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Abstract— This paper addresses repetitive control for linear
time varying systems. This problem is motivated by a broad
range of applications where periodic disturbances or reference
signals are existent and synchronized with a rate varying
process variable. In the area of motion control, this is a master-
slave type electronic cam follower problem, where the slave
axis motion must follow the master axis coordinate (process
variable) according to a given cam profile while the master
axis motion has a time varying speed. In the real-time domain,
the disturbance/reference profile changes as master’s speed
changes. However, in view of the master axis coordinate, which
is called in the angle domain, the disturbance/reference profile
is periodic with a fixed period even when the master axis
changes speed. To exploit the internal model of repetitive
control to achieve asymptotic tracking performance, it is
advantageous to design the control system from the angle
domain perspective. In the angle domain the slave’s time
invariant dynamics become time varying and dependent on
the mast axis speed. Therefore, the problem of repetitive
control for time varying systems arises. In this paper, Model
Reference Control is applied to compensate for the linear time
varying system, rendering a linear time invariant input/output
system. Asymptotic output tracking/regulation performance is
achieved by employing repetitive control loop to compensate
for the linear time invariant model.

I. I NTRODUCTION

A broad range of applications involves compensation of
periodic disturbances or reference signals that are synchro-
nized with a process variable. When the rate of change
of this process variable is constant, these signals are also
periodic in time, but when the rate of change is variable,
the signals are no longer periodic with time. In the area
of motion control, this represents a master-slave type elec-
tronic cam follower problem, where the slave axis motion
must follow the master axis coordinate (process variable)
according to a given cam profile while the master axis
motion has a time varying speed. The electronic cam
motion is widely used in the industry. Present industrial
programmable multi-axis motion control systems provide
the electronic cam function by generating the slave axis’s
reference signal according to the real-time sensed master
axis’s position. This open loop type of control between
the master axis and the slave axis relies on the servo
control performance of the slave axis to follow otherwise
arbitrary reference signals. The open loop control does not
exploit the unique characteristic that the cam profile is
periodic with respect to the master axis’s rotational angle.
Repetitive control, which achieves asymptotic tracking and
disturbance rejection of periodic signals, has been widely

used in many applications.The internal model principle
(Francis and Wonham[1]) requires that a periodic signal
generator be included in the feedback loop in order to
track a periodic reference and this periodic signal generator
includes a time delay term corresponding to the period.
Early work on repetitive control was initiated by Inoue
et.al[2]. Hara et.al.[3] presented the stability analysis of
the continuous repetitive control system. Tomizuka et.al.[4]
presented the analysis and synthesis of the discrete time
repetitive controllers based on Zero Phase Error Tracking
compensation of the plant model (Tomizuka,[5]). Tsao and
Tomizuka[6] presented a robust repetitive control algorithm
by using Q filter. More recently, repetitive control design
has been cast intoLFT form and solved by mu-synthesis
approach ([7]). These fixed period repetitive control can be
applied to the electronic cam motion generation problem
when the master axis’s speed is constant. When the master
axis’s speed varies sufficiently slow, variable period repeti-
tive control[8] may be applied.

When the master-axis’s speed varies periodically in syn-
chronization with exogenous signal’s period, the problem
can be considered as a periodically linear system with its pe-
riod synchronized with the exogenous signal period. Omata
et.al.[9] provided a sufficient condition for stability based
on L-1 induced norm and small gain theorem. Hanson and
Tsao[10] proposed a gain-scheduling approach analyzed
by the lifting method to ensure stability and implemented
the control to variable speed non-circular machining. Luo
and Manhawan[11] extended the idea to design repetitive
controller capable of tracking time varying periodic refer-
ences. A invertible unitary operator is used to transform the
signals between angle-domain and time-domain.However,
only bounded tracking error performance can be achieved.

