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Abstract— The almost sure convergence of two time-scale
stochastic approximation algorithms is analyzed under general
noise and stability conditions. In the context of the Lyapunov
stability, the adopted stability conditions are probably the
weakest possible still allowing the almost sure convergence
to be shown, while the corresponding noise conditions are the
most general ones under which the almost sure convergence
analysis can be carried out. The analysis covers the algorithms
with additive noise, as well as those with non-additive noise.
The algorithms with additive noise are analyzed for the
case where the noise is state-dependent. The analysis of the
algorithms with non-additive state-dependent noise is carried
out for the case where the noise is a Markov chain controlled
by the algorithm states, while the algorithms with non-additive
exogenous noise are analyzed for the case where the noise is
correlated and satisfies strong mixing conditions. The obtained
results cover a fairly broad class of highly non-linear two time-
scale stochastic approximation algorithms.

Index Terms— Two time-scale stochastic approximation,
almost sure convergence, strong mixing conditions, controlled
Markov chains, Lyapunov stability, actor-critic algorithms.

I. I NTRODUCTION

In this paper, the almost sure convergence of two time-
scale stochastic approximation algorithms with decreas-
ing step sizes is analyzed. Generally speaking, stochas-
tic approximation algorithms are sequential non-parametric
methods for finding a zero or minimum of a function in
the situation where only the noise corrupted observations
of the function values are available (see [2], [12] and
references cited therein). Two time-scale stochastic approx-
imation algorithms represent one of the most general and
complex subclasses of stochastic approximation methods.
These algorithms consist of two sub-recursions which are
updated with different step sizes (i.e., which evolve on
different time scales). The main feature of two time-scale
stochastic approximation is that step sizes of one of the
sub-recursions (slow one) are considerably smaller than
the step size of the another (fast) one. Owing to this
feature, stochastic approximation with two scales can be
considered as singularly perturbed stochastic difference
equations (for more details on singularly perturbed systems
see e.g., [14]). During the last five years, two time-scale
stochastic approximation algorithms have successfully been
applied to several complex problems arising in the ares of
reinforcement learning [1], [9], [10], [11], signal processing
[6] and admission control in communication networks [5]
(to name a few), while their asymptotic properties have
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thoroughly been analyzed in several papers [4], [9], [10],
[11], [17]. Although [4], [9], [10], [11] provide an insight
into the almost sure asymptotic properties of two time-
scale stochastic approximation, the results presented therein
either hold under fairly restrictive conditions or correspond
only to the almost sure convergence of subsequences of the
algorithm states.

In this paper, the almost sure convergence of two time-
scale stochastic approximation algorithms with decreasing
step sizes is analyzed under general noise and stability con-
ditions. In the context of the Lyapunov stability, the adopted
stability conditions are probably the weakest possible still
allowing the almost sure convergence to be shown, while
the corresponding noise conditions are the most general
ones under which the almost sure convergence analysis can
be carried out. The analysis covers the algorithms with
additive noise, as well as those with non-additive noise.
The algorithms with additive noise are analyzed for the
case where the noise is state-dependent. The analysis of
the algorithms with non-additive state-dependent noise is
carried out for the case where the noise is a Markov chain
controlled by the algorithm states, while the algorithms
with non-additive exogenous noise are analyzed for the case
where the noise is correlated and satisfies strong mixing
conditions. The obtained results cover a fairly broad class of
highly non-linear two time-scale stochastic approximation
algorithms (including the actor-critic learning algorithms
introduced in [10], [11]).

II. A LGORITHMS WITH ADDITIVE STATE-DEPENDENT

NOISE

The algorithms considered in this section are defined by
the following difference equations:

xn+1 = xn + αn+1f(xn, yn) + αn+1un+1, n ≥ 0, (1)

yn+1 = yn + βn+1g(xn, yn) + βn+1vn+1, n ≥ 0. (2)

{αn}n≥1, {βn}n≥1 are sequences of positive reals, while
f : Rp × Rq → Rp and g : Rp × Rq → Rq are locally
Lipschitz continuous functions.x0 and y0 are Rp-valued
andRq-valued random variables (respectively) defined on
a probability space(Ω,F , P ), while {un}n≥1 and{vn}n≥1

areRp-valued andRq-valued stochastic processes (respec-
tively) defined on the same probability space.
{αn}n≥1, {βn}n≥1 are the step sizes of the algorithm (1),

