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Almost Sure Convergence of Two Time-Scale Stochastic
Approximation Algorithms

Vladislav B. Tadt

Abstract—The almost sure convergence of two time-scale thoroughly been analyzed in several papers [4], [9], [10],
stochastic approximation algorithms is analyzed under general [11], [17]. Although [4], [9], [10], [11] provide an insight
noise and stability conditions. In the context of the Lyapunov into the almost sure asymptotic properties of two time-
stability, the adopted stability conditions are probably the scale stochastic approximation, the results presented therein
weakest possible still allowing the almost sure convergence pP D - p
to be shown, while the corresponding noise conditions are the €ither hold under fairly restrictive conditions or correspond
most general ones under which the almost sure convergence only to the almost sure convergence of subsequences of the
analysis can be carried out. The analysis covers the algorithms  algorithm states.
with additive noise, as well as those with non-additive noise. In this paper, the almost sure convergence of two time-

The algorithms with additive noise are analyzed for the - . - . - .
case where the noise is state-dependent. The analysis of theSCale stochastic approximation algorithms with decreasing

algorithms with non-additive state-dependent noise is carried St€p sizes is analyzed under general noise and stability con-
out for the case where the noise is a Markov chain controlled ditions. In the context of the Lyapunov stability, the adopted
by the algorithm states, while the algorithms with non-additive  stability conditions are probably the weakest possible still
exogenous noise are analyzed for the case where the noise isy||o\ying the almost sure convergence to be shown, while
correlated and satisfies strong mixing conditions. The obtained . - " '
results cover a fairly broad class of highly non-linear two time- the CorresponQIng noise conditions are the most ge_neral
scale stochastic approximation algorithms. ones under which the almost sure convergence analysis can
Index Terms—Two time-scale stochastic approximation, be carried out. The analysis covers the algorithms with
almost sure convergence, strong mixing conditions, controlled gdditive noise, as well as those with non-additive noise.
Markov chains, Lyapunov stability, actor-critic algorithms. The algorithms with additive noise are analyzed for the
case where the noise is state-dependent. The analysis of
the algorithms with non-additive state-dependent noise is
In this paper, the almost sure convergence of two timezarried out for the case where the noise is a Markov chain
scale stochastic approximation algorithms with decreagontrolled by the algorithm states, while the algorithms
ing step sizes is analyzed. Generally speaking, stochagith non-additive exogenous noise are analyzed for the case
tic approximation algorithms are sequential non-parametrighere the noise is correlated and satisfies strong mixing
methods for finding a zero or minimum of a function inconditions. The obtained results cover a fairly broad class of
the situation where only the noise corrupted ObSGrV&tiOnﬁgh|y non-linear two time-scale stochastic approximation

of the function values are available (see [2], [12] andigorithms (including the actor-critic learning algorithms
references cited therein). Two time-scale stochastic appromtroduced in [10], [11]).

imation algorithms represent one of the most general and

complex subclasses of stochastic approximation methodd!- ALGORITHMS WITH ADDITIVE STATE-DEPENDENT
These algorithms consist of two sub-recursions which are NoIsE

updated with different step sizes (i.e., which evolve on The algorithms considered in this section are defined by
different time scales). The main feature of two time-scalghe following difference equations:

stochastic approximation is that step sizes of one of the

sub-recursions (slow one) are considerably smaller thar®n+1 = Zn + ans1 f(@n, Yn) + Agrtingr, n >0, (1)

the step size of the another (fast) one. Owing to this
feature, stochastic approximation with two scales can be /7+1 = ¥» + Bn19(@n Yn) + Brirtngs, n20. (2)
considered as singularly perturbed stochastic differenqeln}@l, {B.}n>1 are sequences of positive reals, while
equations (for more details on singularly perturbed systemys: R? x RY — RP andg : R? x R? — R? are locally
see e.g., [14]). During the last five years, two time-scalgipschitz continuous functionsr, and y, are R?-valued
stochastic approximation algorithms have successfully beeihd R?-valued random variables (respectively) defined on
applied to several complex problems arising in the ares @f probability spac€Q, F, P), while {u, },>1 and{v,, }n>1
reinforcement learning [1], [9], [10], [11], signal processingare R?-valued andR?-valued stochastic processes (respec-
[6] and admission control in communication networks [Skively) defined on the same probability space.

