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Abstract—Common assumptions in most of the previous ro-
bot controllers are that the robot kinematics and manipulator
Jacobian are perfectly known and that the robot actuators
are able to generate the necessary level of torque inputs.
In this paper, an amplitude-limited torque input controller
is developed for revolute robot manipulators with uncertainty
in the kinematic and dynamic models. The adaptive controller
yields semi-global asymptotic regulation of the task-space set-
point error. The advantages of the proposed controller include
the ability to actively compensate for unknown parametric
effects in the dynamic and kinematic model and the ability to
ensure actuator constraints are not breached by calculating
the maximum required torque a priori.

I. INTRODUCTION
For a robotic system to interact with and execute tasks

in the workspace, a transformation between objects located
in the workspace and the robot is typically required. Since
the robot is controlled through inputs to the link actuators,
the robot kinematics and manipulator Jacobian are used to
relate a workspace coordinate system to coordinate systems
attached to each actuator. A common assumption in most of
the previous robot controllers is that the robot kinematics
and manipulator Jacobian are perfectly known and that the
robot actuators are able to generate the necessary level of
torque inputs. The assumption that the robot kinematics
and manipulator Jacobian are perfectly known limits ro-
bustness because measurement errors may lead to degraded
performance or unpredictable responses. Moreover, this
assumption limits the applicability of the controller since
many manipulators may have the same kinematic structure
but different kinematic parameters. The assumption that the
robot actuators are able to generate the necessary level of
torque is also limiting since robotic actuators have physical
constraints. If the controller commands more torque than
the actuators can supply, degraded or unpredictable motion
control and thermal or mechanical failure may result.
Based on the need for controllers that take actuator

constraints into account, several researchers have proposed
amplitude limited controllers (e.g., see [7]-[9], [11], [13],
[14], [16], [19], and the references within). Specifically,
Santibáñez and Kelly [16], proposed a global asymptotic
regulating controller that is composed of a saturated pro-
portional derivative (PD) feedback loop plus an exact model

knowledge feedforward gravity compensation term. In [11],
the same authors generalized a class of regulators for the
control problem given in [16]. Motivated by the research
given in [11] and [16], Loria et al. [13] designed an output
feedback (OFB) global asymptotic regulating controller;
however, exact knowledge of the gravity terms was still
required. To provide for robustness, Colbaugh et al. [7],
[8] designed full-state feedback (FSFB) and OFB global
asymptotic regulating controllers that compensate for un-
certainty; however, the control strategy switches between
one controller that is used to drive the setpoint error to a
small value, and another controller that is used to drive the
setpoint error to zero. In [19], a semi-global FSFB adaptive
controller was developed that includes an amplitude-limited
PD feedback loop plus a feedforward term that adapts
for gravity and static friction effects. In [14], Loria et
al. designed an exact model knowledge OFB semi-global
tracking controller. In [9], Dixon et al. proposed an adaptive
FSFB semi-global tracking controller. Each of the previous
amplitude limited controllers target a joint-space control
objective; hence, to achieve an objective defined in the
task-space, the aforementioned controllers would require
perfect knowledge of the manipulator forward kinematics
and Jacobian.
From a review of literature, it seems few controllers have

been developed that target uncertainty in the manipulator
forward kinematics and Jacobian. For example in [4]-
[6], Cheah et al. developed several approximate Jacobian
feedback controllers that exploit a static, best-guess estimate
of the manipulator Jacobian to achieve task-space regulation
objectives despite parametric uncertainty in the manipulator
Jacobian. As reported in [3], a drawback of the controllers
in [4]-[6] is that the task-space velocity of the robot end-
effector is required to be measureable, and the controller
in [5] requires the computation of an estimate for the
Jacobian inverse. In [3], Cheah et al. resolve these issues by
developing a PD controller that exploits a static, best-guess
estimate of the manipulator Jacobian to achieve a task-space
regulation result.
In this paper, an amplitude-limited torque input controller

is developed for revolute robot manipulators with uncer-
tainty in the kinematic and dynamic models. The adaptive



controller yields semi-global asymptotic regulation of the
task-space setpoint error. As in the recent result in [3], the
controller does not require the task-space velocity of the
robot end-effector to be measurable, does not require the
inverse of the estimated Jacobian to be computed, and does
not require exact model knowledge of the robot dynamics.
The current result actively compensates for uncertainty in
the gravity and static friction effects. In contrast to the use
of a static, best-guess estimate as in [3], the controller
in this paper also exploits a feedforward control term
that actively compensates for the parametric uncertainty in
the Jacobian. The advantages of the proposed controller
include the ability to actively compensate for unknown
parametric effects in the dynamic and kinematic model and
the ability to ensure actuator constraints are not breached
by calculating the maximum required torque a priori.