(2), while{un}n≥1, {vn}n≥1 are considered as the noise in
the same algorithm. The analysis (the results of which are
presented in this section) is carried out for the case where



the noise{un}n≥1, {vn}n≥1 depend on the algorithm states
{xn}n≥0, {yn}n≥0, i.e.,

un+1 = Un+1(x0, y0, . . . , xn, yn), n ≥ 0, (3)

vn+1 = Vn+1(x0, y0, . . . , xn, yn), n ≥ 0, (4)

whereUn : Rn(p+q) → Rp and Vn : Rn(p+q) → Rq are
random functions. Since the algorithms with non-additive
noise (Sections III, IV) can be represented in the form
(1) – (4), the results presented in this section could be
considered as a basis for the analysis of the algorithms with
non-additive noise.

For t ∈ (0,∞), let an(t) = sup{j ≥ n :
∑j−1

i=n αi+1 ≤
t}, bn(t) = sup{j ≥ n :

∑j−1
i=n βi+1 ≤ t}, n ≥ 1. The

almost sure convergence of the algorithm (1), (2) is analyzed
under the following assumptions:

A1: limn→∞ αn = limn→∞ βn = limn→∞ αnβ
−1
n =

0,
∑∞

n=1 αn =
∑∞

n=1 βn = ∞.
A2: For all ρ, t ∈ [1,∞),

lim
n→∞

sup
n≤j<an(t)

∥∥∥∥∥
j−1∑
i=n

αi+1ui+1

∥∥∥∥∥ I{λρ≥j} = 0 w.p.1,

lim
n→∞

sup
n≤j<bn(t)

∥∥∥∥∥
j−1∑
i=n

βi+1vi+1

∥∥∥∥∥ I{λρ≥j} = 0 w.p.1,

where

λρ = inf({n ≥ 0 : max{‖xn‖, ‖yn‖} > ρ} ∪ {∞}).
A3: There exists a locally Lipschitz continuous function

ψ : Rp → Rq such thatψ(x) is a globally asymptotically
stable point of the ODEdy/dt = g(x, y) for all x ∈ Rp.

A4: There exists a differentiable functionu : Rp → R
such that:

(i) ∇u(·) is locally Lipschitz continuous,
(ii) u̇(x) < 0 for all x ∈ Ec

∗,
(iii) the Lebesgue measure ofu(E∗) ∩ u(Ec

∗) is zero,
whereE∗ = {x ∈ Rp : f(x, ψ(x)) = 0} and u̇(x) =
∇Tu(x)f(x, ψ(x)).

A1 corresponds to the asymptotic properties of the step
sizes{αn}n≥1, {βn}n≥1, and is standard for the almost
sure convergence analysis of two time-scale stochastic ap-
proximation algorithms (see e.g. [4]). It holds ifαn = n−a,
βn = n−b, n ≥ 1, where a, b ∈ (0, 1] are constants
satisfying a > b. Moreover, A1 implies that the states
{xn}n≥0 of the recursion (1) evolves on a slower time-scale
compared to the states{yn}n≥0 of the recursion (2).

A2 corresponds to the asymptotic properties of the noise
{un}n≥1, {vn}n≥1. It can be considered as a two time-
scale generalization of the classical Kushner-Clark noise
condition. In the context of single time-scale stochastic
approximation, the Kushner-Clark condition is the weakest
condition under which the almost sure convergence can be
demonstrated (for more details see e.g., [12]). Moreover,
under certain (relatively restrictive) stability conditions, the
Kushner-Clark condition is necessary and sufficient for the

almost sure convergence of single time-scale stochastic
approximation algorithms (see e.g., [19]).

A3 and A4 are stability conditions. A3 corresponds to
the stability properties of the fast recursion (2) (i.e., to
the stability of the family of the ODEsdy/dt = g(x, y),
x ∈ Rp) and is standard for the asymptotic analysis of two
time-scale stochastic approximation algorithms (see e.g.,
[4]). A4 is related to the stability properties of the slow
recursion (1) (i.e., to the stability of the ODEdx/dt =
f(x, ψ(x))). Conditions (i), (ii) of A4 require the ODE
dx/dt = f(x, ψ(x)) to have a global Lyapunov function
u(·). In the context of the Lyapunov stability, this require-
ment represents the weakest condition under which the
Lagrange stable solutions of the ODEdx/dt = f(x, ψ(x))
converge to the set of zeros off(·, ψ(·)) (i.e., to E∗).
On the other hand, condition (iii) of A4 is specific for
the almost sure convergence of stochastic approximation
algorithms and does not have an interpretation in the context
of the Lyapunov stability. Basically, it ensures the Lyapunov
function u(·) to admit the following topological property:
each closed continuous path starting and ending inEc