(to name a few), while their asymptotic properties have {an}n>1, {Bn}n>1 are the step sizes of the algorithm (1),

2), while {u v are considered as the noise in
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the noise{u,, }»>1, {vn }n>1 depend on the algorithm statesalmost sure convergence of single time-scale stochastic

{Zn}n>0. {Yn}n>o0, i€, approximation algorithms (see e.g., [19]).
A3 and A4 are stability conditions. A3 corresponds to
Un+1 = Unt1 (20,90, -, Znsyn); 20, () the stability properties of the fast recursion (2) (i.e., to

4) the stability of the family of the ODEgy/dt = g(z,y),

x € RP) and is standard for the asymptotic analysis of two
whereU,, : R*+9) — RP andV,, : R*»+9) — RY gre time-scale stochastic approximation algorithms (see e.g.,
random functions. Since the algorithms with non-additivg4]). A4 is related to the stability properties of the slow
noise (Sections IIl, 1V) can be represented in the formecursion (1) (i.e., to the stability of the OD&z/dt =
(1) — (4), the results presented in this section could bé(z,(x))). Conditions (i), (i) of A4 require the ODE
considered as a basis for the analysis of the algorithms with:/dt = f(x,4(z)) to have a global Lyapunov function
non-additive noise. u(+). In the context of the Lyapunov stability, this require-

Fort € (0,00), leta,(t) =sup{j >n: Y 1  «a;41 < ment represents the weakest condition under which the
t}, bu(t) = sup{j > n : Y72 3.1 < t}, n > 1. The Lagrange stable solutions of the ODE/dt = f(z,¥(x))
almost sure convergence of the algorithm (1), (2) is analyzepnverge to the set of zeros df(,¢(-)) (i.e., to E.).

Un+1 = Vn+1(x0vy()7“wxnvyn)v n > 07

under the following assumptions: On the other hand, condition (iii) of A4 is specific for
Al: limy, oo @y = lim, oo By = lim, o ;' = the almost sure convergence of stochastic approximation

0, o0 oy =07 By = 0. algorithms and does not have an interpretation in the context
A2: For all p,t € [1,00), of the Lyapunov stability. Basically, it ensures the Lyapunov

function u(-) to admit the following topological property:

. = each closed continuous path starting and endinggimas a
nh_,néo n<jsgf ® Z Qitrtit | I, > = 0 wp.1, subpath contained i along whichu(-) does not increase.
- = This property prevents the noige., }n>1, {vn}n>1 from
j—1 forcing the slowly varying stateg,, },,>¢ to drift from one
lim  sup Z Bit1vit1| Ia,>51 = 0 w.p.1, connected component @, to another (which itself ensures
TN <bn () ||i=n {zn}n>0 to converge to a connected component ).
where Condition (iii) of A4 has been introduced in [15], [16] and
represents a generalization of the corresponding condition
Ap =inf({n > 0 max{||zn ||, |y.[[} > p} U {oco}). proposed in [7]. It holds ifZ, or u(E,) are countable. It is

A3: There exists a locally Lipschitz continuous functionalso satisfied in the following casg¢{z, v (z)) = —V.J(z)
¢ : R — R? such thaty(z) is a globally asymptotically for all z € RP, whereJ : R? — R is a differentiable
stable point of the ODHly/dt = g(z,y) for all z € RP. function satisfying the condition thdt: € R? : VJ(x) =

A4: There exists a differentiable functian: R — R 0} is nowhere dense. On the other hand, due to the Morse-

such that: Sard theorem (see e.g., [13f)z € RP : VJ(x) = 0} is
(i) Vu(-) is locally Lipschitz continuous, nowhere dense if/(-) is p-times differentiable. The case
(i) w(z) < 0 for all z € E¢, described above is quite common for the two time-scale
(iii) the Lebesgue measure ef E.) Nu(ES) is zero, stochastic approximation appearing in the area of neuro-

where E, = {z € RP : f(z,9¥(x)) = 0} andu(x) = dynamic programming (see e.g., [10], [11]).