This paper addresses the electronic cam following prob-
lem when the master-axis’s speed is time varying. The speed
variations are not necessarily slow or periodically synchro-
nized with the signal period, as the aforementioned works
have addressed. Noting that the reference and disturbance
signals are periodic functions of the maser axis’s rotational
angle, the control problem may be modelled in the master
axis “angle domain” to exploit the signal periodicity in the
repetitive control design. This ”angle domain” aspect was
addressed by Tsao et.al.[12], [13] by using spindle angle,
instead of time, as the independent variable for repetitive
controller design. The validity of this aspect has been
demonstrated by experiments (Tsao[14], Hiro[15], She and



M. Nakano[16] )
We will show that this problem entails applying repetitive

control to linear time varying systems since the linear time-
invariant plant in the time domain is linear time-varying
in the angle domain as the master-axis speed varies. The
control design involves two steps. In the first step, an inner
Model Reference Control developed by[17] is employed
to render a linear time invariant input-output map. In the
second step, an outer loop repetitive control is employed to
render asymptotic output regulation performance.

II. PROBLEM FORMULATION

A. Plant model in the angle domain

Consider aSISOmotor plant in the time domain

dx(t)
dt

= Ax(t)+Bu(t) (1)

y(t) = Cx(t)

which is completely controllable and observable. Convert-
ing it into the angle domain yields:

dx(θ)

dθ
=

A
ω̃(θ)

x(θ)+
B

ω̃(θ)
u(θ) (2)

y(θ) = Cx(θ)

whereω̃(θ) is defined as follows by noting the relationship
between time and the spindle angle:

ω̃(θ) := ω(t(θ)) = ω(t) =
dθ
dt

, t =
∫ θ

0

dθ
ω̃(θ)

It is clear that the plant becomes time-varying in the angle
domain.But the reference and disturbance are periodic in
the angle domain.So perfect tracking can be achieved by
applying repetitive control to the system.

B. Control Design in the angle domain

The control scheme for the variable speed machining
system is shown in Fig. 1. The inner controllerCmrc is
designed so as to match the I/O characteristics to a nominal
linear time-invariant in the angle domain, and the outer
controllerCrc is the prototype discrete repetitive controller
to reject disturbance and provide tracking performance of
the plant in the angle domain.
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Fig. 1. Controller Scheme

1) MRC Controller Design: Since the plant model
in the angle domain is linear time-varying, the prototype
discrete repetitive control can’t be applied directly. The
model reference controller design techniques for linear

time-varying systems in the I/O operator perspective([17])
is employed to make the system linear time-invariant in the
angle domain.
Mathematical Preliminaries:
We first introduce the following definitions which will be
used to represent the system model and controller in the
I/O operator perspective.

Definition 1: s is defined as the differential operator,
d
dt (.). A left polynomial differential operator (PDO) of
degree n is defined as:P(s, t) = a0(t)sn +a1(t)sn−1 + . . .+
an(t).Similarly, the right PDO is defined as:P(s, t) =
sna0(t)+sn−1a1(t)+ . . .+an(t).

And a general system described by

y(n) +a1(t)y
(n−1) + . . .+a(n−1)(t)y

(1) +an(t)y =

b0u(m) +b1(t)u
(m−1) + . . .+b(n−1)(t)u

(1) +bn(t)u

can be written in the form:

P(s, t)[y] = Q(s, t)[u]

where P(s, t) = sn + a1(t)sn−1 + . . . + an(t) and Q(s, t) =
b0(t)sm+b1(t)sm−1 + . . .+bm(t).
In order to describe the above system by fractional repre-
sentations, we need the following definition to introduce the
“inverse” operator corresponding to thePDO P(s, t).

Definition 2: A left (right) polynomial integral operator
PIO of order n is defined as the operator that maps the
input u to the zero-state response of the differential equation
P(s, t)[y] = u, whereP(s, t) is the left(right) monic left(right)
PDO.

So we can write the system as:

[y] = P−1(s, t)Q(s, t)[u]

To assess the stability of the system given by the above
LTV I/O operator, we first define the ES stability concept
of PIO.

Definition 3: A PIO, P−1(s, t), is said to beES(or uni-
formly asymptotically stable) with rate−a,a > 0, if there
exist some positive constants k,a such that the state transi-
tion matrix associated with the linear differential equation,
satisfies||φ(t,τ)|| ≤ kexp(−a(t − τ)), t ≥ τ ≥ 0.