∗ has a
subpath contained inEc

∗ along whichu(·) does not increase.
This property prevents the noise{un}n≥1, {vn}n≥1 from
forcing the slowly varying states{xn}n≥0 to drift from one
connected component ofE∗ to another (which itself ensures
{xn}n≥0 to converge to a connected component ofE∗).
Condition (iii) of A4 has been introduced in [15], [16] and
represents a generalization of the corresponding condition
proposed in [7]. It holds ifE∗ or u(E∗) are countable. It is
also satisfied in the following case:f(x, ψ(x)) = −∇J(x)
for all x ∈ Rp, where J : Rp → R is a differentiable
function satisfying the condition that{x ∈ Rp : ∇J(x) =
0} is nowhere dense. On the other hand, due to the Morse-
Sard theorem (see e.g., [13]),{x ∈ Rp : ∇J(x) = 0} is
nowhere dense ifJ(·) is p-times differentiable. The case
described above is quite common for the two time-scale
stochastic approximation appearing in the area of neuro-
dynamic programming (see e.g., [10], [11]).

The main results on the almost sure convergence of the
algorithm (1), (2) under assumptions A1 – A4 are contained
in the next theorem.

Theorem 1:Let A1 – A4 hold. Then,
limn→∞ d(xn, E∗) = limn→∞ ‖yn − ψ(xn)‖ = 0 w.p.1
on the event{sup0≤n ‖xn‖ <∞} ∩ {sup0≤n ‖yn‖ <∞}.

For the proof, see [18].
Let F0 = σ{x0, y0, u0, v0} andFn = F0 ∨ σ{un, vn :

n ≥ 1}, n ≥ 1. The almost sure convergence of the
algorithm (1), (2) is also analyzed under the following
assumptions:

B1: limn→∞ αn = limn→∞ βn = 0, αn − αn+1 =
O(α2

n), βn − βn+1 = o(β2
n), αn = O(βr

n),
∑∞

n=1 αn =∑∞
n=1 βn = ∞,

∑∞
n=1 α

s
n < ∞,

∑∞
n=1 β

2
n < ∞, where

r, s ∈ (1,∞) are constants satisfyingr < 2, 1/r + 2s ≤ 3.
B2: There exist Rp-valued stochastic processes

{u1,n}n≥1, {u2,n}n≥1, {u3,n}n≥0, Rq-valued stochastic
processes{v1,n}n≥1, {v2,n}n≥1, {v3,n}n≥0 (defined on



(Ω,F , P )) and for all ρ ∈ [1,∞), there exists a constant
Cρ ∈ [1,∞) such that

un+1 = u1,n+1 + u2,n+1 + u3,n+1 − u3,n, n ≥ 0,

vn+1 = v1,n+1 + v2,n+1 + v3,n+1 − v3,n, n ≥ 0,

E
(
u1,n+1I{λρ>n}|Fn

)
= 0 w.p.1, n ≥ 0,

E
(
v1,n+1I{λρ>n}|Fn

)
= 0 w.p.1, n ≥ 0,

max{E(‖u1,n‖2I{λρ≥n}), E(‖v1,n‖2I{λρ≥n})}
≤ Cρ, n ≥ 1,

max{E(‖u2,n‖2I{λρ≥n}), E(‖v2,n‖2I{λρ≥n})}
≤ Cρ(αn + βn)2, n ≥ 1,

max{E(‖u3,n‖2I{λρ≥n}), E(‖v3,n‖2I{λρ≥n})}
≤ Cρ, n ≥ 1,

where

λρ = inf({n ≥ 0 : max{‖xn‖, ‖yn‖} > ρ} ∪ {∞}).
B3: g(·, ·) is differentiable and∇xg(·, ·), ∇yg(·, ·) are

locally Lipschitz continuous. There exists a differentiable
functionψ : Rp → Rq such that∇ψ(·) is locally Lipschitz
continuous andψ(x) is a globally exponentially stable point
of the ODEdy/dt = g(x, y) for all x ∈ Rp.

B4: There exists a differentiable functionu : Rp → R
such that∇u(·) is locally Lipschitz continuous anḋu(x) <
0 for all x ∈ Ec

∗, whereE∗ = {x ∈ Rp : f(x, ψ(x)) = 0}
and u̇(x) = ∇Tu(x)f(x, ψ(x)).

