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Abstract— In this paper, two novel robust adaptive 

Cartesian space control algorithms are proposed for friction 
compensation in the six degrees of freedom high performance 
Stewart Platform based machine tools. The first controller 
utilizes an adaptive friction compensation scheme based on a 
postulated linear-in-the-parameters friction model. The 
proposed friction compensation algorithm explicitly accounts 
for time varying normal forces as well as dependence of the 
friction coefficient on velocity. The Stribeck friction 
characteristic and varying spherical joint static friction are 
treated as bounded disturbances, and compensated by a 
sliding mode robust controller. In the second controller, a new 
form of Takagi-Sugeno Multi-Input Multi-Output fuzzy 
system is developed to adaptively learn unknown friction 
behavior and compensate for it. This approach assumes that 
no a priori knowledge about frictional effects in the strut 
joints is available. The simulation results indicate that large 
contouring errors caused by friction at the velocity reversals 
when conventional control algorithms are used, are reduced 
greatly by the adaptive controllers. 

I. INTRODUCTION 

In late nineties, machine tool manufacturers have 
introduced 6 degree-of-freedom machine tools with 
structures based on parallel linkage mechanisms and 

have promoted their use for the machining of sculptured 
surfaces [15].  The specific type of parallel-link machine of 
interest here is the Stewart Platform mechanism [10]. One 
arrangement of the Stewart Platform is shown in Figure 1.  
Considerable research attention in the past 10 years has 
been focused on the kinematics and design of the 
mechanism [15]. Analysis suggests that the stiffness of S.P. 
machine tools is very sensitive to its location in the 
workspace, and is also strongly influenced by the machine 
geometric configuration [13]. This has resulted in very 
conservative use of high speed capabilities of the S.P. Very 

few researchers have worked on the multi-axial motion 
control of such mechanisms as well as the development of 
specialized control strategies which benefit from the 
manipulator's parallel structure and offers better 
performance characteristics.  Nguyen et al (1993) proposed 
an adaptive joint space controller for the S.P.; however, the 
results were unsatisfactory according to machine tool 
standards. Harib and Srinivasan (1998) presented a 
disturbance observer based cross-coupling controller in 
Cartesian space. They demonstrated through simulation 
studies the effectiveness of the controller, achieving a 
contour error of 5 microns for a circular contour of radius 
0.5 m traversed at feed rates of 12 m/min assuming 
frictionless joints.  In this paper, attention is focused on the 
effects of frictional forces and torques on machine 
accuracy, as well as on inclusion of compensation 
techniques for such phenomena through nonlinear control 
algorithms. Two Cartesian space robust adaptive 
decoupling and linearizing controllers are developed which 
consist of an adaptive/robust controller that is able to 
simultaneously adapt on-line for the adverse effects 
resulting from the nonlinear system dynamics, and an 
adaptive model based friction compensation or adaptive 
nonparametric fuzzy friction compensator that is able to 
handle uncertainties associated with frictional effects.  

 

 
Manuscript received September 15, 2003.  This work was supported in 

part by the National Science Foundation (NSF) under Grant DMI-9632986 
and the National Institute of Standards and Technology (NIST) under 
Grant 70NANB6H0080. Fig. 1. The NIST Octahedral Machine Toll 

D. Garagic was with The Ohio State University, Columbus, OH 43210 
USA. He is now with the Scientific Systems, Woburn, MA 01801 USA 
(phone: 781-933-5355; fax: 781-938-4752; e-mail: denisg@ssci.com). II. PARAMETRIZATION OF THE HEXAPOD’S 

DYNAMIC EQUATIONS OF MOTION K. Srinivasan is with the Mechanical Engineering Department, The 
Ohio State University, Columbus, OH 43210 USA (e-mail: 
srinivasan.3@osu.edu) The dynamic model of the Hexapod machining center, 

which was derived using the Lagrangian and Newton-Euler 
formulation by Harib (1997), Harib and Srinivasan (2003), 

 
 
 

 

mailto:denisg@ssci.com


 
 

