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A
Abstract— This paper presents an optimal filter for a contin- Discretize model, sample Discrte KF ()
uous dynamic system with continuous, multirate and randomly Iscrete Approach 1
sampled measurements. Using the optimal filtering theory
for the Ito-Volterra systems with discontinuous measure, the
optimal filter for linear state space model with continuous \

Continuous | A continuous measurements

Process

and discrete measurements is rigorously derived, and several | | -
known results are recovered, including the Kalman-Bucy and

A A
Lift sampled Kalman-Bucy | (1) Aty
measurements Filter

Jazwinski filters. A previously unknown optimal filter for the Sampled and continuous

continuous systems with continuous and sampled measure- | measurements

ments, including the case of multirate and random sampling, KF with sampled |3¥(9) ()

is obtained. Using the Monte Carlo simulations, the derived & confinuons Appmachj
filter is compared with the previously reported alternatives. measurements ptna)

The comparison shows that the developed filter gives the
least-mean-squares estimates of the states and the correct _ o ] ] ]
estimation error covariance. The alternative filters produce Fig. 1. State estimation problem for continuous process with continuous
less than optimal estimates, and, at the same time, tend to 2"d sampled measurements.

overestimate the quality of the obtained estimations. Numerical .

simulations demonstrate that the proposed approach is more 1St two approaches. However, the last approach must be
convenient in practice: It allows one to simultaneously handle followed to obtain the optimal state estimation, and is more

analog and sampled measurements without approximations, theoretically challenging since it leads to continuous filter
and is particularly convenient in the case of the multirate  equations with discontinuous inputs.
and randomly sampled measurements, often present with a

human-in-the-loop and networked data acquisition. Most of the existing algorithms on multirate state es-

timation are based on the application of the discrete KF
I. INTRODUCTION (Approach 1). For example, a multirate extended KF (EKF)

Most processes of practical interest are continuous was used in [1] to estimate the unmeasurable process states

nature, while the available measurements used to probe #@i"d frequently available measurements of temperature and

current state of the process are either sampled (discrete),d(?rnSIty and the infrequent and delayed measurements of

a combination of sampled and continuous measuremenfyerage molecular weights. Shah et al. [2] implemented a
Itirate formulation of the iterated EKF on a bioreactor.

There are three fundamental options in approaching tHBY _ _
problem of state estimation of a continuous process withfutha et al. [3] proposed fixed-lag smoothing-based EKF
the combination of continuous and discrete measuremenfidorithm. The Kalman filter has also been a basis of
summarized in Figure 1: (1) Discrete state estimator al5.r_1ult|rate digital fllters. (demmatprs and mterpola_ltors) and
proach requires the sampling of the continuous model of t{ite" Panks [4]. A lifting technique was used in [6] to

process and the approximation of the available continuod@nsform a multirate single-input single-output system to a
measurements. Subsequently, one of the known state eStl9le-rate MIMO system, which allowed them to use slow-
mators for discrete systems (i.e. discrete Kalman filter, KFfilé Measurements to generate high rate control inputs.

can be applied. (2) A second alternative is to lift the discrete N this paper, we first present the description of the

measurements into the space of continuous functions (eJochastic linear systems in the integral form of the lto-

by using a polynomial fit of discrete measurements in olterra (IV) equations. To allow for the case of discon-

sliding window) and then apply one of the known res‘unginuities in controls, measurements_and sta_ltes, we modify
for state estimation for the continuous system (i.e. Kalmari€ Standard lto-Volterra model by introducing an integral
Bucy filter). (3) The final option is to directly consider theM0de! with discontinuous measure. We then show that
state estimation problem with a continuous model and tH@€ optimal filter for the IV systems with discontinuities
combination of the discrete and continuous measurementd, Measurements can be specialized for the case of state
The simplicity and the applicability of the classical methodSPace Systems. Several well known results were recovered

of the state estimation resulted in a wide acceptance of tfféfluding Kalman-Bucy and Jazwinski (continuous process
with discrete measurements) filters. A previously unknown
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Il. 1TO-VOLTERRA DESCRIPTION OFDYNAMIC wherez! can be viewed as a state with independent (time)
SYSTEMS variables and parametet, and is equal to