B1 corresponds to the asymptotic properties of the step
sizes{αn}n≥1, {βn}n≥1. It holds if αn = n−1, βn = n−b,
n ≥ 1, where b ∈ (1/2, 1) is a constant. Moreover, B1
implies that the states{xn}n≥0 of the recursion (1) evolves
on a slower time-scale compared to the states{yn}n≥0 of
the recursion (2).

B2 is a noise condition. Basically, it requires the noise
{un}n≥1, {vn}n≥1 to be decomposable as a sum of a
martingale-difference sequence ({u1,n}n≥1, {v1,n}n≥1), a
vanishing sequence ({u2,n}n≥1, {v2,n}n≥1) and a telescop-
ing sequence ({u3,n}n≥0, {v3,n}n≥0). Compared to A2, B2
is more restrictive. In return, it allows the corresponding
stability conditions to be significantly more general (see
the comments on B3, B4, next paragraph). Moreover, B2 is
still applicable to the analysis of two time-scale stochastic
approximation algorithms with non-additive noise and cov-
ers several, fairly complex classes of both exogenous and
state-dependent non-additive noise (see Sections III, IV). As
stability conditions are usually much harder to be verified
than noise ones, it is important to demonstrate the almost
sure convergence under noise conditions which allow the
stability conditions to be the weakest possible and still cover
complex classes of exogenous and state-dependent noise.

B3 and B4 are stability conditions. B3 corresponds to the
stability properties of the fast recursion (2) (i.e., to the sta-
bility of the family of the ODEsdy/dt = g(x, y), x ∈ Rp)

and is quite common for the almost sure convergence anal-
ysis of two time-scale stochastic approximation algorithms
(see e.g., [4]). B4 is related to the stability properties of the
slow recursion (1) (i.e., to the stability of the ODEdx/dt =
f(x, ψ(x))). It requires the ODEdx/dt = f(x, ψ(x)) to
have a global Lyapunov functionu(·). In the context of the
Lyapunov stability, this requirement represents the weakest
condition under which the Lagrange stable solutions of the
ODE dx/dt = f(x, ψ(x)) converge to the set of zeros of
f(·, ψ(·)) (i.e., to E∗). Therefore, B4 can be considered
as the weakest stability condition ensuring the almost sure
convergence of the slowly varying states{xn}n≥0.

The main results on the almost sure convergence of the
algorithm (1), (2) under assumptions B1 – B4 are contained
in the following theorem.

Theorem 2:Let B1 – B4 hold. Then,
limn→∞ d(xn, E∗) = limn→∞ ‖yn − ψ(xn)‖ = 0 w.p.1
on the event{sup0≤n ‖xn‖ <∞} ∩ {sup0≤n ‖yn‖ <∞}.

For the proof, see [18].
The almost sure asymptotic behavior of two time-scale

stochastic approximation algorithms with decreasing step
sizes has been analyzed in [4], [9], [10], [11]. Although
[4], [9], [10], [11] provide an insight into their asymptotic
behavior, the results presented therein either hold under
fairly restrictive conditions or correspond only to the almost
sure convergence of subsequences of the slowly-varying
states{xn}n≥0. In [4], the same results as those of The-
orems 1, 2 have been demonstrated under the conditions
requiring the noise{un}n≥1, {un}n≥1 to be martingale-
difference sequences and the ODEdx/dt = f(x, ψ(x))
to have a globally asymptotically stable point. Obviously,
these conditions are one of the simplest special cases
of A2 – A4. Moreover, the ODEdx/dt = f(x, ψ(x))
almost never has a globally asymptotically stable point in
the case of highly non-linear algorithms such as actor-
critic learning algorithms introduced and analyzed in [10],
[11]. On the other hand, A2 – A4 (as well as B2 –
B4) cover a fairly broad class of highly non-linear two
time-scale stochastic approximation algorithms (including
actor-critic learning algorithms studied in [10], [11]; for
details see Section V and [18]) and represent probably
the weakest noise and stability conditions under which the
almost sure convergence can be demonstrated. In [9] –
[11], two time-scale stochastic approximation algorithms
have been analyzed under conditions which are similar to
B1 – B4. In [10], [11], only the existence of an almost
sure convergent subsequence of the slowly-varying states
{xn}n≥0 (i.e., limn→∞ d(xn, E∗) = 0 w.p.1 on the event
where {xn}n≥0, {yn}n≥0 are bounded) has been shown,
while the results of [9] do not necessary hold under the
conditions specified therein (notice that [9, Lemma 4.2] is
not correct; otherwise, only the attractivity ofE∗ would be
sufficient for its robustness to the perturbations of the ODE
dx/dt = f(x, ψ(x)), i.e.,E∗ could be robust even if it were
not stable; this would be completely counter-intuitive and
to the best of our knowledge, there is not any similar result



in the literature on the ODE stability).