II. ROBOT MODEL
The dynamic model for a rigid n-link, serially connected,

direct-drive revolute robot is given as follows [12]

M(q)q̈ + Vm(q, q̇)q̇ +G(q) + Fssgn(q̇) = τ . (1)

In (1), q(t), q̇(t), q̈(t) ∈ Rn denote the link position, veloc-
ity, and acceleration vectors, respectively, M(q) ∈ Rn×n
represents the inertia matrix, Vm(q, q̇) ∈ Rn×n represents
centripetal-Coriolis matrix, G(q) ∈ Rn represents gravity
effects, Fs ∈ Rn×n denotes the constant diagonal static
friction coefficient matrix, sgn(·) ∈ Rn denotes the vector
signum function, and τ(t) ∈ Rn represents the torque input
vector. Let x(t) ∈ Rm (m ≤ n) represent a task-space
vector that is related to the robot joint-space as follows

x = h(q) ẋ = J(q)q̇(t) (2)

where h(q) ∈ Rm denotes the differentiable forward kine-
matics of the manipulator, and J(q) , ∂h

∂q
∈ Rm×n denotes

the differentiable manipulator Jacobian.
The dynamic model introduced in (1) has the following

properties that are used in the subsequent control develop-
ment and analysis.
• Property 1: The positive definite and symmetric inertia
matrix, satisfies the following inequalities

m1 kξk2 ≤ ξTM(q)ξ ≤ m2 kξk2 , ∀ξ ∈ Rn (3)

where m1, m2 ∈ R are known positive bounding
constants, and k·k is the standard Euclidean norm.

• Property 2: The time derivative of the inertia matrix
and the centripetal-Coriolis matrix satisfy the follow-
ing skew symmetric relationship

ξT
µ
1

2
Ṁ(q)− Vm(q, q̇)

¶
ξ = 0 ∀ξ ∈ Rn. (4)

• Property 3: The unknown gravitational and static fric-
tion terms can be linearly parameterized as follows

Y (q, q̇)φ , G(q) + Fssgn(q̇) (5)

where φ ∈ Rp contains unknown constant parameters,
and the regression matrix Y (q, q̇) ∈ Rn×p contains
measurable functions of the link position and link
velocity. Lower and upper bounds denoted by φ,φ ∈
Rp, respectively, are assumed to be known for each
parameter in φ as follows

φi ≤ φi ≤ φi ∀i = 1, 2, ...p (6)

where φi, φi ∈ R denote the i-th component of φ and
φ, respectively, and φi ∈ R denotes the i-th component
of φ.

• Property 4: The time derivative of the inertia matrix,
the centripetal-Coriolis matrix, the gravity vector, and
the static friction matrix can be upper bounded in the
following manner°°°Ṁ(q)°°°

i∞
≤ ζm kq̇k kVm(q, q̇)ki∞ ≤ ζc kq̇k ,

(7)
kG(q)k ≤ ζg, kFsk ≤ ζf .

where ζg, ζf , ζc, ζm ∈ R are known positive bounding
constants, and k·ki∞ denotes the induced infinity norm
of a matrix.

Remark 1: Since the controller in this paper is developed
for revolute robots, the terms M(q), C(q, q̇), G(q), and
J(q) are bounded for all possible q(t). That is, these terms
only depend on q(t) as arguments of bounded trigonometric
functions, and

kJ(q)ki∞ < δ1 (8)

where δ1 ∈ R is a known positive constant.