Let (Q, F, P) be a complete probability space with an :cg:fos[A(t,r)z(r)+B(t,r)u(r)]dr+fOS G(t,r)dW (r) (5)
increasing right-continuous family of-algebrasF;,t >
0, and let (W(t),F,,t > 0) and (V(t),F,,t > 0) be The governing equation far! can be differentiated with
independent Wiener processes. Heres the sample space, fespect tos to yield the state space form of equation (5).
F is a set of subsets on which the probability measurB: is theo-algebra generated by the stochastic proegss
(or, simply, probability) is defined, an® is the probability ‘ s s
defined onF. All subsets of ' form a o-algebra, andF; % T fO C(t, s)z(s)ds + fo H{(t,s)dV (s) ©)
denotes a family of subsets-@lgebra) for each such that gng mt = E[zt | Ft?S], where we treat as a parameter.
for &y <y, Fy, C Fy,. The partly observed;-measurable Note that functionf is a generalization of the variande
random proceséz(t), z(t)) can be described using the Ito-since ff = P(t). Furthermore fors = ¢, 2t = z(¢) and

Volterra equations: 2t=2(t).
a(t)= [ [A(t, 8)x(s)+B(t, s)u(s)]ds+ [ G(t, s)dW (s) (1) [1l. OPTIMAL FILTERING FOR SYSTEMS WITH
()= [L C(t, s)a(s)ds + [ H(t, s)dV (s) @) BOUNDED DISCONTINUITIES

Consider a nondecreasing vector-valued function of
bounded variationy(t) = (u1(t),...,um(t)) € R™. In
V@ESG”CGM(t) is an arbitrary function, and it is only required
that it remains bounded on each finite subinterval of its
definition, andu(t1) < wp(ta) if t1 < to. Continuity of u(t)
is not required. We can express it as

where z(t) € R™ is the state vector, and(t) € R™ is
a vector of measurements integrated over the time inter
[0,t]. The vector-valued functio (¢, s)u(s) describes the
effect of known system inputs. Matrix functiond(t, s)
and G(t,s) of appropriate dimension and vector-function
B(t,s)u(s) are smooth functions of uniformly in s.
FunctionsC'(t,s), and H(t,s) of appropriate dimensions () = {uS(t) + S0, Aprix(t —tre), k=T, m} (7)
are continuous it ands and H (¢, s)H” (¢, s) > 0. Both ¢ ) . ) )
and s are independent (e.g. time) variables witk s > 0 wherep$ (¢) is a continuous nondecreasing function, and the
and can be used to assign a variable number of time-varyir?Cond term describes bounded jumps:ith components
delays in both states and measurements. All coefficien®d /(t) at timest;, where y is the Heaviside unit step
in (1) and (2) are deterministic functions. Without loss ofunction andAy; is the size of the jump. The sampled
generality, we assume zero initial conditions. measurements are modelled assuming; =1.
The estimation problem is to find the estimate of the 1he discontinuous measygecan be used to describe dis-
system state(t) described by the Ito-Volterra model (1) continuities in states and measurements. Only discontinuity

based on the observation proceékg) = {z(s),0 < s < t}, Inthe measurements are considered in this paper, resulting
which minimizes the Euclidean 2-norm - in the following model for thek-th measurement channel:

J = El(z(t) — #(t))T(x(t) — #(t))] @) =) = [y Ci(t, )2 (s)dpn(sHfy Hi(t, s)dVk (ur(s)) (8)

where u;, is the k-th component ofu, k = 1, m.

Theorem 1:[7] The optimal in Kalman sense estimate
m(t) of the states of system (1) based on discontinuous
integral measurements (8) satisfies the filter equation

at each time moment. In alternative formulation, our
objective is to find conditional expectation(t) = &(t) =
E(x(t) | FZ). As usual, the matrix functionP(t) =
El(z(t) — m(t))(x(t) — m(t))T | F?] is the estimation
error covariance. m(t) = fot(A(t,s)m(s) + B(t, s)u(s))ds
The above formulation is, in fact, the Kalman filtering t "
problem for the integral Ito-Volterra system. The standard + fO K(t,5)ldz; — C(t, s)m(s)dp(s)] ©)
state space formulation is recovered by making all funGyhere K (t,s) = f(t,s)CT(t,s)(H(t,s)HT(t,s))~!, and
tional parameters in (1) and (2) dependentsoonly. function f(t, s) satisfies the Riccati-like equation
It can be shown that the variané&t) alone is not suffi- i
cient to completely characterize the state estimation procedst, s) = [y [A(s,7)f7 (t,r) + f(s,7) AT (t,7)
and obtain closed-form filtering equations for dynamic 1