Given the above definition, it is clear that a system described
by an I/O operator is ES if all thePIO’s in it are ES.
MRC design technique:
Later we are going to treat our systems as I/O operators
expressed as a combination ofPDO’s and PIO’s. Such
a description leads it way to the fractional representation
approach in the analysis and design of stabilizing controllers
in the I/O perspective. So now we consider the LTV system
described by the following two forms:
PR f orm :

yp = kp(t)Np(s, t)D
−1
p (s, t)[up] (3)

PL f orm :
yp = D−1

p (s, t)Np(s, t)kp(t)[up] (4)



where Dp(s, t),Np(s, t) are monic PDO’s with UB
coefficients and of constant degree,denoted by n, m
respectively.And in Eq.(3),Dp(s, t),Np(s, t) are strongly
right co-prime while in Eq.(4),Dp(s, t),Np(s, t) are strongly
left co-prime. The need for strong co-primeness will be
seen later in the controller design.
And the MRC objective is defined as follows: Determine a
control inputup such that the closed-loop plant is internally
stable and the plant outputyp tracks the outputym of the
LTI reference model:

ym = Wm(s)[r] = kmD−1
m (s)Nm(s)[r] (5)

for anyUB, piecewise continuous reference input signal.
For this control problem to be feasible we need to make
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Fig. 2. Block diagram for the MRC controller

the following assumptions:kp(t) is positive, smooth,UB
and bounded away from zero.N−1

p (s, t) is an ES PIO.
Dm(s)andNm(s) are monic and Hurwitz withdeg[Nm(s)] ≤
deg[Dm(s)]−1. deg[Dm(s)] ≤ deg[Dp(s, t)], km > 0 and the
plant have the same relative degree as the reference model.
Consider the controller structure shown in Fig(2) with a cas-
cade compensatorc0(t)N

−1
2 (s, t)D(s) and a feedback com-

pensatorD−1(s)N1(s, t).Without loss of generality,N−1
2 (s, t)

is chosen as monic. AlsoD(s) is chosen as a monic
and HurwitzPDO to ensure that the cancellation ofD(s)
and D−1(s) is permitted.The results about MRC design is
summarized in the following theorem:

Theorem 4 (Tsakalis,Ioannou,[17]):Consider the plant
(Eq.3) or (Eq.4) and the control law:

u = c0(t)N
−1
2 (s, t)D(s)[r +D−1(s)N1(s, t)y] (6)

where D(s) is monic,Hurwitz PDO of degree n − 1
and such thatNm(s) is right factor of D(s),i.e.,D(s) =
Dz(s)Nm(s);N1(s, t)andN2(s, t) are PDO’s of degree n-1
with N2(s, t) monic andc0(t) is scalar function of time.
Then the controller can be designed so that the closed-
loop I/O operatorSry : r → y is BIBO stable and equal
to the reference model(Eq.5).The controller parameters are
smooth,UB functions of time and can be calculated by
solving the algebraic design equations

N2(s, t)c
−1
0 (t)Dp(s, t)−N1(s, t)kp(t)Np(s, t) = (7)

Dz(s)Dm(s)k−1
m kp(t)Np(s, t)

for a plant with I/O operator in thePR form(Eq.3),or

Ñ2(s, t)Dp(s, t)−kmN1(s, t) = kmDz(s)Dm(s)k−1
m (8)

N2(s, t) = k−1
m Ñ2(s, t)Np(s, t)km(9)

for a plant with I/O operator in thePL form(Eq.4).