VTu(x) f(x,9(x)). The main results on the almost sure convergence of the

Al corresponds to the asymptotic properties of the stegdgorithm (1), (2) under assumptions A1l — A4 are contained
sizes{ap }n>1, {Bn}tn>1, and is standard for the almostin the next theorem.
sure convergence analysis of two time-scale stochastic ap-Theorem 1:Let Al - A hold. Then,
proximation algorithms (see e.g. [4]). It holdsdf, = n™%,  lim, oo d(zp, Ex) = limy,—o ||[Yyn — ¥(2n)]| = 0 w.p.1
Bn = n7% n > 1, wherea,b € (0,1] are constants on the evenf{sup,,, |,| < oo} N {supy<,, ly.| < oc}.
satisfyinga > b. Moreover, Al implies that the states For the proof, see [18]. -
{zn}n>0 Of the recursion (1) evolves on a slower time-scale Let Fy, = o{xo, yo,uo,v0o} and F, = Fo V o{un, v, :
compared to the statgsy, },,>o of the recursion (2). n > 1}, n > 1. The almost sure convergence of the
A2 corresponds to the asymptotic properties of the noisggorithm (1), (2) is also analyzed under the following
{tn}n>1, {vn}tn>1. It can be considered as a two time-assumptions:
scale generalization of the classical Kushner-Clark noise Bl: lim, ..o, = limp—0o Bn = 0, ap — apy1 =
condition. In the context of single time-scale stochastiO(a2), B, — But1 = 0o(B2), an = O(BL), Yooyt =
approximation, the Kushner-Clark condition is the weakest_ > | 8, = oo, Yoo af < 0o, >.oo, 2 < oo, Where
condition under which the almost sure convergence can bes € (1,00) are constants satisfying< 2, 1/r +2s < 3.
demonstrated (for more details see e.g., [12]). Moreover, B2: There exist RP-valued stochastic processes
under certain (relatively restrictive) stability conditions, the{us ,, }n>1, {u2n}tn>1, {tsn}n>0, RI-valued stochastic
Kushner-Clark condition is necessary and sufficient for thprocesses{vi » }n>1, {v2.n}n>1, {v3n}n>0 (defined on
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(Q,F,P)) and for allp € [1,00), there exists a constant and is quite common for the almost sure convergence anal-

C, € [1,00) such that ysis of two time-scale stochastic approximation algorithms
(see e.g., [4]). B4 is related to the stability properties of the
Unt1 = Ulnt1 T U241+ Usintr — U, 120, slow recursion (1) (i.e., to the stability of the ODE /dt =
_ _ x,¥(x))). It requires the ODHEIx/dt = f(x,¢(x)) to
Untl = Ulntt V21 F Vangt = Vs, 120, i:e(lve a( g)lzj)bal Lyapunov functiom(-)./ln the c(onte>(<t )sz the
E (Ul,n+1f{xp>n}\7;n) =0w.pl, n>0, Lyapunov stability, this requirement represents the weakest
condition under which the Lagrange stable solutions of the
E (vin41ln,>n | Fn) =0wp.d, n >0, ODE dz/dt = f(z,(x)) converge to the set of zeros of

2 27 fG () (.e, to E*) Theref_o_re, B4 can be considered
max{ E(Jusnl*on, 2np), Elorall "I, 2n)} as the weakest stability condition ensuring the almost sure
<Cp nz1, convergence of the slowly varying statés, },,>o.
The main results on the almost sure convergence of the
E n 2-[ n >E n 2I n . . .
max{ E(lfuznll"Ix,2np), E[v2,nl*ox, 2n))} algorithm (1), (2) under assumptions B1 — B4 are contained

2
< Cplan +6n)° n2>1, in the following theorem.
Theorem 2:Let Bl — B4 hold. Then
max{ E(||us »||*] )y E(|vs o |lPT n . . !
{ (” > H o2 }> (” % ” oz })} lim,, .o d(xn,vE*) = lim, oo ||yn - d)('xn)” =0 wpl
<Cp n2zl, on the event{supy,, ||z, < oo} N {supg<, [[yn] < oo}.

For the proof, see [18].

The almost sure asymptotic behavior of two time-scale
Ap = inf({n > 0: max{||z,||, |lynll} > p} U {oo}). stochastic approximation algorithms with decreasing step
B3: g(-,-) is differentiable andV,g(-,-), V,9(-,-) are sizes has been analyzed in [4], [9], [10], [11]. Although

locally Lipschitz continuous. There exists a differentiableg4], [9], [10], [11] provide an insight into their asymptotic

function : RP? — RY such thatVy(-) is locally Lipschitz  behavior, the results presented therein either hold under
continuous and(z) is a globally exponentially stable point fairly restrictive conditions or correspond only to the almost
of the ODEdy/dt = g(z,y) for all x € RP. sure convergence of subsequences of the slowly-varying