T T
systems in the integral form. However, the explicit solution +§(G(t’T)G (8,7) + G(s,r)G (&, 7)) ldr
can be obtained in terms of the integral cross-correlation  — [ [K;sssC(s,7) T (s,7) + K C(t,7) f7 (1)
function f(¢,s), which characterizes the deviation of the 1 T 1 T
optimal estimatem(t) from an unknown true state(t), _§Ktttsc(5’7“)f (S’T)_iKssstC(t’T)f (¢, 7)]du(r)

and defined as: 1
where Ky (t,s,7) = f(t,7)AT (s,7)B(s, )BT (s,7)] ",
f(t,s) = E[(z} —ml)(x(s) —m(s))" | FZ] (4) with similar expressions used to define the galig, .
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with different subscripts, and the multiplication by an  in z leads to discontinuity in estimate:(¢) and the co-
dimensional measurg(t) is in the componentwise sense,variance functionP(¢). At the point of discontinuityty;
as in equation (8). where a new discrete measurement becomes available in
In the next section, the result for the IV systems withk-th measurement channel, the optimal valuerdf) and
discontinuous measure in the measurement model is sp@tt) can be explicitly calculated from (12)—(13). Therefore,
cialized for the case of continuous state space systerttee optimal filter has a form of a differential equation
with an arbitrary combination of discrete and continuousvith discontinuities at the time of arrival of discrete mea-
measurements. surements. The solution is sought as a vibrosolution [7]
with explicit expressions for the jumps im and P. The
fusion of the sampled and continuous measurements in

calculations of the optimal state estimates is direct and
Consider a particular case of the Ito-Volterra system witRyplicit. There is no need for multirate filters, because no

A, B, G independent of. Differentiation of (1) with respect matter what the sampling rate is, discrete measurements
tot yields the standard state space system are used in the stimulation process immediately as they
@(t) = At)z(t) + Bt)u(t) + G(t)w(t) (10) becc_Jme availab_le. The resulting fil_ter is not_only optimal,
N but is computationally more attractive than filters obtained
wherewdt = dW, w(t) ~ N(0,Q(t)) is thel x 1 white  following approaches 1 and 2.
Gaussian process. Without loss of the generality, assumeThe following two simple cases further demonstrate the

Q(t) = I. Further assume that the observation process igplication of the general result to the state space systems.
also memoryless({ and H are independent of). Then

the measurement model is given by the following integraft. Continuous system with discrete measurements
equation with discontinuous measure: The model of discrete measurements is obtained by

fo Cro(s)z(s)dpn(s) + fo Hy(s)dVi(ua(s)) (11) settingu© = 0 in equation (7):

Obwously, if pu(t ) — ¢ we have a case of the continuous ~ #(s) = (Zf\i’l Apgix(s — tri(t)), k= 1,m) (14)
system with continuous measurements in the integral for
If u¢ = 0, the observation model given by equation (11
describes the case of a continuous process Wlth' only sam-y,(s) — (Zf\il Apiid(s — trs(t)), k = W) ds (15)
pled measurements. The general case of equation (7) will

describe the dynamic system with an arbitrary combinatiowhere§ is the Dirac-delta function.

of discrete and continuous measurements. Since TheorenFor a continuous dynamic system with discrete measure-
1 gives the optimal filter for the most general case, itents at different and time-varying sampling rates in dif-

is now only a matter of specializing the main result toferent measurement channels, the optimal filter is obtained
different cases of practical interest. We begin by re-statingom equations (12), and (13). Between the last discrete
the result of the Theorem 1 for the state space systems (Ifipasurement at= ¢,_; and the next measurement= ¢,

(11). WhenA(t, s), B(t,s), C(t,s), G(t,s), H(t,s) are in any of the measurement channels, the estimate of the
independent of, z! = z(s), ml = E[z(s)|F)] = m(s), state and the error covariance matrix are given by:

and f(t,s) = P(s). Then the optimal filter takes the

IV. OPTIMAL FILTER FOR STATE SPACE SYSTEMS WITH
CONTINUOUS AND DISCRETEMEASUREMENTS

n this case, the differential measuig(s) is equal

following form: m(t)=m(t;" +ftt+i (A( S)W(S) + B(s)u(s))ds (16)
m(t)=[, (A(s)ym(s) + B(s)u(s))ds + [y P(s™) P(O)=P(t])+[3 [A(s) P(sHP(s) AT (sHG(5)G™ (s)]ds
% [I +CT(s)(H(s)HT ()~ 10(S)p(5 YA (5)} - At t; when a discrete measurement becomes available, the
(s (I ( JH (s )) 1[d (5)— Csym(s—u(s)] (12) state estimate and the covariance are equal to
X s z(s s)m (s
Pt [As)P(s)t P(s)A" (s > + G(s)GT(5)] ds m(tF) = mit) + dm(t:) (17)
P(tf) = P(t;) + 0P(t:) (18)

t 1
—[5 P(sT)|I+CT(s)(H( A
Jo P(s™ {JFC )(H(s)H ) Cle)P(sT) #(8)} where dm(t;) and 6P(t;) are the jumps caused by the
xCT(s)(H( ) )dpu(s) (13) arrival of a discrete measurement. &aplicitly calculate
the expression fodm, the equation (12) is integrated with

where A“(S)(Zl) is a jump of the function(s) at s. At respect talz(s) anddpu(s). Integration with respect tdz(s)

the point of discontinuitym(t~) = limm(s) ass — ¢

from the left. A similar definition is used foP(t™). yields:

Multiplication by anm-dimensional measuréu(s) is un- tfﬁ P(s*)[I+CT(s)(H(s)HT(s))*1C(s)P(s—)Au(s)]*1
derstood in a component-wise sense. For purely continuous T -1

measurements ik-th channelz{ = 0, and if only discrete xC¥ (s )( (s)H (5)) dz(s)

measurements are available, thgn= 0. The discontinuity = K(t:)(z(t]) — 2(t;)) = K(t;)02(t;) (29)
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wheredz(t;) is the discrete measurementtatand
K(t) = P(t;)
x {147 () [H(E)HT (1)) C )P ) Anlts)

-1

Note that the class of continuous systems, for which the
result of Theorem 1 is relevant, is significantly broader than
state space systems, and includes systems with disconti-
nuities in states, systems with memory and the distributed
parameter systems.

x CT(t;) [H(t)HT (1)) (20)
V. ALTERNATIVE METHODS OFSTATE ESTIMATION
The integration of (12) with respect tg.(s) gives: To obtain the state estimates using the discrete Kalman
tt o, T 1 B 1 filter (Approach 1), the continuous model of the process and
ftHP(s 1+c (S)(H(S)Hr(f)) Cls)P(s=)0u(s)] continuous measurements must be discretized. The discrete
xCT(s)(H(s)H"(s)) ~ [C(s)m(s—)du(s)] process model is equal
= K(t;)C(t:)m(t;) (21) E(tip1) = ®(tigr, ti)z(ts) + Altigr, ti)u(ty)
We have thus obtained that + D(tig1, ti)w(t:) (26)
Sm(t:) = K(t;) [02(t:) — Ct;)m(t])] (22) there the white Gaussian sequengg;) ~ N(0,Q(t;)),
an
Similarly, by integrating (13) W.r.tl,u(s_), obtain Bt t) = At
OP(t;) = —K(t;)C(t:) P(t;) (23) Atisn,t)) = (B(tior,ts) — 1) A(t)) " B(L;)
Note that the optimal filter derived in this section, equa-  T'(t;1,t;) = (®(tior,ts) — 1) A(t:) *G(t;)

tions (16)—(20), is applicable to all practically importanL[

cases of the continuous processes with discrete measu Q_e covariance matrig(t;) of the discrete system is related

ments, including the case of multirate measurements (setrs)-the covariance of the continuous systeyras

tions VI-A and VI-B), and ra_ndomly or non-uniformly  ((¢,)= ttvm [‘P(ti+1,T)G(T)Q(T)GT(T)(DT(ti+1,T):| dr
sampled measurements (section VI-C). It can be shown ’

that the derived filter is identical to the Jazwinski filter [8],indicating the direct dependence &f(t;) (and therefore
which is the Kalman-Bucy filter for continuous process witihe Kalman gain of the discrete KF) on the discretization
sampled measurements. step. In particular, for smal\t = ¢;,1 — t;, Q(tiy1) =~

B. Continuous system with continuous measurements

This is the case whep(t) = ¢, yielding the following
optimal filter equations:

m(t) = [o(A(s)m(s) + B(s)u(s))ds
+ fy P(s)CT(s)(H(s)HT (5)) "
X [dz(s) — C(s)m(s)ds] (24)
P(t) = [ [A(s)P(s) + P(s)AT(s) + G(s)GT (s)] ds
— L P(s)CT(s)(H(s)HT (5)) " C(s)P(s)ds (25)

which are equivalent to the Kalman-Bucy filter.