Note the change to minus sign in the Eq.(7) and Eq.(8) re-
sults from rearranging the controller structure with positive
feedback.
State space realization of I/O operators:
Till now, the MRC design problem is formulated in
the I/O operator perspective for plants also described by
an I/O operator. The controller I/O operator has been
solved from a Diophantine equation. Next we are going
to find the state-space realization of the controller given
by I/O operator and address the internal stability of it.
Recall that the controller I/O operators to be realized
are D−1(s)N̄2(s, t) and D−1(s)N1(s, t).For the purpose of
state-space realization, we need to use right formPDO’s
now,which will be clearly seen later.NoteD−1(s)N̄2(s, t)
is strictly proper and D−1(s)N2(s, t) is proper, since
deg[N̄2(s, t)] = n−2, deg[D(s)] = n−1, anddeg[N1(s, t)] =
n − 1. Assuming the leading coefficient ofN1(s, t) is
θ3(t) and let N̄1(s, t) = N1(s, t)−D(s)θ3(t), we can write
D−1(s)N1(s, t) = D−1(s)N̄1(s, t) + θ3,where D−1(s)N̄1(s, t)
is strictly proper. Now let

F =











−d1 1 0 . . . 0
−d2 0 1 . . . 0

...
...

... 1
−dn−1 0 0 . . . 0











wheredi is the coefficient ofD(s) = sn−1+sn−2d1+ . . .+dn,

θ1(t) =











n2,0

n2,1
...

n2,n−2











,θ2(t) =











n1,0

n1,1
...

n1,n−2











where n2,i is the coefficient ofN̄2(s, t) = sn−2n2,0 + . . . +
n2,n−2 , n1,i is the coefficient ofN̄1(s, t) = sn−2n1,0 + . . .+
n1,n−2, and

qT =
[

1 0 0 . . . 0
]

Then it is trivial to verify that

D−1(s)N̄2(s, t) = qT(sI−F)−1θ1(t)

D−1(s)N̄1(s, t) = qT(sI−F)−1θ2(t)+θ3(t)

It is clear from the above that Fig.(3) is the state space
realization of the controller I/O operators solved from the
Diophantine equation. The above discussion leads to the
following two theorems about the state-space realization of
MRC law and it internal stability issue.

Theorem 5 (State-space realization,[17]):To realize in
state-space the TV MRC scheme of Theorem (4) the plant
output yp and input up are used to generate a(2n− 1)-



dimensional auxiliary vectorω as follows:

ω̇1 = Fω1 +θ1up (10)

ω̇2 = Fω2 +θ2yp

ω3 = θ3yp

ω = [ωT
1 ,ωT

2 ,ω3]
T ,θ = [θT

1 ,θT
2 ,θ3]

T andF ∈ R(n−1)×(n−1) is
stable matrix withdet(sI−F) = D(s). The input to the plant
is taken as

up = c0(t)[g
Tω+ r] (11)

whereg= [qT ,qT ,1]T is constant vector such that(qT ,F) is
an observable pair. Then, there exists[θ∗,c0∗(t)]Tsuch that
the control law Eq.(11) satisfies the TV MRC objective.
Further,[θ∗,c0∗(t)]T is UB and at least once differentiable
with UB derivative,provided that the plant parameters are
UB and possess a sufficiently large but finite number ofUB
derivatives.
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Fig. 3. State-space realization of the MRC scheme

Theorem 6 (Stability,[17]):Under the conditions given
in Theorem (4) and Theorem ( 5),the closed-loop plant is
ES and therefore BIBS stable for any externalUB input.

Angle domain MRC design analysis:
Let’s see how the above design techniques can be applied
to the angle domain motor plant described in Eq.(2).First
we need to show that the angle domain plant given in
state-space form of Eq.(2) admits aPDO factorization
form such that MRC design techniques can be used. The
following assumptions are made on the plant: 1. A,B,C are
constant finite dimension matrices andω(t) is smooth,UB
and bounded away from zero. 2. The order of the plant
is constant and finite. 3. The original system in the time
domain described by Eq(1) is completely controllable
and observable, which means [A,B,C] is completely
controllable and observable. And we can see from the
following theorem that the converted angle domain system
will be strongly controllable under these assumptions,which
ensures that the angle domain system admits a left or right
PDO factorization.

Theorem 7:The triple[ A
ω(t) ,

B
ω(t) ,C] for the angle domain

plant is strongly controllable and observable under the
above three assumptions.