III. A LGORITHMS WITH EXOGENOUSNON-ADDITIVE

NOISE

Using the results obtained for the algorithms with additive
noise (Section II), the almost sure convergence of the
following algorithm is analyzed in this section:

xn+1 = xn + αn+1F (xn, yn, ξn+1), n ≥ 0, (5)

yn+1 = yn + βn+1G(xn, yn, ξn+1), n ≥ 0. (6)

{αn}n≥1, {βn}n≥1 are sequences of positive reals, while
F : Rp × Rq × Rr → Rp andG : Rp × Rq × Rr → Rq

are Borel-measurable functions.x0 and y0 areRp-valued
andRq-valued random variables (respectively) defined on
a probability space(Ω,F , P ), while {ξn}n≥1 is an Rr-
valued stochastic process defined on the same probability
space.
{αn}n≥1, {βn}n≥1 are the step sizes of the algorithm (5),

(6), while{ξn}n≥1 is considered as the (non-additive) noise
in the same algorithm. The analysis (the results of which are
presented in this section) is carried out for the case where
{ξn}n≥1 is a sequence of identically distributed random
variables which satisfy strong mixing conditions and do not
depend on the algorithm states{xn}n≥0, {yn}n≥0.

Let F0 = σ{x0, y0} and Fn = F0 ∨ σ{ξn : n ≥ 1},
n ≥ 1. Moreover, forρ ∈ (0,∞), let Bp

ρ = {x ∈ Rp :
‖x‖ ≤ ρ}, Bq

ρ = {y ∈ Rq : ‖y‖ ≤ ρ}. The algorithm (5),
(6) is analyzed under the following assumptions:

C1: F (·, ·, ξ) andG(·, ·, ξ) are differentiable for allξ ∈
Rr. For all ρ ∈ [1,∞), there exists a Borel-measurable
functionϕρ : Rr → [1,∞) such that

max{‖F (x, y, ξ)‖, ‖∇xF (x, y, ξ)‖, ‖∇yF (x, y, ξ)‖}
≤ ϕρ(ξ),

max{ ‖∇xF (x′, y′, ξ)−∇xF (x′′, y′′, ξ)‖,
‖∇yF (x′, y′, ξ)−∇yF (x′′, y′′, ξ)‖}

≤ ϕρ(ξ)(‖x′ − x′′‖+ ‖y′ − y′′‖),

max{‖G(x, y, ξ)‖, ‖∇xG(x, y, ξ)‖, ‖∇yG(x, y, ξ)‖}
≤ ϕρ(ξ),

max{ ‖∇xG(x′, y′, ξ)−∇xG(x′′, y′′, ξ)‖,
‖∇yG(x′, y′, ξ)−∇yG(x′′, y′′, ξ)‖}

≤ ϕρ(ξ)(‖x′ − x′′‖+ ‖y′ − y′′‖),

for all x, x′, x′′ ∈ Bp
ρ , y, y′, y′′ ∈ Bq

ρ, ξ ∈ Rr.
C2: There exist a probability measureκ(·) defined

on (Rr,Br), constantsa, b ∈ (1,∞) and a sequence
{cn}n≥1 of positive reals such that(r + 2)a−1 + b−1 = 1,∑∞

n=1 c
1/a
n <∞ and∫

ϕ2b
ρ (ξ)κ(dξ) <∞,

P (ξn ∈ B) = κ(B), n ≥ 0,

E|P (ξj ∈ B|Fn)− κ(B)| ≤ cj−n, 0 ≤ n ≤ j,

for all ρ ∈ [1,∞), B ∈ Br.
Remark: For more details on mixing conditions and

situations where they hold, see [8].
The main results on the almost sure convergence of the

algorithm (5), (6) under assumptions C1, C2 are presented
in the next two theorems.