G(t;)Q(t;)G™ (t;) At. With sufficiently smallAt the filter
gain will be very small, making the discrete KF largely
insensitive to the incoming measurements.

To apply the continuous Kalman filter (Approach 2), the
discrete measuremehtg(t;) must be fitted to a continuous
function. For example, in the subsequent simulations, the
following piecewise continuous approximation

y(t) = C(t)x(t) + Hu(t) (27)

is used, obtained by a linear extrapolation between the
latest two available sampled measurements. Similar ideas
can be found in [9] to get the intersample estimation for
slow measurements. The obtained continuous measurements

C. Continuous system with continuous and sampled meéy(t),t > to} are assumed to be corrupted by the continu-

surements

ous white Gaussian noise process) ~ N (0, R(t)). The

The general case of the differential measure (7) allows (€'ationship between covariances of the sampled measure-
to formally describe dynamic systems with any combinatioff'eNts and their continuous approximation is given by

of continuous and discrete measurements. In particular, it

R(t) = R(t;) At (28)

allows us to apply Theorem 1 to the case of state spagghere At is the time between two consecutive sampled
systems with both discrete and continuous measurememigasurements. Note that for time-varying samplidgs
(Case 4 in the numerical example), the case for which the function of time even ifR = const. With largeAt,
optimal filter was previously unknown. Specifically, con-the described approach leads to a relatively small effect of
sider the continuous process described by (10)—(11) whefieasurements on the state estimation, which is clearly not
both discrete and continuous measurements are presei right way to utilize infrequent measurements.
simultaneously. Then the optimal filter is given by equa- . _ _ _ ' _

tions (12)—(13), and the jumps in the state estimation and In the standard differential notation, tligh continuous measurement

estimation error covariance are explicitly given by equation%

(22)~(23).

i(t) = Zi(t). The relationship betweepi-th discrete measurement in
fferential and integral forms is given by;(t;) = Zf:o y; (), and
y;(tk) = 6z (tk).
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VI. EXAMPLES . __
25 = Optimal
Consider a stable continuous linear time-invariant systemf'5 . PEE I A
modelled as: 5 i IR Els 5
r 250 "é ' %
- -1 —-.02 -.03 - 10 - 100 z | 1
A=|[-.03 -2 05| B=1(25|C= L NaAS et
01 0 USRI
__'05 —6 -3 1 0'50 5 10 Oo 5 10
The process itself is described by fime
10
[—09 —.02 -.03 11 ) o) [— o
A=|-03 —18 .05 | B= (275 C=[C] (29) s |- - Approsen2
|—.05 —6 —285 1.1 R
2
0

with E[z(0)] = [5 — 6 6]T. The plant-model mismatch

is introduced to illustrate the effect of the approxima-

tion on the performance of the filters derived following % 5 0 % 5 10

approaches 1 and 2. We assum@) ~ N(0,Q) with time

Q = diag(0.2525%)2, i = 1,3, wherez** is the steady Fig.2. Case 1: State estimations with single-rate sampled measurements.

state value. In the following cases 1-3, the sampled mea-

surements ofy; and y, are assumed to be available; the

covariance of the measurement noise sequengg) is simulations. In the case of the optimal filter, the filter-

known: R = diag(O.lij)Q, j=1,2. generated values give a good approximation (less than 20%
In the following simulations, mean value of staté&) is ~ error at steady state far;) to the result obtained with

obtained asn(t) = Am(t) + Bu, with m(tg) = E[z(0)]. ensemble averaging. The two alternative filters overestimate

True states are calculated from the quality of the generated state estimations. The discrete
Kalman filter is giving the largest overestimation: For
dx(t) = (Az + Bu)dt + GdW (t) (30)  the steady state RMSE with the discrete KR€.7, while

whereG = I and the Brownian procedd/(t) is approxi-  p generated by the filter gives the RMSE of less than 0.25.
mated as a random walk [10]. Suboptimal filters predict the values &f smaller than