III. CONTROL DEVELOPMENT

A. Control Objective

As described previously, many robotic tasks are naturally
defined in terms of the task-space. Since the robot controller
is defined in the joint-space (i.e., as a motor current or a
joint torque) the manipulator Jacobian is typically required
to relate the task-space to the joint-space. The objective
for the controller described in this paper is to regulate the
end-effector of a robot manipulator to a desired task-space
setpoint using an amplitude limited torque input despite
uncertainty in the manipulator Jacobian and the dynamic
model. To quantify this objective, a task-space setpoint error
denoted by e(t) ∈ Rm is defined as follows

e , x− xd (9)

where x(t) was introduced in (2), and xd ∈ Rm denotes the
known, constant desired setpoint. As in [3], the subsequent
development is based on the assumption that x(t), q(t),
and q̇(t) are measurable. Specifically, q(t) and q̇(t) can be
obtained from encoder/tachometer sensors, and as in [3],
x(t) could be obtained from a camera system.



To facilitate the subsequent amplitude limited control
design, a vector function Tanh(e) ∈ Rm and a matrix
function Cosh(e) ∈ Rm×m are defined as follows
Tanh(e) , [tanh(e1), tanh(e2), ... , tanh(em)]T (10)

Cosh(e) , diag {cosh(e1), cosh(e2), ... , cosh(em)}
(11)

where diag {·} represents the standard diagonal matrix
whose off-diagonal elements are zero. Based on the con-
straint that the manipulator Jacobian is uncertain, a linear
parameterization denoted by YJ(q, e)φJ is defined as fol-
lows

YJ(q, e)φJ , JT (q)Tanh(e) (12)

where YJ(q, e) ∈ Rn×p2 contains measurable functions of
the link position and task-space setpoint error, and φJ ∈
Rp2 contains the unknown constant parameters contained in
the Jacobian matrix. To facilitate the subsequent analysis,
an estimate for (12) is developed as follows

YJ(q, e)φ̂J , ĴT (q)Tanh(e) (13)

where φ̂J(t) ∈ Rp2 denotes a subsequently designed
parameter estimate. Lower and upper bounds denoted by
φJ ,φJ ∈ Rp2 , respectively, are assumed to be known for
each parameter in φJ as follows

φJk ≤ φJk ≤ φJk ∀k = 1, 2, ...p2 (14)

where φJk, φJk ∈ R denote the k-th component of φJ and
φJ , respectively, and φJk ∈ R denotes the k-th component
of φJ . To facilitate the subsequent design and analysis, the
parameter estimation error signals φ̃(t) ∈ Rp and φ̃J(t) ∈
Rp2 are defined as follows

φ̃ , φ− φ̂ φ̃J , φJ − φ̂J (15)

where φ̂(t) ∈ Rp denotes a subsequently designed parame-
ter estimate.
Remark 2: Based on (8) the following inequality can be

developed °°°Ĵ(q)°°°
i∞
< δ2. (16)

where δ2 ∈ R denotes a known positive constant (i.e.,δ2 >
0 ).
Remark 3: The following inequalities can be shown to

hold for all e(t) ∈ Rm and q̇(t) ∈ Rn [9]

2
mX
i=1

ln (cosh (ei)) ≥ kTanh(e)k2 ≥ tanh2(kek), (17)

kq̇k+ 1 ≥ kq̇k
tanh(kq̇k) , (18)

kTanh(e)k kTanh(q̇)k ≤ kTanh(e)k2 + kTanh(q̇)k2 ,
(19)

kTanh(e)k kq̇k ≤ kTanh(e)k2 + kq̇k2 , (20)

kek ≥ kTanh(e)k , (21)

where Tanh(q̇) ∈ Rn is defined as in (10), and ln (·)
denotes the natural logarithm.

B. Closed-Loop Error System
Based on the control objective and the subsequent stabil-

ity analysis, the following adaptive controller is developed

τ = Y (q, q̇)φ̂− kpYJ(q, e)φ̂J − kvTanh(q̇) (22)

where kv, kp ∈ R denote constant control gains. Based on
the subsequent stability analysis, the parameter estimates
φ̂(t) and φ̂J(t) are generated from the following adaptation
laws

.

φ̂i = proj {Ωoi}
.