 

provides the equations of motion in a compact analytical 
form containing the inertia matrix, the matrix containing 
Coriolis/centripetal terms, and the gravity vector. The rigid 
body and actuator dynamic equations, written in Cartesian 
space, are given as [5] 
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where is the Cartesian space force/torque vector, M(q) is 
the machine inertia matrix, N is the Cartesian space 
vector of Coriolis and centrifugal forces and torques, and 
G(q) is the Cartesian space vector of gravity forces and 
torques.  The Cartesian space coordinate vector q, whose 
elements are the six variables chosen to describe the 
position and orientation of the platform, is defined as 

.  The platform orientation is given 

as a set of Euler angles
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which uniquely 
determines the orientation of a rigid body after the certain 
sequence of rotations. The term Y is the 
regressor matrix of the parametrized linear-in-parameters 
rigid body dynamics model defined shortly. is the 
actuator inertia diagonal matrix, is the actuator viscous 
damping coefficient diagonal matrix, and is the actuator 

gain diagonal matrix. is the vector of motor torques.  
is the Jacobian matrix which inverse is defined in [5]  
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It was shown by Garagic (2002) that the term , 
equation (1), required for the adaptive law can be derived 
using the Newton-Euler formulation of the rigid body 
dynamics, which ultimately results in a computationally 
efficient control algorithm. 

Y(q,q,q)Θ

Substituting the first of equations (1) into the second one 
results in the combined linear-in-the-parameters model of 
the rigid body and mechanical actuator dynamics in 
Cartesian coordinate space with respect to the set of 
unknown parameter vector Θ , rewritten as I
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where 

and  is the regressor matrix of the 

parametrized linear-in-parameters model of the rigid body 
dynamics defined in [1]. 
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 Because the Stewart Platform contains all of the distinct 
features of an entire class of parallel mechanisms, the 
representation of the dynamic model given by equation (3) 

is relevant for the general field of parallel-link kinematic 
structures.  This form of the dynamic model is useful for 
system identification and development of adaptive control 
algorithms.      

III. JOINTS FRICTION MODEL 
In the proposed work, attention is focused on the effects 

of frictional forces and torques on machine accuracy, as 
well as on inclusion of compensation techniques for such 
phenomena through nonlinear control algorithms. 
Frictional effects at both powered and unpowered joints of 
the parallel manipulator, shown in Figure 1, are significant 
[9], since even straight line motion of the cutter relative to 
the workpiece in a Stewart Platform involves multiple axes 
and direction reversals.  Joint friction causes bending of the 
struts resulting in an error in their effective lengths.  The 
elastic deformation of the strut is dependent on the 
direction of motion causing angular reversal error [9].  
Friction losses in the linear actuators are due to sliding 
contact between the inner and outer sleeves of the struts, 
and sliding motion between screw and nut threads.  Due to 
the fact that strut velocity reversals occur depending on the 
type of the desired trajectory being executed, low velocity 
friction at the prismatic joints will have a great impact on 
the tracking error. The load dependent friction at the 
prismatic joints of the full-scale machine is more 
significant due to the larger normal forces at the joints.  
Therefore, the friction model for the powered joints must 
account for the time varying normal reaction forces, as well 
as functional dependence of the coefficient of friction on 
the strut extension rate. On the other hand, frictional 
analysis of three-DOF spherical joints requires availability 
of information on relative motion and reaction forces at the 
joints.  The prismatic joint friction forces are modeled as 
functions of coefficients of friction that vary with the strut 
extension rate, as well as the magnitudes of the time 
varying normal forces acting at the points of sliding contact 
between the inner tube and outer sleeve of the strut. The 
friction model is split into frictional effects which involve 
linear dependence on unknown parameters (viz. Coulomb 
and viscous friction), and those which involve nonlinear 
dependence on parameters (viz. Stribeck friction). The 
friction in the spherical joints is a function of relative 
motion and reaction forces acting on the strut at the base 
and platform joint.  The spherical joint is viewed as a 
revolute joint having a pure rotation about an instantaneous 
screw axis. The linear-in-parameters load dependent 
friction model for the frictional effects in the spherical 
joints to be used in the adaptive model based friction 
compensation scheme was derived as [1]  

sf=T TK J C K J Y (q,q,q)Θa 1 F a 1 sf                                                    (4) 