Theorem 3:Let C1, C2 hold. Suppose that A1 is satisfied
and A3, A4 are fulfilled withf(x, y) =

∫
F (x, y, ξ)κ(dξ),

g(x, y) =
∫
G(x, y, ξ)κ(dξ), x ∈ Rp, y ∈ Rq. Then,

limn→∞ d(xn, E∗) = limn→∞ ‖yn − ψ(xn)‖ = 0 w.p.1
on the event{sup0≤n ‖xn‖ <∞} ∩ {sup0≤n ‖yn‖ <∞}.

Theorem 4:Let C1, C2 hold. Suppose that B1 is satisfied
and B3, B4 are fulfilled withf(x, y) =

∫
F (x, y, ξ)κ(dξ),

g(x, y) =
∫
G(x, y, ξ)κ(dξ), x ∈ Rp, y ∈ Rq. Then,

limn→∞ d(xn, E∗) = limn→∞ ‖yn − ψ(xn)‖ = 0 w.p.1
on the event{sup0≤n ‖xn‖ <∞} ∩ {sup0≤n ‖yn‖ <∞}.

For the proofs, see [18].

IV. A LGORITHMS WITH STATE-DEPENDENT

NON-ADDITIVE NOISE

Using the results obtained for the algorithms with additive
noise (Section II), the almost sure convergence of the
following algorithm is analyzed in this section:

xn+1 = xn + αn+1F (xn, yn, ξn+1), n ≥ 0, (7)

yn+1 = yn + βn+1G(xn, yn, ξn+1), n ≥ 0. (8)

{αn}n≥1, {βn}n≥1 are sequences of positive reals, while
F : Rp × Rq × Rr → Rp andG : Rp × Rq × Rr → Rq

are Borel-measurable functions.x0 and y0 areRp-valued
andRq-valued random variables (respectively) defined on
a probability space(Ω,F , P ), while {ξn}n≥0 is an Rr-
valued stochastic process defined on the same probability
space.
{αn}n≥1, {βn}n≥1 are the step sizes of the algorithm

(7), (8), while{ξn}n≥0 is considered as (non-additive) noise
in the same algorithm. The analysis (the results of which
are presented in this section) is carried out for the case
where the noise{ξn}n≥0 is a homogeneous Markov chain
controlled by the algorithm states{xn}n≥0, {yn}n≥0, i.e.,
for all x ∈ Rp, y ∈ Rq, there exists a transition probability
kernelΠ(x, y, ·, ·) such that

P (ξn+1 ∈ B|x0, y0, ξ0, . . . , xn, yn, ξn)
= Π(xn, yn, ξn, B) w.p.1, n ≥ 0,

for all B ∈ Br.
The algorithm (7), (8) is analyzed under the following

assumptions:
D1: There exist Borel-measurable functions̃F : Rp ×

Rq × Rr → Rp, G̃ : Rp × Rq × Rr → Rq and locally
Lipschitz continuous functionsf : Rp × Rq → Rp, g :
Rp ×Rq → Rq such that∫

‖F̃ (x, y, ξ′)‖Π(x, y, ξ, dξ′) <∞,∫
‖G̃(x, y, ξ′)‖Π(x, y, ξ, dξ′) <∞,



F (x, y, ξ)− f(x, y) = F̃ (x, y, ξ)− (ΠF̃ )(x, y, ξ),

G(x, y, ξ)− g(x, y) = G̃(x, y, ξ)− (ΠG̃)(x, y, ξ)

for all x ∈ Rp, y ∈ Rq, ξ ∈ Rr, where

(ΠF̃ )(x, y, ξ) =
∫
F̃ (x, y, ξ′)Π(x, y, ξ, dξ′),

(ΠG̃)(x, y, ξ) =
∫
G̃(x, y, ξ′)Π(x, y, ξ, dξ′).

D2: For all ρ ∈ [1,∞), there exist Borel-measurable
functionsϕρ, ψρ : Rr → [1,∞) such that

max{‖F (x, y, ξ)‖, ‖F̃ (x, y, ξ)‖, ‖(ΠF̃ )(x, y, ξ)‖}
≤ ϕρ(ξ),

‖(ΠF̃ )(x′, y′, ξ)− (ΠF̃ )(x′′, y′′, ξ)‖
≤ ϕρ(ξ)(‖x′ − x′′‖+ ‖y′ − y′′‖),

max{‖G(x, y, ξ)‖, ‖G̃(x, y, ξ)‖, ‖(ΠG̃)(x, y, ξ)‖}
≤ ψρ(ξ),

‖(ΠG̃)(x′, y′, ξ)− (ΠG̃)(x′′, y′′, ξ)‖
≤ ψρ(ξ)(‖x′ − x′′‖+ ‖y′ − y′′‖)