B4: There exists a differentiable functian: R — R states{z,},>o0. In [4], the same results as those of The-
such thatVu(-) is locally Lipschitz continuous and(xz) < orems 1, 2 have been demonstrated under the conditions
0 for all z € £, whereE, = {x € RP : f(x,¢(z)) = 0} requiring the noise{u, }»>1, {un},>1 t0 be martingale-
andu(z) = VTu(x) f(x,¢(x)). difference sequences and the ORE/dt = f(z,¢(x))

B1 corresponds to the asymptotic properties of the stap have a globally asymptotically stable point. Obviously,
sizes{a, }n>1, {Bu}n>1. Itholds if a,, = n~1, 3, =n~" these conditions are one of the simplest special cases
n > 1, whereb € (1/2,1) is a constant. Moreover, B1 of A2 — A4. Moreover, the ODEdz/dt = f(x,¢(z))
implies that the state§z,, },,>0 of the recursion (1) evolves almost never has a globally asymptotically stable point in
on a slower time-scale compared to the stdtgs},>o of the case of highly non-linear algorithms such as actor-
the recursion (2). critic learning algorithms introduced and analyzed in [10],

B2 is a noise condition. Basically, it requires the nois¢ll]. On the other hand, A2 — A4 (as well as B2 —
{tn}n>1, {vn}n>1 to be decomposable as a sum of &B4) cover a fairly broad class of highly non-linear two
martingale-difference sequencgu( ,}n>1, {vin}n>1), @ time-scale stochastic approximation algorithms (including
vanishing sequence s ,, }n>1. {v2.n }n>1) and a telescop- actor-critic learning algorithms studied in [10], [11]; for
ing sequence{ts n }n>0, {Vs,n}n>0). Compared to A2, B2 details see Section V and [18]) and represent probably
is more restrictive. In return, it allows the correspondinghe weakest noise and stability conditions under which the
stability conditions to be significantly more general (sealmost sure convergence can be demonstrated. In [9] —
the comments on B3, B4, next paragraph). Moreover, B2 [41], two time-scale stochastic approximation algorithms
still applicable to the analysis of two time-scale stochastihave been analyzed under conditions which are similar to
approximation algorithms with non-additive noise and covB1 — B4. In [10], [11], only the existence of an almost
ers several, fairly complex classes of both exogenous asdre convergent subsequence of the slowly-varying states
state-dependent non-additive noise (see Sections Ill, IV). As,, },>0 (.., lim, .. d(z,, E.) = 0 w.p.1 on the event
stability conditions are usually much harder to be verifiedvhere {x,,},>0, {yn}n>0 are bounded) has been shown,
than noise ones, it is important to demonstrate the almoatile the results of [9] do not necessary hold under the
sure convergence under noise conditions which allow theonditions specified therein (notice that [9, Lemma 4.2] is
stability conditions to be the weakest possible and still coverot correct; otherwise, only the attractivity &f. would be
complex classes of exogenous and state-dependent noissufficient for its robustness to the perturbations of the ODE

B3 and B4 are stability conditions. B3 corresponds to théz/dt = f(x,(x)), i.e., E. could be robust even if it were
stability properties of the fast recursion (2) (i.e., to the stanot stable; this would be completely counter-intuitive and
bility of the family of the ODEsdy/dt = g(x,y), « € RP) to the best of our knowledge, there is not any similar result
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in the literature on the ODE stability). forall p e [l,0), B € B".
Remark: For more details on mixing conditions and
situations where they hold, see [8].
The main results on the almost sure convergence of the
USing the results obtained for the algorithms with addlth%Jgonthm (5)’ (6) under assumptions C1, C2 are presented
noise (Section Il), the almost sure convergence of th@ the next two theorems.
following algorithm is analyzed in this section: Theorem 3:Let C1, C2 hold. Suppose that Al is satisfied
and A3, A4 are fulfilled withf(z,y) = [ F(z,y, &)x(dE),
g(z,y) = [G(z,y, r(dE), » € RP, y € R Then,
Ynt1 = Yn + Bn1G(Tn, Yn, Env1), 20 (6)  lim, oo d(@n, By) = limy oo ||y — ()] = 0 w.p.1
n the even{sup,,, ||z,|| < oo} N {supy<,, [|ynll < oo}