Proof:First,we prove the strong controllability. Without
loss of generality, we can write the original time domain
system in the controllability canonical form,i.e.

A =















0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...
0 0 0 . . . 1
a1 a2 a3 . . . an















,B =















0
0
...
0
1















then we have:

A
ω(t)

=

















0 1
ω(t) 0 . . . 0

0 0 1
ω(t) . . . 0

...
...

...
...

0 0 0 . . . 1
ω(t)

a1
ω(t)

a2
ω(t)

a3
ω(t) . . . an

ω(t)

















,
B

ω(t)
=















0
0
...
0
1

ω(t)















Recalling the definition of the controllability matrix of
time-variable systems,we have the controllability matrixas
follows:

Qc = [p0p1 . . . pn−1]

where
pk+1 = −

A
ω(t)

pk +
d
dt

pk, p0 =
B

ω(t)
.

Plugging the expressions of theAω(t) ,
B

ω(t) we can get the
controllability matrix:

Qc =



















0 0 0 0 (−1)n+1 1
ω(t)n

0 0 0 (−1)n 1
ω(t)n−1 �

...
... � �

0 − 1
ω(t)2 � � �

1
ω(t) � � � �



















It is clear that ifω(t) is smooth,UB, and bounded away from
zero, then|det(Qc)| ≥ c > 0. So the angle domain plant is
strongly controllable. Similarly the strong observability can
be proved.
Following the theorem, the angle domain plant can be
written as theI/O operator form. The MRC control design
discussed before can be applied to match the plant to a LTI
reference model in the I/O operator perspective.

2) Repetitive Controller Design:According to the inter-
nal model principle proposed by Francis and Wonham[1],
asymptotic tracking of periodic signals of periodL may
be achieved by including a periodic signal generator in the
control loop.The discrete prototype repetitive controller is
applied to the nominal linear time-invariant plant resulting
from the linearized plant model by using the model refer-
ence control design techniques.
Prototype Discrete Repetitive Controller:
Let the discrete nominal linear time-invariant model be
described as:

G(z−1) =
z−dB(z−1)

A(z−1)
(12)



where d is the plant delay andb0 is nonzero.
The prototype repetitive controllerM(z−1) is given by:

M(z−1) =
R(z−1)

S(z−1)(1−z−N)
(13)

R(z−1)

S(z−1)
= kr

z−N+d+nuA(z−1)(z−nuB−(z−1))

B+(z−1)b
(14)

where kr is the repetitive control gain.nu is the order of
B−(z−1),and b ≥ max|B−(e− jω)|2,w ∈ [0,π]. The asymp-
totic stability of the closed loop system is guaranteed.[4]
To ensure robust stability, a low pass filterQ(z,z−1)can be
incorporated into the control law.Q(z1,z−1) can be chose
as:

Q(z,z−1) =

[

z+2+z−1

4

]n

And it should be noted that robust stability sacrifices
tracking performance.

III. D ESIGN EXAMPLE AND SIMULATION

Consider a second order linear motor model in the time
domain:

Gp(s) =
b0s+b1

s2 +a0s+a1
(15)

The model in the angle domain is is derived using the
following two equations:

dy
dt

=
dy
dθ

ω̃

d2y
dt2

= ω̃2 d2y
dθ2 + ω̃ω̃′

dy
dθ

And we get that the model plant in the angle domain is
described as:

(

s2 +

(

ω̃ω̃′ +a0ω̃
ω̃2

)

s+
a1

ω̃2

)

y =

(

b0ω̃′

ω̃
s+

b1

ω̃2

)

u (16)

Now the system can be written in thePDO factorization
form as follows:

yp = D−1
p (s, t)Np(s, t)kp(t)[up] (17)

Dp(s, t) = s2 +

(

ω̃ω̃′ +a0ω̃
ω̃2

)

s+
a1

ω̃2 (18)

Np(s, t) = s+
b1

ω̃∗b0
+

ω̃′

ω̃
(19)

kp(s, t) =
b0

ω̃
(20)

Suppose the reference model is:

(s2 + p0s+ p1)ym = km(s+q)r

In order to get the MRC controller parameters, we need to
solve the corresponding Diaphantine equation:

Ñ2(s, t)Dp(s, t)−kmN1(s, t) = kmDz(s)Dm(s)k−1
m

Here,D(s) = Dz(s)Nm(s) = Nm(s) = s+q,Dz(s) = 1,
PluggingDp(s, t),Np(s, t) into the above equation ,we get:

Ñ2(s, t) = 1 (21)

N1(s, t) =

ω̃ω̃′+a0ω̃
ω̃2 − p0

km
(22)

N2(s, t) = s+
b1

ω̃∗b0
+

ω̃′

ω̃
(23)

And the corresponding state-space realization parameters
are:

θ1 =

(

q−
ω̃ω̃′ +a0ω̃

ω̃2

)

kp(t)/km

θ2 =

a1
ω̃2 − p1−q( ω̃′

ω̃ + a0
ω̃ − p0)−

ω̃′′

ω̃ + ω̃2

ω̃2 +a0
ω̃′

ω2

km

θ3 =
ω̃′′

ω̃ + a0
ω̃ − p0

km

From the above expressions, we can see that in order to
design MRC controller for the linear time-varying plant in
the angle domain, we need to know about the information
of how the rotation speed changes,i.e., ω, ω̇, ω̈, . . .. The
actual coefficients are as follows:
b0 = 105.3065,b1 = 5.7926e5,a0 = 1.3785e2,a1 =
7.9076e5.
Now let’s assume the nominal rotational speed is
ωn = 600rpm = 62.8319rad/s , a reasonable nominal
reference model in the angle domain would be replacing s
in the above equation withωnσ, and we get:

GP(σ) =
1.676σ+146.73

σ2 +2.194σ+200.3
(24)

=
1.676(σ+87.5477)
σ2 +2.194σ+200.3

so the reference model parameters will be:p0 = 21.94, p1 =
200.3,km = 1.676,q = 87.5477
Plugging into Eq. 22-24, we can get the MRC controller
parameters.
And for 1.40625 degree (256 interrupts per revolution)
sampling interval time, the discrete transfer function with
zero order hold is

GP(z) =
0.0822z+0.0030

z2−1.8313z+0.9476
(25)

=
z−1(0.0822+0.0030z−1)

1−1.8313z−1 +0.9476z−2

According to the repetitive control law in Eq. (14) we have:

R(z−1) = z−255(1−1.8313z−1 +0.9476z−2) (26)

S(z−1) = 0.0822+0.0030z−1 (27)

We also add a low pass filterq(z1,z−1) = z+2+z−1

4 to ensure
robust stability against unmodelled dynamics.

A simulink model was constructed using the above con-
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Fig. 4. Nominal Performance in the time domain
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Fig. 5. Nominal Performance in the angle domain

troller design. Simulation results are presented as follows.
Fig. 4 and 5 shows the nominal performance. A sine
reference and disturbance of 2π are applied in the angle
domain to the simulated system. We can clearly see that the
reference is periodic in the angle domain, where in the time
domain, its period is varying.Nonetheless, the tracking error
goes to zero in both domains, which validate our approach
of repetitive control plus model reference control in the
angle domain. Also this approach show some extent of
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Fig. 6. Tracking Performance in the time domain
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Fig. 7. Tracking Performance in the angle domain

robustness. Fig 6 and 7 shows the tracking performance of
this approach when the plant was perturbed in the angle
domain from its nominal model a little bit . Though the
tracking error becomes larger, we can see that asymptotical
stability can be still achieved.

IV. CONCLUSION

We have addressed asymptotic output regulation of ex-
ogenous periodic signals for linear time varying systems by
employing Model Reference Control to render linear time
invariant input-output model and then applying repetitive
control to achieve asymptotic tracking of periodic signals.
This approach advances the widely used electronic cam
follower motion control from the present open loop master-
slave reference generation to closed loop repetitive control
with asymptotic tracking performance. Simulation results
have shown the validity of this control algorithm. Experi-
mental work is being conducted to implement this control
algorithm.
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