for all x, x′, x′′ ∈ Bp
ρ , y, y′, y′′ ∈ Bq

ρ, ξ ∈ Rr.
D3: For all ρ ∈ [1,∞), x ∈ Rp, y ∈ Rq, ξ ∈ Rr,

∞∑
n=1

α2
nE

(
ϕ2

ρ(ξn)I{λρ≥n}|x0 = x, y0 = y, ξ0 = ξ
)
<∞,

∞∑
n=1

β2
nE

(
ψ2

ρ(ξn)I{λρ≥n}|x0 = x, y0 = y, ξ0 = ξ
)
<∞,

where

λρ = inf({n ≥ 0 : max{‖xn‖, ‖yn‖} > ρ} ∪ {∞}).
Remark: D1 – D3 could be considered as a two time-

scale extension of the assumptions adopted in [2, Chapter
II.3].

The main results on the almost sure convergence of the
algorithm (7), (8) under assumptions D1 – D3 are presented
in the next two theorems.

Theorem 5:Let A1, D1 – D3 hold. Suppose that A3,
A4 are satisfied withf(·, ·), g(·, ·) introduced in D1. Then,
limn→∞ d(xn, E∗) = limn→∞ ‖yn−ψ(xn)‖ = 0 w.p.1 on
the event{sup0≤n ‖xn‖ <∞} ∩ {sup0≤n ‖yn‖ <∞}.

Theorem 6:Let B1, D1 – D3 hold. Suppose that B3,
B4 are satisfied withf(·, ·), g(·, ·) introduced in D1. Then,
limn→∞ d(xn, E∗) = limn→∞ ‖yn−ψ(xn)‖ = 0 w.p.1 on
the event{sup0≤n ‖xn‖ <∞} ∩ {sup0≤n ‖yn‖ <∞}.

For the proofs, see [18].

V. ACTOR-CRITIC LEARNING

Using the results obtained for the algorithms with non-
additive state-dependent noise (Section IV), the almost sure
convergence of actor-critic learning algorithms is analyzed
in this section. Actor-critic algorithms are a subclass of
neuro-dynamic programming (reinforcement) learning algo-
rithms and can be considered as simulation based methods
for solving large-scale Markov decision problems.

Let p(i, k, ·), 1 ≤ i ≤ Na, 1 ≤ k ≤ Nb, be probability
distributions on{1, . . . , Na}, while q(x, i, ·), 1 ≤ i ≤
Na, x ∈ Rp, are probability distributions on{1, . . . , Na}
regular in x (i.e., q(·, i, k), 1 ≤ i ≤ Na, 1 ≤ k ≤ Nb,
are Borel-measurable). Controlled Markov chains with a
parameterized stationary randomized policy can be defined
as parameterized{1, . . . , Na}×{1, . . . , Nb}-valued Markov
chains{ax

n, b
x
n}n≥0, x ∈ Rp (x is the parameter), satisfying

the following relations:

P (ax
n+1 = j|ax

0 , b
x
0 . . . , a

x
n, b

x
n)

= p(ax
n, b

x
n, j), 1 ≤ j ≤ Na,

P (bxn+1 = k|ax
0 , b

x
0 . . . , a

x
n, b

x
n, a

x
n+1)

= q(x, ax
n+1, k), 1 ≤ k ≤ Nb.

Let c : {1, . . . , Na} × {1, . . . , Nb} → [0,∞), while

Jn(x) = E(c(ax
n, b

x
n)), x ∈ Rp, n ≥ 0.

Average-cost Markov decision problems with a parameter-
ized stationary randomized policy can be defined as the min-
imization of limn→∞ Jn(x) (provided thatlimn→∞ Jn(x)
is well-defined).

Suppose thatq(·, i, k), 1 ≤ i ≤ Na, x ∈ Rp, are
differentiable. Letφ(·, i, k), 1 ≤ i ≤ Na, x ∈ Rp, are
Borel-measurable functions mappingRp into Rq, while

ψ(x, i, k) =
∇xq(x, i, k)
q(x, i, k)

,

x ∈ Rp, 1 ≤ i ≤ Na, 1 ≤ k ≤ Nb.