The overall linear-in-parameters dynamic model of the 
Stewart Platform mechanism in Cartesian coordinate space 
is given by   
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strF is a (6x1) vector representing Stribeck friction at the 
prismatic joints  
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where 1nx∈ℜd dq ,q  represent the desired Cartesian space 

position and velocity vectors and represent the 
desired and actual strut length (joint space) variables. 
Equation (6) gives an approximate estimate of the Cartesian 
space error vector based on the joint space error vector 
obtained after two iterations of a numerical solution of the 
forward kinematic problem based on the Newton-Raphson 
method, as described in [4]. We assume that q is close 
enough to the desired Cartesian space position, and l is 
close enough to the corresponding desired joint space 
position, which will be guaranteed by effective closed loop 
control. J is the Jacobian matrix defined by equation (2).  
Then we define vector 

1, nx∈ℜdl l

1nx∈ℜrq  by  ( , , )T
iF q q q is the normal component of the reaction force 

acting at the point of sliding contact between the drive 
components. , ,

i i isl cl v lµ µ µ are the static, Coulomb and 

viscous friction coefficients of the ith strut respectively, and 
is the rate of the Stribeck effect, assumed here to be a 

constant [1].  
srlv

= +r dq q Λq

6

                                        (7) 
where 1( ....... )ndiag λ λ ==Λ is a positive definite matrix. 
These terms will enable us express the nonlinear 
compensation and decoupling terms as functions of the 
desired velocity and acceleration, corrected by the current 
estimates of Cartesian position and velocity, q, .  q

IV. ROBUST ADAPTIVE FRICTION 
COMPENSATION 

To achieve robust tracking control, a sliding surface is 
defined as  

= − = + − = +r dσ q q q Λq q q Λq

+

                   (8) Stewart Platforms are actuated through six prismatic 
joints. These six linear motion axes constitute the joint 
space coordinates. The motion of the six prismatic joints 
results in motion of the end effector described by three 
DOF linear motion and three DOF angular motion. These 
six variables constitute Cartesian space coordinates. The 
motion control problem formulated in Cartesian space 
naturally separates position and orientation coordinates. 
The main problem with Cartesian space control for Stewart 
Platform machine tools, however, is in obtaining Cartesian 
space coordinates in real time from joint space 
measurements (i.e. the lengths of six struts), or solving the 
forward kinematics problem [15] .  

where  is a single n-dimensional vector sliding 
manifold. The control law that combines the computed 
torque/inverse dynamics approach is defined as 

1nx∈ℜσ

ˆ ˆ, , ,= +1 I r r I F r r F Du Y (q q ,q )Θ Y (q q ,q l)Θ K σ                   (9)                    

where are estimates of the machine 
mass/inertial parameters and friction parameters 
respectively, and obtained using adaptive laws defined 
shortly.  Note that the terms and 

, given by equations (3) and (5), are 
derived using the Newton-Euler formulation of the rigid 
body dynamics [2], which ultimately results in a 
computationally efficient control algorithm.  It is also 
important to note that these terms do not depend on the 
actual Cartesian space acceleration, but only on its desired 
value.  
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Y (q
In this paper we use an iterative approach based on 

Newton-Raphson's method [7], to solve for forward 
kinematics problem of the Stewart Platform based 
mechanism.  As shown in [7] this iterative method works 
well in tracking control problems where it is employed to 
compute the actual position and orientation of the payload 
platform with respect to the base platform using the 
actuator lengths.  This occurs because the current guess is 
based on the previous position and orientation of the 
payload platform, which is close to the correct solution 
provided that the desired path is tracked closely.  The use 
of a control scheme combining adaptive and robust control 
is explored in this section.    

The term is the regressor matrix 
of the parametrized linear-in-parameters friction model and 
can be split into the regressor matrix 

 given in equation (5), related to 
the unknown Coulomb friction parameters and the 
regressor matrix given in equation 
(5), related to the unknown viscous friction parameters of 
the prismatic joints. The Stribeck friction,

, , nxpf∈ℜF r rY (q q ,q l)

, , nxpf∈ℜrq l)

, , ∈ℜFV r rY (q q ,q l)

FC rY (q q ,

nxpf

1nx∈ ℜstrF , in 
the prismatic joints will be viewed as a bounded 
disturbance.  