The numerical experiment is performed following thete least theoretically possible (i.e. optimal) because of the
Monte Carlo approach. Multiple realizations (N=1000) Ofeffect of At-dependent approximation. For example, the
state trajectories are calculated from the stochastic differegiscrete KE (Approach 1) predicts the smallest error covari-
tial equation (30). Measuremept used as an input to all ance, while in reality the RMSE with the discrete KF is the
filters, is obtained ag(t) = Cx+ Du+ Hw(t), wherew(t)  |argest. This behavior is due to the approximation(f,)
is Gaussian white noise with zero mean and covarigice (which makesQ(t;) too small), leading to unjustifiably low
A. Case 1: Continuous process with single-rate samplelé":llman gain ar_1d an excessive rellar_me pf the erroneous

process model in generating state estimations.
measurements : .
) ) _ Figure 2 (bottom row) showsypical results of the state

Case 1 is the base cagg:andy, are sampled with the egtimation with different filters. It is clear that a poor (and

same intervalA¢. The state estimates are obtained followingbiased) estimate is obtained with the discrete KF. Though
all three approaches. The root mean square errors (RMS@ “tuning’ (in this case, substantially increasing) the

for each filter are calculated as: covariance matrix) the discrete KF could yield satisfactory
I~ state estimates, theed hoctuning is not desirable when the
RMSE z; = \/ N ey (wi(t) — #4(2))? statistics of the process disturbances are known. Further-

more, to correctly “tune” the discrete and Kalman-Bucy
filters, the result of the optimal filtering must be known,
which defeats the purpose of considering the alternatives.

and plotted in Figure 2. The RMSE of the optimal filter is
the smallest, as expected. Note that

P®) = El[(x(f\,) _in(t))(xft) _in(t))T]A - B. Case 2: Continuous process with multirate measure-
~ oy 2iml@®) —2(0)(x(t) = 2(1)7] (B1)  ments

where z(t) is the true state from equation (30), afit) In this casey; andy, are sampled wittA¢ and10 x At,
is the estimate obtained with different filters. Thereforerespectively. The optimal filter accounts for each available
diag(P(t)) ~ RMSE?. discrete measurement according to equations (17)—(18) with

Each filter generate®(¢) during its operation, so it is properly adjustedC immediately after the measurement
instructive to compare the diagonal elements of the filtebecomes available. A multirate discrete filter is imple-
generated error covariance matrix (not shown) with thenented following [2], which required the adjustment of
actual value, equal t&M SE?, obtained using Monte Carlo the Kalman gain matrix at the moment when both fast and
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20 4 10 18
= Optimal
il 11 Approach 1 16

8 = Optimal
6 ' Approach 1
A — True X

\ = = Approach 2 14
st | — Truex

12
<10

NoA O

0 5 10 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10
time

time Fig. 5. Case 4: State estimation with continuous and sampled measure-
Fig. 3. Case 2: State estimation with multirate measurements.  Ments.

LT e ing multirate and randomly sampled cases, attracted consid-
| e erable attention because of its practical importance. Most
existing methods implement the ideas of either Approach
1 or 2, and require that the state estimation problem is
N AP approximated as either the state estimation for discrete or
o % . - ) continuous systems. In this paper, we develop an optimal

0 5 10 0 5 10 0 5 10

time (in Kalman sense) filter without reverting to an approx-
Fig. 4. Case 3: State estimation with randomly sampled measuremen.{g'ation as a first step in the state estimation procedure.
The resulting optimal filter is the continuous system with
discontinuous inputs appearing every time a new sam-
slow measurements are simultaneously available. To appghed measurement becomes available. The developed filter
the continuous KF, the linear extrapolation is again used #§ both optimal and convenient in practical applications,
approximate bothy; andy, as piecewise linear functions. since each sampled measurement is processed immediately
The continuous approximation of infrequent measuremen@ld explicitly when it becomes available without need
y» will generally introduce significant errors, clearly visiblefor multirate filters. Numerical examples indicate that the
in Figure 3, especially from the, plot. As in the previous developed filter provides the smallest state estimation errors
case, Approach leads to a biased estimation because otnd an accurate indication of the goodness of the obtained
the approximation used to obtai@(¢;), and unjustifiably results by correctly estimating the error covariance. The
low values of the estimation error covariance. The optimad/ternative methods tend to suggest higher-quality estimates
filter shows the best performance with the Kalman-Bucghan actually achieved.
filter giving reasonably accurate results.
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