φ̂Jk(t) = proj {Ω1k} (23)

where Ωoi(q, q̇, e) and Ω1k(q, q̇, e) denote the i-th and k-
th component of Ωo(q, q̇, e) and Ω1(q, q̇, e), respectively,
∀i = 1, 2, ...p and ∀k = 1, 2, ...p2, where the auxiliary terms
Ωo(q, q̇, e) ∈ Rp and Ω1(q, q̇, e) ∈ Rp2 are defined as
Ωo(q, q̇, e) , −Γ0Y T (q, q̇)

³
q̇ + εYJ(q, e)φ̂J

´
(24)

Ω1(q, q̇, e) , −kpΓ1Y TJ (q, e)q̇.
For the adaptation laws given in (23) and (24), Γ0 ∈ Rp×p
and Γ1 ∈ Rp2×p2 denote constant, diagonal positive definite
adaptation gain matrices, ε ∈ R is a positive, constant
adaptation weighting gain, and the function proj{·} is
defined as follows

proj{Ωoi} ,



Ωoi if φ̂i > φi
Ωoi if φ̂i = φi and Ωoi ≥ 0
0 if φ̂i = φi and Ωoi < 0

0 if φ̂i = φi and Ωoi > 0

Ωoi if φ̂i = φi and Ωoi ≤ 0
Ωoi if φ̂i < φi

φi ≤ φ̂i(0) ≤ φi (25)

where φ̂i(t) denotes the i-th component of φ̂(t). The
proj{Ω1k(q, q̇, e)} is defined in the same manner as in
(25) with regard to φ̂Jk(t). The above projection algorithm
ensures that the following inequalities are satisfied (for
further details see [1] and [15])

φi ≤ φ̂i(t) ≤ φi φJk ≤ φ̂Jk(t) ≤ φJk. (26)

Based on (23)-(25), the following inequality can also be
shown to hold°°°° .φ̂J°°°° ≤ kΩ1(q, q̇, e)k ≤ kpλmax {Γ1} kYJ(q, e)ki∞ kq̇k

(27)
where λmax {·} denotes the maximum eigenvalue of a
matrix. After substituting (22) into (1), the following closed-
loop error system can be determined

M(q)q̈ + Vm(q, q̇)q̇ = −Y (q, q̇)φ̃− kpYJ(q, e)φ̂J
−kvTanh(q̇)

(28)
where (5) and (15) have been utilized.
• Assumption: Based on (13) and (23)-(25), the follow-
ing inequalities are assumed to be valid [3]

δ3 kξk2 < ξT ĴT (q)Ĵ(q)ξ ∀ξ ∈ Rn (29)



where δ3 ∈ R denotes a known positive constant (i.e.,
δ3 > 0 ).

Remark 4: The time derivative of the linear parameteri-
zation YJ(q, e)φ̂J(t) is given by the following expression

d

dt

³
YJ(q, e)φ̂J(t)

´
=

∂

∂q
YJ(q, e)q̇φ̂J(t)

+
∂

∂e
YJ(q, e)J(q)q̇φ̂J(t) + YJ(q, e)

.

φ̂J(t)

(30)
where (2) and (9) were utilized. After taking the norm of
(30), the following expression can be obtained°°°° ddt ³YJ(q, e)φ̂J(t)´

°°°° ≤ °°°° ∂

∂q
YJ(q, e)q̇

°°°°
i∞

°°°φ̂J(t)°°°
+

°°°° ∂

∂e
YJ(q, e)Jq̇

°°°°
i∞

°°°φ̂J(t)°°°+kYJ(q, e)ki∞ °°°° .φ̂J(t)°°°° .
Since q(t) and e(t) appear as arguments of bounded trigono-
metric functions in YJ(q, e), the following inequalities can
be developed

kYJ(q, e)ki∞ ≤ ζJ1

°°°° ∂

∂q
YJ(q, e)q̇

°°°°
i∞
≤ ζJ2 kq̇k

(31)°°°° ∂

∂e
YJ(q, e)Jq̇

°°°°
i∞
≤ ζJ3δ1 kq̇k (32)

where δ1 was defined in (8), and ζJ1, ζJ2, ζJ3 ∈ R denote
known positive constants. The inequalities in (26), (27),
(31), and (32) can now be used to formulate the following
upper bound °°°° ddt ³YJ(q, e)φ̂J(t)´

°°°° ≤ ζJ kq̇k (33)

where ζJ ∈ R denotes a known positive constant defined
as follows

ζJ , max
n
ζJ2

_
φJk, ζJ3δ1

_
φJk, kpλmax {Γ1} ζ2J1

o
. (34)