A. Cartesian Space Direct Robust Adaptive Controller 
with Model Based Adaptive Friction Compensation 
 
The Cartesian space following error and its derivative are 

defined: 

 



 
 

 

It is important to stress that the computation of reaction 
forces in the regressor matrices Y (  and 

will not be implicit in acceleration and 
therefore will not require an iterative root finding solution. 
Since the calculation of reaction forces will require 
knowledge of the parameter vector Θ , the previous 
estimate of the parameter vector  will be utilized, 
resulting in a one integration step delay.     
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 On the other hand, the linear-in-parameters spherical 
joint friction model is more computationally involved as 
shown in [1].  Since we know that the parameter vector of 
unknown spherical joints friction coefficients lies in a 
known bounded open convex set 
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equation (4) is bounded by a known scalar function  
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since 
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x

is a bounded set and therefore there exists a 

masfΘ
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. The robust adaptive law that combines the 

parameter projection algorithm with the switching σ-
modification is developed here. For parameter projection, 
we need to know a convex region in the parameter space of 

, which contains the true parameter 

[1].  The robust adaptive law is 
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where 1 6( . . . ) 0I diag γ γ=Γ >  is strictly positive 
definite (s.p.d.) matrix, and “Pr” is a projection function 
defined in [1]. The robustification of the adaptive law is 
accomplished by using the switching-σ term, [12]. The 
parameter projection algorithm will ensure that for  
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where 1 6( . . . ) 0 0Fc diag ν ν= >Γ
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Fv η η= >
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Γ  are s.p.d. matrices. “Pr” is 
a projection algorithm, and  are the switching-

σ terms derived in [1].  The error between the ideal 
controller , u ,and its approximation, equation (9), is 

represented by . This term results from 
unmodeled dynamic effects such as Stribeck friction and 
spherical joints friction as well as the modeling error in 
representing the rigid body and actuator dynamics by 

. We can assume 
that the modeling error is bounded by a known scalar 
function due to the fact that  is bounded 
and belongs to the bounded set 
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Note that  is only required to be a bounding function 

and that a simpler  than the one given by equation (14) 
can be chosen to reduce the computation time required for 
real time implementation.  
     To account for the modeling and ensure that the system 
output follows the desired trajectory, a “smoothed” sliding 
mode control is added to the control law given in equation 
(9) as 

slu      (15)                        
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Similarly, the robust adaptive friction laws are defined as 
[1]  
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The stability analysis of the closed loop system is based 
on Lyapunov stability theory. The candidate Lyapunov 
function is used to describe error in tracking and error 
between the desired controller and the current controller, 
and to account for the uncertainties associated with 
unknown manipulator dynamics and friction. Before we 
proceed with the choice of the Lyapunov function, it is 
necessary to define the closed loop error dynamics as 
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where the mass matrix )M M , and the 

term  is associated with disturbance due to 
unmodeled manipulator dynamics. An important property 
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of the manipulator model given by equation (3) is that the 
time derivative of the mass matrix, , and the overall 

Coriolis/centripetal matrix, Q , are skew symmetric [8], 
[14].  The candidate Lyapunov function is given by 
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In the stability analysis there will be two cases to consider: 
Case 1. ε≥σ .  In this case, according to the definition 

of the sliding mode control gain in equation (16), u , it 
can be shown that the time derivative of (19) is [1] 
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 The physical nature of friction is such that it often 
changes with time and may depend in an unknown way on 
environmental factors (i.e. temperature changes, lubricant 