I1l. ALGORITHMS WITH EXOGENOUSNON-ADDITIVE
NoOISE

Tn41 = Tn + Oén-i—lF(-rnvynagn-‘rl)a n > 07 (5)

. .0
}af‘}ﬁ?;’ ]{%gni’%} ieRiegﬁgrgzgngfXp(;;;t|>\:eRrreis,Rvghlle Theorem 4:Let C1, C2 hold. Suppose that B1 is satisfied

are Borel-measurable functions, and y, are RP-valued and B3, B4 are fulfilled withf(z,y) = [ F(z,y, £)r(dS),

and R-valued random variables (respectively) defined Oﬁ(m,y) = [Gla,y.Or(de), z € R?, y € R Then,

" ; ; oo (T, Ey) = limp o0 |lyn — ¥(z0)|| = 0 w.p.1
a probability spacg(Q, F, P), while a1 is an Rr- Min—oo T, n—oo ||Yn n
P y space ) {&ntnn the event{supg,, |7, || < oo} N {supy<,, [lyn | < oo}

valued stochastic process defined on the same probabilﬁ{)lzor the proofs, see [18]

space.
{an}n>1, {Bn}n>1 are the step sizes of the algorithm (5), IV. ALGORITHMS WITH STATE-DEPENDENT
(6), while {&,, },,>1 is considered as the (non-additive) noise NON-ADDITIVE NOISE

in the same algorithm. The analysis (the results of which are \gjng the results obtained for the algorithms with additive

presented in this section) is carried out for the case whegqq (Section 11), the almost sure convergence of the
{€n}n>1 is @ sequence of identically distributed randonty|ioying algorithm is analyzed in this section:
variables which satisfy strong mixing conditions and do not

depend on the algorithm stat€s,, } >0, {¥n }n>0- Tnt1 = Ty + W1 F(Tn, Yny Eni1), n >0, (7)
Let 7y = U{Zo,yo} and F, = Fy V U{gn tn > 1}, o >
n > 1. Moreover, forp c (0,00), let Bg — {LC c RP : Yn+1 = Yn +ﬁn+1G(xnvyn1£n+1)v n > 0. (8)
[zl < p}, BE ={y € R*: ||yl < p}. The algorithm (5), {an}n>1, {Bn}n>1 are sequences of positive reals, while
(6) is analyzed under the following assumptions: F:RPXRIxR — RPandG : RP x RI x R" — RY
Cl: F(-,-,¢) andG(-,-,¢&) are differentiable for alf ¢ are Borel-measurable functionsy andy, are RP-valued
R". For all p € [1,00), there exists a Borel-measurableand R?-valued random variables (respectively) defined on
function, : R — [1, 00) such that a probability spacg?, F, P), while {{,}n>0 is an R"-
valued stochastic process defined on the same probabilit
mas{|[F (2. 9.8) . [VaF (2.0 O IV, P} Soce P P d
< 9,(6), {an}n>1, {Bn}n>1 are the step sizes of the algorithm
max{ |V, F(z',y,&) — Vo F(",y", )| (7), (8), while{&, },,>0 is considered as (non-additive) noise
o P Vo) o F w in the same algorithm. The analysis (the results of which
vy /(x 7y//7£) - ) v s/gc Ol are presented in this section) is carried out for the case
< (&) Ulz" — 2" || + ly" — "), where the nois€¢,, },,>o is a homogeneous Markov chain

Gz, y,6)|, IVaGlz, v, 6, |V, C(z, v, controlled by the algorithm statgsc,, } >0, {yn}n>0, i.€.,
max{[|G(z,y, Ol | @y, Ol IV Gy, )1} for all x € RP,y € R?, there exists a transition probability

< ¢p(8), kernelTI(z, v, -, -) such that
max{ [|V,G(2",y, &) — V.G(",y", &), P(Ens1 € Bl2o, 40, €0s - - - s T Y En)
IV,G(',y',€) — VG, y", O} = I(xn, Yn,&n, B) w.p.l, n >0,
< ep@Ul2" =" + Iy = y"ID, forall B € B'.
for all z,2",2" € BY, y,y',y" € B}, { € R". The algorithm (7), (8) is analyzed under the following

C2: There exist a probability measure(-) defined assumptions: )
on (R",B"), constantsa,b € (1,00) and a sequence  D1: There exist Borel-measurable functiohs: RP x
{en}n>1 Of positive reals such that +2)a=! +b"' =1, RI?x R" — RP, G : R’ x R? x R" — R? and locally
) e/ < 0o and Lipschitz continuous functiong : R? x R? — RP, g :
RP x R? — R? such that

