULATION 

 

Case 
Motor Inverse 

Model 
Estimation scheme 

Bound of  
R∆  (×10-3) 

Percentage of )( Rb ∆  

compared to Case #1 

 Bound of 

eK∆ (×10-4) 
Percentage of )( eKb ∆  

compared to Case #1 

1 
Non-Dynamic  
 equation (3) 

Basic scheme  
 equation (10) 

17.0 100% 55.77 100% 

2 
Dynamic  

 equation (16) 
Basic scheme  
equation (10) 

13.06 76.8% 40.18 72.04% 

3 
Non-dynamic  
equation (3) 

mω∆  compensator 

 equation (19) 
3.35 19.7% 9.42 16.9% 

4 
Dynamic  

 equation (16) 
mω∆  compensator 

 equation (19) 
1.77 10.43% 3.76 6.75% 

 

V. CONCLUSION 

An adaptive multi-parameter estimation scheme for a BLDC 
motor is derived. Open loop simulation shows the effectiveness 
of the estimation scheme. Two suggested improvements are 
proposed for the scheme, viz., approximation of the motor 
electrical dynamics in the motor inverse model and 
compensator of the motor speed sampling delay error. The 
state transition matrix method and compensator of sampling 
delay of motor speed were implemented to realize the 
suggested performance improvements, respectively. In the 
application to an electric power steering system, where comT  

and mω  are both excited by the same driver input, the motor 

speed error compensation had a big performance payoff for the 
estimator as shown in the relative performance comparison of 
Table. 1, while the state-transition matrix based motor inverse 
model had a marginal payoff in comparison. For the best 
performance, it is desirable to implement both these 
suggestions as in case 4 of Table. 1. The motor speed error 
correction is computationally inexpensive and the state 
transition matrix is relatively computationally expensive. If the 
computational resources available in the controller are low, 
then only the motor speed error compensation should be 
implemented as in case 3. If we are solely considering the 
performance of the estimator, implementing case 2 alone does 
not make sense given the expense and the availability of case 
3.  
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