condition etc).  Therefore, as an alternative to model-based 
friction compensation, we developed a multi-input multi-
output fuzzy systems approach.  The special form of the 
Takagi-Sugeno fuzzy system [11] will be utilized to 
adaptively learn friction behavior and compensate for it [2] 
The Takagi-Sugeno fuzzy systems used for friction 
compensation for the prismatic and spherical joints of the 
Stewart Platform mechanism will be partitioned into n=6 
subsystems. This is a reasonable assumption since joint 
frictional effects in the machine joint space can be viewed 
as decoupled due to the machine configuration (parallel 
structure with six identical drives). Therefore, the jth 
(j=1,2...6) Takagi – Sugeno fuzzy systems with center 
average defuzzification consists of Takagi-Sugeno fuzzy 
rules as follows: 
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where is a s.p.d. matrix. Using the property of the 

matrix norm we have 
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 being the smallest singular value of the gain 
matrix .  It follows, from equation (20), that V is 
decreasing with time along the system's trajectory.  By 
Barbalat’s lemma (Ioannou and Sun, 1996), this implies 
that  converges asymptotically to zero which implies 
convergence to zero of , and the 

boundedness of Θ Θ . In addition, the control law given by 
equation (38) guarantees fast iterative numerical solution of 
the forward kinematics problem based on the Newton-
Raphson method, because it guarantees that q with 

high accuracy (Garagic, 2002). Therefore, V  is negative 
definite in terms of 

 an rq q→

→

d
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σ .  Hence, V is decreasing in this 

region and σ decreases towards ε.   

where 1,2....6j =  is the number of partitioned fuzzy 
subsystems, 1, 2i ,....R=  is the number of fuzzy rules for 

the jth fuzzy subsystem.  is the linguistic value of the 
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where R is the number of fuzzy rules for the jth fuzzy 
subsystem, and  is the value of the membership 

function (i.e. Gaussian type) for the premise of the i

j
i

µ
th rule 

given the input x  for the jth fuzzy subsystem. It is assumed 
that the fuzzy system in equation (23) is constructed in 

such a way that 
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Case 2.  ε<σ .  In this case, according to the definition 

of the sliding mode control gain in equation (16), u , we 
have  
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The last term is generally positive in this region 
( ε<σ ), so that nothing can be said about whether V is 

increasing or decreasing.  If V is increasing in this region, 
then σ is increasing towards  ε. 
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B. Robust Adaptive Controller with Takagi-Sugeno 
Fuzzy Adaptive Friction Compensation  

 

 



 
 

 

The overall partitioned Takagi-Sugeno fuzzy systems can 
be written in compact matrix form utilizing the properties 
of the direct matrix sum, ⊕,   

( )( )11 1 1

* *

( ) ... ... ...

ˆ
N

TT T
ts Nx N fr fr NF x z z A A= ⊕ ⊕ ⊕ ⊕  

= FR

ς ς

Z A Ξ

        (25) 

   The unknown nonlinear function F(x) represents 
frictional effects in the prismatic and spherical joints of the 
Stewart Platform mechanism and can be defined using 
equations (4) and (5) as 

ˆ( ) ( ) ,

( , )

T
r r

str

x = +

+
a 1 F F r r F

a r r

F K J C q,q ,q Y (q,q ,q l)Θ

K F q,q ,q l
                 (26) 

According to the universal approximation property of 
Takagi-Sugeno fuzzy systems, there is a T-S fuzzy system 
such that 

* * *( ) Fr frx = +F Z A Ξ d                                                  (27)             
0τ                       

where 0τ is only required to be a bounding function and a 

simpler  than the one given by equation (32) can be 
chosen to reduce the computation time required for real 
time implementation. Also, a smoothed version of the 
sliding control law in equation (32) can be used in 
accordance with equation (16). 

where , the approximation error that arises when frd
( )xF is represented with a fuzzy system, and , 

represent the optimum, and unknown, fuzzy system 
parameters that minimize the approximation errors. The 
approximation error is bounded on a compact set by 

* ( )Fr tA

fr < frDd , with frD a known bound. We shall require an 

assumption that the ideal fuzzy parameters given in are 

bounded on any compact subset of ℜ , so that 

*
FrA

n

*
Fr F

A maxA≤ , with known and maxA F⋅ being the 

Frobenius norm.  The following fuzzy system )(F̂ x will be 

used to approximate )x(F : 
* ˆˆ ( )F x = Z AΞ*



ˆ

                                                                (28) 