2b
/ #p (E)ldE) < oo, / IF (@, y,€) [Tz, y,€,de") < oo,

P(&. € B) = k(B), n>0, )
E|P(¢; € B|F,) — k(B)| < ¢jon, 0<n<j, /||G($,y7§')||ﬂ($ayaﬁ,dﬁl) < 00,
3805



F(z,y,6) — f(z,y) = F(z,y,&) — (ILF)(z, y,£), V. ACTOR-CRITIC LEARNING
Using the results obtained for the algorithms with non-

G(z,y,8) — g(z,y) = G(z,y,&) — (IG)(x, y,§) additive state-dependent noise (Section |V), the almost sure
convergence of actor-critic learning algorithms is analyzed
forall z € RP, y € R, { € R", where in this section. Actor-critic algorithms are a subclass of
neuro-dynamic programming (reinforcement) learning algo-

(I1F)(z,y, &) = /F(x7y’§/)ﬂ(x,y7f7d§/)’ rithms and can be considered as simulation based methods

for solving large-scale Markov decision problems.
Let p(i,k,-), 1 < i < N,, 1 <k < N, be probability
TG (z,y, §) :/é(m,y,f’)ﬂ(ax,y,g,dg’). distributions on{1,..., N,}, while ¢(x,i,-), 1 < i <
N,, z € RP, are probability distributions od1,..., N,}
regular inz (i.e., q(-,i,k), 1 < i < Ngy 1 < k < Ny,
are Borel-measurable). Controlled Markov chains with a
parameterized stationary randomized policy can be defined
as parameterizefll, ..., N, } x{1,..., N, }-valued Markov

D2: For all p € [1,00), there exist Borel-measurable
functionsy,, 1, : R™ — [1,00) such that

max{[|F(z,y, )|, | F(z,y, €I, [|(ILF) (z, y, )|}

< 9p(6)s chains{a},b? },,>0, € RP (x is the parameter), satisfying
the following relations:
n ro _ n "o .
||(HF)(:E,y/,§) //(HF)(/x vyuaf)” P(aﬁ+1=y|a§,b§...7aﬁ,bﬁ)
< 0@ (ll" = |l + Iy — oI, p(at bt ), 1< < N,,
~ ~ X _ T 1T x 1T x

max{||G(z,y. &) |G (x,y. &) |(1G) (. y. &)} POy = Hlag. b . an: b aipa)
< 0,(6). =g a50,k), 1<ES N,

} . Letc:{L,...,Ng} x{1,..., Ny} — [0,00), while
I(IG) (2", §) — (UG) (2", 5", )
<)l =" +lly" = ")
Average-cost Markov decision problems with a parameter-
for all z,2",2" € B, y,y',y" € Bi, { € R". ized stationary randomized policy can be defined as the min-
D3: Forallpe[l,00), x € RP, y€ RY, { € R, imization of lim,, .« J,(z) (provided thatlim,,_. J,,(z)
is well-defined).
=, ) _ B - Suppose thay(-,i,k), 1 < i < N,, € RP, are
Zla”E (o), zny 0 = 2,50 = 4.6 =€) <00 gigoreniiable. Leto(-,i,k), 1 < i < N,, = € RP, are
"= Borel-measurable functions mappifty into R?, while

o . Vaq(z,i, k)
> B2E ($3(&n) I ia,mny w0 = 2,50 = ¥, & = &) < o0, Y(z,%,k) = q@ k)
n=1

T E€RP, 1<i< N, 1<k<N,

Jn(x) = E(c(al,b?)), x€ RP, n>0.

n»’n

where . . . S .
The actor-critic learning algorithms analyzed in this section

A, = inf({n > 0 : max{||znl], [lya]l} > p} U {o0}). are defined by the following difference equations:

Remark: D1 — D3 could be considered as a two time- z,,,; = 2, — ap 19 (Tn, i1, buy1)
scale extension of the assumptions adopted in [2, Chapter