IV. STABILITY ANALYSIS
Theorem 1: Given the robotic system defined by (1) and

(2), the control torque input given in (22), along with
the adaptation law given in (23)-(25) ensures semi-global
asymptotic regulation of the task-space error in the sense
that

lim
t→∞ ke(t)k = 0. (35)

The result in (35) is valid, provided the control gains kp and
kv given in (22)-(24), and the adaptation weighting gain ε
defined in (24) are chosen to satisfy the following sufficient
conditions

kp > kv
δ2
δ3
> 0 (36)

ε < min

½
m1

2δ2m2
,
kp

2δ2m2
,
1

2δ2

¾
(37)

kv (1− 2εδ2)
2εζχ

≥
"s

λ2(0)
1
2m1 − εδ2m2

+ 1

#2
(38)

where m1 and m2 are defined in (3), δ2 and δ3 were
defined in (16) and (29), respectively, ζχ ∈ R denotes
a subsequently defined, positive bounding constant, and
λ2(t) ∈ R denotes a subsequently defined positive bounding
function.
Proof: Let V (t) ∈ R denote the following the nonnega-

tive function

V (t) , 1

2
q̇TM (q) q̇ + εTanhT (e)Ĵ(q)M (q) q̇(39)

+
mX
i=1

kp ln (cosh(ei)) +
1

2
φ̃
T
Γ−10 φ̃

+
1

2
φ̃
T

JΓ
−1
1 φ̃J .

Based on (3), (17), (19), (20), and (39), the Raleigh-Ritz
Theorem [10] can be used to bound V (t) by the following
inequalities

λ1(t) ≤ V (t) ≤ λ2(t). (40)

In (40), the positive function λ1(t) ∈ R is defined as follows

λ1(t) ,
µ
1

2
m1 − εδ2m2

¶
kq̇(t)k2 (41)

+
mX
i=1

(kp − 2εδ2m2) ln (cosh(ei(t)))

+
1

2
λmin

©
Γ−10

ª°°°φ̃(t)°°°2
+
1

2
λmin

©
Γ−11

ª°°°φ̃J(t)°°°2 ,
and the positive function λ2(t) introduced in (38) and (40)
is defined as

λ2(t) ,
µ
1

2
+ εδ2

¶
m2 kq̇(t)k2 (42)

+
mX
i=1

(kp + 2εδ2m2) ln (cosh(ei(t)))

+
1

2
λmax

©
Γ−10

ª°°°φ̃(t)°°°2
+
1

2
λmax

©
Γ−11

ª°°°φ̃J(t)°°°2 .
Based on (41), it is straightforward that if ε is selected
according to (37), then λ1(t) ≥ 0; hence, from (40) V (t) ≥
0.
After taking the time derivative of (39), the following

simplified expression can be obtained

V̇ (t) = −q̇TY φ̃− εTanhT (e)Ĵ(q)Y φ̃

−kpq̇TYJ φ̃J − kv q̇TTanh(q̇) + εχ

−εkpTanhT (e)Ĵ(q)ĴT (q)Tanh(e)
−εkvTanhT (e)Ĵ(q)Tanh(q̇)
−φ̃TΓ−10

.

φ̂− φ̃
T

JΓ
−1
1

.

φ̂J

(43)



where (4), (12), (13), (15), and (28) were utilized, and the
auxiliary term χ(t) ∈ R is defined as follows

χ , d

dt

³
YJ(q, e)φ̂J(t)

´
M (q) q̇ (44)

+TanhT (e)
³
Ĵ(q)

³
Ṁ(q)− Vm(q, q̇)

´
q̇
´
.

Based on the form of (44) and the properties of Tanh(·)
defined in (10), the expressions in (3), (7), (16), and (33)
can be utilized to show that

kχk ≤ ζχ kq̇k2 (45)

where the positive constant ζχ introduced in (38) and (45)
is defined as

ζχ , max {ζJm2, δ2ζm, δ2ζc} . (46)

After utilizing (16), (19), (21), (24), (29), and (45), the
following expression can be obtained

V̇ (t) ≤ −εkpδ3 kTanh(e)k2 − kv kTanh(q̇)k2
+εkvδ2

³
kTanh(e)k2 + kTanh(q̇)k2

´
+εζχ kq̇k2 + φ̃

T
Γ−10

µ
Ωo −

.