* *ˆ= + + +I I D sl FRu Y Θ K σ u Z A Ξ                           (30) 
with , a positive definite matrix. The adaptive law 

to tune  is given by equation (11), while the parameters, 

, of the T-S fuzzy system (27) are updated using the 
following update law 

0>DK
ˆ

IΘ
ˆ

FRA

ˆ    1,2,...6
jj j−= ∀ =

j j

1 T
fr fr frA Γ z ς                        (31) 

with  being any constant positive definite 

design matrices. The sliding mode control term, u , is 
defined as  

,  j 1,2,..6− =
j

1
frΓ

sl

max
0 0sgn( ) , ( , , ) 0sl fr I r r ID Y q q qτ τ= ≥ + Θ >u σ      (32) 

   The stability of this controller is proved in the same way 
as the previous one.  We define the candidate Lyapunov 
function as  

(
61 1 1

2 2 2 j j j

N
T T
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where is defined in equation 

(31). The derivative of equation (33) yields 

j
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The update law for  is given by  
jfrΦ6...2,1,ˆ =jA

jfr

1,2,...ql ,Fi
l =

m
jz ℜ∈

 of the actual values of the T-S fuzzy 

subsystems given by the adaptive algorithm to be specified 
yet. The choice of inputs to the Takagi-Sugeno fuzzy 
subsystems is discussed in details in [1].  The operational 
ranges of these inputs for the specified input trajectories are 
known heuristically. This information is used to assign the 
Gaussian membership functions with the linguistic values 

 (e.g. slow, medium or fast strut extension 
rate) to the operational space of the input variable [1].  In 
order to account for load dependent friction, we select the 
vector in equation (24) as 

σςzΓΦ T1
jjfrfr jj

−=                                             (35) 

where 
jfrΓ is a positive definite adaptation gain matrix. To 

assure that stays bounded, we will use an update law 

with projection [2], which will guarantee that  

, a compact parameter set.  The bounds for the parameter 
matrix should be in range of the static friction level 

for both directions of motion. Using the projection 
algorithm, we also ensure that V  it follows 
that V is decreasing with time along the system's trajectory. 

FRÂ
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≤ − T
Dσ K σ

1 sgn( )
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         (29) 

V. CONTOURING PERFORMANCE EVALUATION Now, we select the control law that combines the computed 
inverse dynamics term given by equation (9) excluding 
model based friction compensation, a robust sliding mode 
controller yet to be defined, u , and an adaptive friction 
compensator based on T-S fuzzy systems as follows: 

sl

A computer simulation study is performed to evaluate the 
effectiveness of the controllers described in the preceding 
sections. The Cartesian space direct robust adaptive 
controller (CDAC) with model-based adaptive friction 

 



 
 

 

compensation, as well as the Cartesian space direct robust 
adaptive controller with Takagi-Sugeno fuzzy adaptive 
friction compensation (FCDAC), are compared with the 
Cartesian space computed torque controller (CCTPID) [3]. 
For Stewart Platform based machine tools, which involve 
active control of all six DOF of motion, the controller 
performance is characterized in terms of position and 
orientation contour errors [4].  

The first case studied involves controller performance 
evaluation for horizontal circular trajectory: the radius is 
0.2 meter and the contour starts at (-0.1, -0.1732, 0) meter 
and ends at (0.2, -0.1732, 0) meter while the orientation 
coordinate starts at (0, -90, 0) degrees and end at (0, 90, 0) 
degrees. Also, a maximum feedrate of 0.05 m/s for the 
positional displacement along the trajectory is used, with 
acceleration/deceleration limits of ±2 m/sec2 at the 
beginning and end of the trapezoidal trajectory.  