T
: ny Un abn ns 2 0
11.3]. ¢ (Tn; @1, boy1)y n

Th_e main results on the almo_st sure convergence of the Yni1 = Yn — Prsrdpsienss, >0, (ig;
algorithm (7), (8) under assumptions D1 — D3 are presented
in the next two theorems. Zn+1 = zn + Bny1(c(@nt1,bnt1) — 2n), n >0, (11)
Theorem 5:Let A1, D1 — D3 hold. Suppose that A3, T
A4 are satisfied Wity (-,-), g(-,-) introduced in D1. Then,  @n+1 =¢(0n;bn) = 2n + &(@n, ani1,bns1)" Yn
limy oo (20, Ey) = limp oo ||yn — ¥ (zn)]| = 0 w.p.1 on — ¢(Tny Gny b)Y, 120, (12)

the event{sup,c,, [|zn|| < oo} N {sup,<,, [[ynll < oo} _
Theorem 6:Let B1, D1 — D3 hold. Suppose that B3, "' =(en + 0(@n; anp1,bn1)) i, (an )
B4 are satisfied withy (-, ), g(-,-) introduced in D1. Then, + (&, @ntr, bns 1) (i ye (@nt1), 720, (13)
limy, 00 d(@n, Bx) = limy o0 [|yn — ¥ (z5)]| = 0 w.p.1 0N b >
n o0 n»y n o0 n n n ~ n n ), > 0, 14
the event{supg,, [|x| < oo} N {supy<,, [lyn| < oo} 1~ 4@, Gny1,), 1 (14)
For the proofs, see [18]. an+1 ~ plan,bn,+), n>0. (15)
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{an}n>1, {Bn}n>1 are sequences of positive reals, while
i, is defined in assumptiof’'l (below).

[1]
Let
N,
Ba,i )= qlei k)pli k), 2 € R?, 1<ij<N,, O
k=1 [3]
while P(z) = [B(z,i,j)]1<ij<n. (P(z) is the transition [

probability matrix of the Markov chain{a?},>0). The
algorithm (9) — (15) is analyzed under the following as- [°!
sumptions:

ELl: ¢(- 4, k), ¥(-i,k), 1 <i< Ny, 1 <k <N, are

locally Lipschitz continuous. (6]
E2: For all x € RP, {aZ,b%},>0 and {aZ},>0 are
irreducible and aperiodic. There exist intege¥s > 1,
ix € {1,...,N,} and a constart € (0,00) such that 7]
N ~ ~
D [P(#1)--- P(Eg)ii, > e, 1<i< N, (8]
k=1 [9]
for all z,,...,Zy € RP, where[]; ; denotes the, j-th
matrix entry. [10]
E3: For all z € RP,
Span{[¢1(z,1,1) - - - ¢hi(x, Noy, Np)|" 1 1 <1 < p} [11]
C Span{[¢i(x,1,1) - ¢y(x, Noy N)|T : 1 <1 < g}, 12
where¢,(x, i, k) andy(z,, k) are thel-th components of (3]

o(x,i, k) andp(x,i, k) (respectively).
Let 7(z, -) be the invariant probability distribution of the [14]
Markov chain{a} },>0, while

[15]
N, N,
— ; ; ; P
J(x) = Zl ];W(x,z)q(z,z, k)c(i, k), x € RP. 116}
Then, E1 and E2 imply thaf(-) is differentiable,V.J(-)
is locally Lipschitz continuous and(x) = lim,, . Jp(z) (7]
forall z € RP. Let E, = { € RP : VJ(z) = 0}. If
p= NoNy, x = [.1311 . 'xNaNb]T and [18]
dih) = —2TR) oy 1cken, M
2= exp(ir)

then J(-) is differentiable infinitely many times and the
Lebesgue measure of(E,) is zero (for more details see
the comments on A3, A4 in Section II).

The main results on the almost sure convergence of the
algorithm (9) — (15) are presented in the next theorem.

Theorem 7:Let A1 and E1 — E3 hold. Suppose that
q(-,i,k), 1 < i < N,, 1 < k < N, arep times
differentiable. Then,lim,, o d(z,, Ex) 0 w.p.l on
{supo<., [a | < 00} N {supo<, ynll < o0}

Theorem 8:Let B1 and E1 E3 hold. Then,
limy, o0 d(zy, Ex) = 0 w.p.1 on {supy<,, [|7,| < oo} N
{SUPogn Hyn” < OO}

For the proofs, see [18].

The actor-critic learning algorithms (9) — (15) have
been proposed and analyzed in [10], [11]. However, only
lim d(xn,Ey) = 0 w.p.1 has been demonstrated in

—n—00

[10], [11].
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