φ̂

¶
+φ̃

T

JΓ
−1
1

µ
Ω1 −

.

φ̂J

¶ (47)

By utilizing (23)-(25), the following advantageous expres-
sion1 can be developed for the upper bound of (47)

V̇ (t) ≤ −ε (kpδ3 − kvδ2) kTanh(e)k2
−kv2 kTanh(q̇)k2 + εζχ kq̇k2
− ¡kv2 − εkvδ2

¢ kTanh(q̇)k2 . (48)

Provided that the condition given in (36) and the following
inequality are both satisfied

−
µ
kv
2
− εkvδ2

¶
kTanh(q̇)k2 + εζχ kq̇k2 ≤ 0 (49)

the expression in (48) can be used to prove that V̇ (t) ≤ 0.
To facilitate further analysis, (18), (40), and (41) are used
to obtain the following sufficient condition for (49)

(kv − 2εkvδ2)
2εζχ

≥
Ãs

V (t)
1
2m1 − εm2

+ 1

!2
. (50)

If the conditions in (36), (37), and (50) are satisfied,
the inequality in (48) can be used to obtain the following
inequality

V̇ (t) ≤ −β kψk2 (51)

where β ∈ R is a positive constant, and ψ(t) ∈ Rm+n is
given by

ψ ,
£
TanhT (e) TanhT (q̇)

¤T
. (52)

From (51), it is clear that V̇ (t) ≤ 0; therefore,
V (z(t), t) ≤ V (z(0), 0) ≤ λ2(z(0), 0) ∀t ≥ 0 (53)
1For more details on how the projection algorithm allows one to proceed

from (47) to (48), the reader is referred to [17].

where λ2(t) was defined in (42), and z(t) ∈ R4 is given by

z ,
"
kq̇k2

mX
i=1

ln(cosh(ei))
°°°φ̃°°°2 °°°φ̃J°°°2

#T
. (54)

Based on (53), the final sufficient condition for (50) can be
expressed by the inequality in (38). For more details on the
above semi-global stability argument, the reader is referred
to [2], where a similar type of argument was utilized for a
different problem.
From (53) it is clear that V (t) ∈ L∞; hence, q̇(t),

e(t), φ̃(t), φ̃J(t),ψ(t) ∈ L∞. Since e(t) ∈ L∞, and the
desired setpoint is constant, it is clear that x(t) ∈ L∞.
Since the development is directed at revolute robots, q(t)
only appears in h(q) in (2) as an argument of bounded
trigonometric functions; hence, it is typically unclear how
the boundedness of q(t) can be proven. However, the
boundedness of q(t) is typically not a concern since q(t)
only appears as an argument of bounded trigonometric
functions in the controller. From (6), (15), (23)-(25), and
the preceding arguments, it is clear that

.

φ̂(t), φ̂(t),
.

φ̂J(t),
φ̂J(t), τ(t) ∈ L∞. Moreover, (2) and the facts that q̇(t),
J(q) ∈ L∞ can be used to prove that ẋ(t), ė(t) ∈ L∞;
hence, e(t) is uniformly continuous. From (51), (52), and
the properties of the hyperbolic tangent, it is clear that q̇(t),
e(t) ∈ L2 [10]. Since e(t), ė(t) ∈ L∞ and e(t) ∈ L2,
Barbalat’s Lemma [18] can be invoked to conclude the
result in (35). ¤
Remark 5: An important advantage of the proposed

adaptive controller given by (22)-(25) is that it can be upper
bounded in terms of a priori known terms as follows

kτk ≤ kY ki∞
°°φ°°+ kp kYJki∞ °°φJ°°+ kv. (55)

Furthermore, the adaptive weighting gain ε can be selected
arbitrarily small to satisfy the conditions given in (36)-(38);
hence, the magnitude of kv can be made arbitrarily small.

V. CONCLUSION
An amplitude limited controller was developed for robot

manipulators despite uncertainty in the dynamic and kine-
matic models. The adaptive controller yields semi-global
asymptotic regulation of the task-space setpoint error. The
advantages of the proposed controller include the ability
to actively compensate for unknown parametric effects in
the dynamic and kinematic model and the ability to ensure
actuator constraints are not breached by calculating the
maximum required torque a priori.
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