While the first proposed controller is model dependent, 
the second adaptive controller — the Cartesian space 
robust direct adaptive controller with fuzzy adaptive 
friction compensation (FCDAC) — is capable of 
compensating for frictional effects and assumes no a priori 
knowledge of frictional effects in the machine joints is 
available. Adequate location of the centers of the 
membership functions as well as their spread will also 
influence performance of the fuzzy identifier and should be 
investigated before the number of rules is increased, since 
their adjustment will not result in increase in the 
computational complexity of the algorithm.  
 Figure 2 shows the contour and orientation errors ε and γ 
for the CCTPID, CDAC and CFDAC controllers. As can 
be seen from Figure 2, the contouring error and orientation 
error with the CCTPID controller contain a prominent 
friction induced error – the glitch. Twelve glitches are seen 
on the contouring error due to 12 reversals that occur (two 
per leg) for every revolution. However, as the geometry of 
the Hexapod machining center incorporates three parallel 
leg pairs, the size of six of the glitches is in the range of 10 
µm, while the size of the other six glitches is in the range of 
3 µm. By contrast, the CDAC and FCDAC controllers 
effectively compensate for frictional effects in the machine 
joints and, as a result, the contouring error and orientation 
error are free of the glitches. The contouring error for the 
CDAC and FCDAC controllers is kept under 20 µm and 
the maximum orientation error is 0.08 minutes. The 
proposed adaptive controllers are capable of compensating 
for errors induced by friction when the axes change 
direction, thus eliminating the resulting glitches, in addition 
to compensating for unknown inertial, Coriolis, and gravity 
effects. 
Controller performance evaluation for cornering contour:  
the cornering contour consists of two straight-line segments 
that make a 90-degree angle. The first segment starts at 
point (0, 0, 0) and ends at point (0.05, 0.05, 0.01) meter, 
relative to the center of the workspace, while the second 
segment ends at approximately (0, 0.098, 0.02) meter. Here 

also, a constant feedrate of 0.2 m/sec is used, with a 
trapezoidal velocity profile at the beginning of the first 
segment and end of the second segment. At the corner, the 
commanded velocity directions are changed without 
acceleration/deceleration limits. The orientation is kept 
constant in this test, at (0, 90, 0) degrees.  Because of the 
abrupt change in direction at the corner, a large contour 
error will result when the CCTPID controller is used, as 
shown in Figure 3. The corresponding contour and 
orientation errors for the CDAC controller are shown in 
Figure 4. At the corner, the contour error is reduced from 
350 µm to 15 µm when using the CDAC and FCDAC 
controllers.   

VI. CONCLUSION 
The use of a Cartesian space control scheme combining 

adaptive and robust control for a 6 degree of freedom 
Stewart Platform machine tool are developed in this paper. 
Measurements in this space is derived in real time from 
joint space measurements by an approximate solution of the 
forward kinematic relationships.  
The control scheme can account for frictional effects which 
may be unmodeled, as well as being able to deal with 
uncertainties caused by unknown manipulator parameters 
and nonlinear effects. The first controller utilizes an 
adaptive friction compensation scheme based on a 
postulated linear-in-the-parameters friction model. The 
proposed friction compensation algorithm explicitly 
accounts for time varying normal forces as well as 
dependence of the friction coefficient on velocity. The 
Stribeck friction characteristic and varying spherical joint 
static friction are treated as bounded disturbances, and 
compensated by a sliding mode robust controller. In the 
second controller, a special form of Takagi-Sugeno multi-
input multi-output fuzzy system is utilized to adaptively 
learn unknown friction behavior and compensate for it. 
This approach assumes that no a priori knowledge about 
frictional effects in the strut joints is available. The 
performance of the two proposed robust adaptive 
controllers with friction compensation is evaluated on the 
simulation for a number of representative Cartesian space 
trajectories, and compared with the response of a Cartesian 
space computed torque PID controller (CCTPID). The 
proposed controllers clearly outperform the CCTPID 
controller. The large tracking errors caused by friction at 
the velocity reversals are reduced greatly by the adaptive 
controllers. In addition, the Cartesian space robust adaptive 
controllers presented in this paper can be extended to 
applications where the problem of controlling interaction 
between the machine tool tip and the environment is of 
concern. 
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Fig. 3. Contour error for cornering contour with 0.2 m/sec feed rate: 
CCTPID control ( 0 100ω = rad/sec, 0 100ω =  rad/sec). 
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Fig. 4. Contour error for cornering contour with 0.2 m/sec feed 
rate: CDAC control. 
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