The actor-critic learning algorithms analyzed in this section
are defined by the following difference equations:

xn+1 = xn − αn+1ψ(xn, an+1, bn+1)

· φT (xn, an+1, bn+1)yn, n ≥ 0,
(9)

yn+1 = yn − βn+1dn+1en+1, n ≥ 0, (10)

zn+1 = zn + βn+1(c(an+1, bn+1)− zn), n ≥ 0, (11)

dn+1 =c(an, bn)− zn + φ(xn, an+1, bn+1)T yn

− φ(xn, an, bn)T yn, n ≥ 0, (12)

en+1 =(en + φ(xn, an+1, bn+1))I{i∗}(an+1)
+ φ(xn, an+1, bn+1)I{i∗}c(an+1), n ≥ 0, (13)

bn+1 ∼ q(xn, an+1, ·), n ≥ 0, (14)

an+1 ∼ p(an, bn, ·), n ≥ 0. (15)



{αn}n≥1, {βn}n≥1 are sequences of positive reals, while
i∗ is defined in assumptionE1 (below).

Let

p̃(x, i, j) =
Na∑
k=1

q(x, i, k)p(i, k, j), x ∈ Rp, 1 ≤ i, j ≤ Na,

while P̃ (x) = [p̃(x, i, j)]1≤i,j≤Na
(P̃ (x) is the transition

probability matrix of the Markov chain{ax
n}n≥0). The

algorithm (9) – (15) is analyzed under the following as-
sumptions:

E1: φ(·, i, k), ψ(·, i, k), 1 ≤ i ≤ Na, 1 ≤ k ≤ Nb, are
locally Lipschitz continuous.

E2: For all x ∈ Rp, {ax
n, b

x
n}n≥0 and {ax

n}n≥0 are
irreducible and aperiodic. There exist integersN ≥ 1,
i∗ ∈ {1, . . . , Na} and a constantε ∈ (0,∞) such that

N∑
k=1

[P̃ (x̃1) · · · P̃ (x̃k)]i,i∗ ≥ ε, 1 ≤ i ≤ Na,

for all x̃1, . . . , x̃N ∈ Rp, where [·]i,j denotes thei, j-th
matrix entry.

E3: For all x ∈ Rp,

Span{[ψl(x, 1, 1) · · ·ψl(x,Na, Nb)]T : 1 ≤ l ≤ p}
⊆ Span{[φl(x, 1, 1) · · ·φl(x,Na, Nb)]T : 1 ≤ l ≤ q},

whereφl(x, i, k) andψ(x, i, k) are thel-th components of
φ(x, i, k) andψ(x, i, k) (respectively).

Let π(x, ·) be the invariant probability distribution of the
Markov chain{ax

n}n≥0, while

J(x) =
Na∑
i=1

Nb∑
k=1

π(x, i)q(x, i, k)c(i, k), x ∈ Rp.

Then, E1 and E2 imply thatJ(·) is differentiable,∇J(·)
is locally Lipschitz continuous andJ(x) = limn→∞ Jn(x)
for all x ∈ Rp. Let E∗ = {x ∈ Rp : ∇J(x) = 0}. If
p = NaNb, x = [x11 · · ·xNaNb

]T and

q(x, i, k) =
exp(xik)∑Nb

l=1 exp(xil)
, 1 ≤ i ≤ Na, 1 ≤ k ≤ Nb,

then J(·) is differentiable infinitely many times and the
Lebesgue measure ofJ(E∗) is zero (for more details see
the comments on A3, A4 in Section II).

The main results on the almost sure convergence of the
algorithm (9) – (15) are presented in the next theorem.

Theorem 7:Let A1 and E1 – E3 hold. Suppose that
q(·, i, k), 1 ≤ i ≤ Na, 1 ≤ k ≤ Nb, are p times
differentiable. Then,limn→∞ d(xn, E∗) = 0 w.p.1 on
{sup0≤n ‖xn‖ <∞} ∩ {sup0≤n ‖yn‖ <∞}.

Theorem 8:Let B1 and E1 – E3 hold. Then,
limn→∞ d(xn, E∗) = 0 w.p.1 on {sup0≤n ‖xn‖ < ∞} ∩
{sup0≤n ‖yn‖ <∞}.

For the proofs, see [18].
The actor-critic learning algorithms (9) – (15) have

been proposed and analyzed in [10], [11]. However, only
limn→∞ d(xn, E∗) = 0 w.p.1 has been demonstrated in
[10], [11].
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