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Abstract— Conventional principal component analysis
(PCA) minimizes the total error variance, which may be
inappropriate for the non-Gaussian distribution systems.
In this paper the entropy is proposed as a more general
index for PCA model, and then a modified PCA with the
optimization for the minimum error entropy via a genetic
algorithm (GA) is addressed.

I. INTRODUCTION

PCA reduces the dimension of interrelated data set with
the minimized error variance [1]. This implies that the
error data are Gaussian and the existing methods may
be inappropriate for the non-Gaussian error data. Hence,
a more general index (i.e., the entropy) should be used
to measure the uncertainties in the error. In this paper
an adequate principal components are firstly selected via
cumulative percent variance (CPV) [2] criteria, and then an
optimal rotation on loadings is made via a genetic algorithm
(GA) [3] for the minimal error entropy.

II. PCA AND MINIMUM ERROR ENTROPY

A. Principal Component Analysis

Consider an n-by-m data matrix X that consists of n
observations with m variables. In PCA X is decomposed
into the sum of the outer product of m pairs of vectors as
follows.

X = t1pT
1 + t2pT

2 + · · · + tmpT
m (1)

where the vector ti ∈ Rn is called ith principal component
(PC), and the vector pi ∈ Rm is called ith loading.
Equation “(1)” is also subjected to var(ti) = λi and
cov(ti, tj) = 0 (i �= j). Where var(·) is an operator for
variance, and cov(·, ·) is an operator for covariance. If k
PCs are selected via CPV criteria based on the cumulative
variance contribution rate of the first several PCs, the
following PCA model can be formulated.

X̂ = t1pT
1 + t2pT

2 + · · · + tkpT
k = TkPT

k

E = tk+1pT
k+1 + tk+2pT

k+2 + · · · + tmpT
m

(2)

Where X̂ is an estimator of X, and E is a corresponding
residual error matrix.
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B. Least Mean Squared Error and Minimum Error Entropy

Consider a random vector x ∈ R
m with zero mean. Least

mean squared error criterion states that the best estimator
x̂ for x is the one which minimizes mean squared error
(MSE). This means that the best estimator x̂ is subject
to min(var(x̃)). where x̃ = x − x̂ is an estimated error
vector. Under the assumption of m-dimensional Gaussian
distribution for x̃, the entropy H(x̃) of x̃ has the same
monotony with determinant det(var(x̃)) [4]. That is

min (var(x̃)) ⇔ min (det(var(x̃))) (3)

III. PCA BASED ON MINIMUM ERROR ENTROPY

Form “(3)” it can be seen that minimizing the mean
squared error for Gaussian system is equivalent to the
minimization of the error entropy. But entropy has more
general meaning than that of variance for arbitrary random
variables, it can be used to form a design criteria for general
stochastic system subjected to arbitrary distribution [5].
Based on this idea a modified PCA technique with the
optimization of error entropy is proposed.

To be more specific, consider an n-by-m data matrix X
from a stochastic system that consists of n observations
with m variables. From the PCA model in “(2)” the error
matrix can be expressed as follows.

E = [E1, · · · , Em] =




e11 e12 · · · e1m

e21 e22 · · · e2m

· · · · · · · · · · · ·
en1 en2 · · · enm


 (4)

In “(2)” we only consider the total variances contributed
by PCs, but don’t consider the ensemble minimum error
entropy of the model. Under the assumption of the indepen-
dence among the errors, the probability distribution matrix
of error matrix E and the corresponding error entropy can
be obtained by statistical histogram principle.

Prob(E) =




η11 η12 · · · η1m

η21 η22 · · · η2m

· · · · · · · · · · · ·
ηN1 ηN2 · · · ηNm


 (5)

H(E) =
m∑

i=1

H(Ei) =
m∑

i=1

N∑
j=1

ηij log (ηij) (6)

where N is a uniformly quantizing division number of error.
ηij is the probability of error vector Ej in its ith division.
That is, for each error vector Ei = [e1i, e2i, · · · , eni]T

in “(4)”, its elements are binned in [min(Ei), max(Ei)]
by N divisions. The error entropy calculated in “(6)” is
only based on the conventional PCA model without any



optimization. In order to formulate the best model with
minimum error entropy, the reserved loading eigenvectors
in Pk ∈ R

m×1 in “(2)” should be optimized via a genetic
algorithm [3]. For the convenience of chromosome coding
in the genetic algorithm, the reserved loading eigenvectors
in Pk are rearranged and expanded as a value vector g for
the optimization.




p1

p2

...
pk


 ⇐⇒ g =




g1

g2

...
gm×k


 (7)

where there is a mapping of elements between p i and G
as follows.

pi =




p1i

p2i

...
pmi


 ⇐⇒




g(i−1)×m+1

g(i−1)×m+2

· · ·
gi×m


 (8)

Since g is a deterministic value vector, it cannot be
optimized directly. In order to further optimize the error
entropy, an optimization model with a random vector u =
[u1, u2, um×k] pertinent to the value vector g in “(7)” can be
built. The difference between u and g is that the elements in
g are deterministic values, while the elements in u are vari-
ables. The random vector u can also be uniquely converted
to a random loading eigenvector matrix V = [v1v2 · · · vk].
Each column vector vi in V forms a random vector akin
the loading eigenvector pi. Consequently, the following
optimization model for optimization can be formulated.

u =




u1

u2

...
um×k


 ⇐⇒ V =




v11 · · · v1k

v21 · · · v2k

· · · · · · · · ·
vm1 · · · vmk


 (9)

The mapping of elements in the vector u to those in the
matrix V is similar to the relationship in “(8)”.

In order to optimize the random variables in u via the
genetic algorithm, the domains of the random variables shall
be decided. For the reason that the random variables are
used to determinate the direction of loading eigenvectors,
their values are proportional to each other. Form “(7)” the
domain for the random vector u in “(9)” can be set as
[0.5g, 1.5g], i.e. ui ∈ [0.5gi, 1.5gi]. In the meantime the
loading eigenvectors in V shall also be subjected to

vT
i vi = 1 and vT

i vj = 0 (i �= j; 1 � i, j � k) (10)

Based on the results discussed above, the following
calculating procedure for the proposed method can be got.

(i) Let X ∈ Rn×m be a data matrix with n observations
and m variables. Perform a conventional PCA on X
and obtain the PCA model as “(2)”;

(ii) Rearrange the loading matrix according to (7) and
form the value vector g, which can be used to define
the domain of the random vector u in (iii);

(iii) Establish an optimizing model with a random vector
u and define its domain via the value vector g in (ii);

(iv) Optimize the random vector via the genetic algorithm
with the performance of the minimum error entropy,
which can be calculated by “(4)”, “(5)” and “(6)”.

IV. A SIMULATION EXAMPLE

Let’s consider a pseudo stochastic system with a ran-
dom state vector x = [x1, x2, x3], where x1 =
sin (π

2 × rand(1)); x2 = x1 + 0.5 × rand(1); x3 = x2 −
0.5×x1; rand(1) chooses number uniformly distributed on
the interval (0.0, 1.0).

Given that we have 500 observations of x. After sim-
ulation with the proposed method the “Fig. 1” gives the
results of the decrease of error entropy and undulation of
mean square error of the PCA model before and after the
optimization via the genetic algorithm.
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Fig. 1. The decrease of error entropy and the undulation of MSE
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