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Abstract— This paper addresses repetitive control for linear
time varying systems. This problem is motivated by a broad
range of applications where periodic disturbances or reference
signals are existent and synchronized with a rate varying
process variable. In the area of motion control, this is a master-
slave type electronic cam follower problem, where the slave
axis motion must follow the master axis coordinate (process
variable) according to a given cam profile while the master
axis motion has a time varying speed. In the real-time domain,
the disturbance/reference profile changes as master's speed
changes. However, in view of the master axis coordinate, which
is called in the angle domain, the disturbance/reference profile
is periodic with a fixed period even when the master axis
changes speed. To exploit the internal model of repetitive
control to achieve asymptotic tracking performance, it is
advantageous to design the control system from the angle
domain perspective. In the angle domain the slave’s time
invariant dynamics become time varying and dependent on
the mast axis speed. Therefore, the problem of repetitive
control for time varying systems arises. In this paper, Model
Reference Control is applied to compensate for the linear time
varying system, rendering a linear time invariant input/output
system. Asymptotic output tracking/regulation performance is
achieved by employing repetitive control loop to compensate
for the linear time invariant model.

I. INTRODUCTION

used in many applications.The internal model principle
(Francis and Wonham[1]) requires that a periodic signal
generator be included in the feedback loop in order to
track a periodic reference and this periodic signal geperat
includes a time delay term corresponding to the period.
Early work on repetitive control was initiated by Inoue
et.a[2]. Hara et.al[3] presented the stability analysis of
the continuous repetitive control system. Tomizuka ¢4Jl.
presented the analysis and synthesis of the discrete time
repetitive controllers based on Zero Phase Error Tracking
compensation of the plant model (Tomizuka,[5]). Tsao and
Tomizuka[6] presented a robust repetitive control aldponit

by using Q filter. More recently, repetitive control design
has been cast intbFT form and solved by mu-synthesis
approach ([7]). These fixed period repetitive control can be
applied to the electronic cam motion generation problem
when the master axis’s speed is constant. When the master
axis's speed varies sufficiently slow, variable period tepe
tive control[8] may be applied.

When the master-axis’s speed varies periodically in syn-
chronization with exogenous signal’s period, the problem
can be considered as a periodically linear system with its pe
riod synchronized with the exogenous signal period. Omata

A broad range of applications involves compensation oét.al[9] provided a sufficient condition for stability based
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periodic disturbances or reference signals that are sgnchion L-1 induced norm and small gain theorem. Hanson and
nized with a process variable. When the rate of changksao[10] proposed a gain-scheduling approach analyzed
of this process variable is constant, these signals are alsyp the lifting method to ensure stability and implemented
periodic in time, but when the rate of change is variablehe control to variable speed non-circular machining. Luo
the signals are no longer periodic with time. In the areand Manhawan[11] extended the idea to design repetitive
of motion control, this represents a master-slave type-elecontroller capable of tracking time varying periodic refer
tronic cam follower problem, where the slave axis motiorences. A invertible unitary operator is used to transforen th
must follow the master axis coordinate (process variablejgnals between angle-domain and time-domain.However,
according to a given cam profile while the master axisnly bounded tracking error performance can be achieved.
motion has a time varying speed. The electronic cam This paper addresses the electronic cam following prob-
motion is widely used in the industry. Present industrialem when the master-axis’s speed is time varying. The speed
programmable multi-axis motion control systems provideariations are not necessarily slow or periodically syoehr
the electronic cam function by generating the slave axisisized with the signal period, as the aforementioned works
reference signal according to the real-time sensed masteave addressed. Noting that the reference and disturbance
axis's position. This open loop type of control betweersignals are periodic functions of the maser axis'’s rotation
the master axis and the slave axis relies on the seramgle, the control problem may be modelled in the master
control performance of the slave axis to follow otherwiseaxis “angle domain” to exploit the signal periodicity in the
arbitrary reference signals. The open loop control does nogpetitive control design. This "angle domain” aspect was
exploit the unique characteristic that the cam profile iaddressed by Tsao et.al.[12], [13] by using spindle angle,
periodic with respect to the master axis’s rotational anglénstead of time, as the independent variable for repetitive
Repetitive control, which achieves asymptotic trackind ancontroller design. The validity of this aspect has been
disturbance rejection of periodic signals, has been widelgemonstrated by experiments (Tsao[14], Hiro[15], She and
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M. Nakano[16] ) time-varying systems in the 1/0O operator perspective{[17]
We will show that this problem entails applying repetitiveis employed to make the system linear time-invariant in the

control to linear time varying systems since the linear timeangle domain.

invariant plant in the time domain is linear time-varyingMathematical Preliminaries:

in the angle domain as the master-axis speed varies. TWé first introduce the following definitions which will be

control design involves two steps. In the first step, an innarsed to represent the system model and controller in the

Model Reference Control developed by[17] is employed/O operator perspective.

to render a linear time invariant input-output map. In the pefinition 1: sis defined as the differential operator,

second step, an _outer loop repetl_tlve control is employed t%(.)_ A left polynomial differential operator RDO) of

render asymptotic output regulation performance. degree n is defined af(s,t) = ag(t)s"+ay (t)s" 1 +... +

an(t).Similarly, the right PDO is defined as:P(s;t) =

Sag(t) +8" tay(t) + ... +an(t).

And a general system described by

Il. PROBLEM FORMULATION
A. Plant model in the angle domain
Consider aSISOmotor plant in the time domain

—1 1
a0 Y +ag )y + .+ apn g Oy +an(t)y =

gt = AO+Bu) 1) bou™ + by (t)u(™ ) + ..+ by () + bn(t)u
yt) = Cx) can be written in the form:
which is completely controllable and observable. Convert- P(s,t)ly] = Q(s.t)[u]
ing it into the angle domain yields: ’ '
dx(0) A 5 where P(st) = " +ay(t)s" 1 +... +aqs(t) and Q(st) =
©® ~ &0 X(0)+ = 5 u(e) (2)  bo(t)s"+by(t)s™ 4.+ bmy(t).
@(6) w(6) In order to describe the above system by fractional repre-
y(6) = Cx(6) sentations, we need the following definition to introduce th
where&(6) is defined as follows by noting the relationship‘inverse” operator corresponding to tRDO P(s;t).
between time and the spindle angle: Definition 2: A left (right) polynomial integral operator
de o do PI1O of order n is defined as the operator that maps the
@(0) ;== w(t(B)) = w(t) = at t= A m input u to the zero-state response of the differential eguat

P(s,t)[y] = u, whereP(s,t) is the left(right) monic left(right)
It is clear that the plant becomes time-varying in the anglppo,

domain.But the reference and disturbance are periodic | : )
the angle domain.So perfect tracking can be achieved bg;lo we can write the system as:

applying repetitive control to the system. ly] = P~1(s,1)Q(s,t)[u]

B. Control Design in the angle domain To assess the stability of the system given by the above
The control scheme for the variable speed machinin TV 1/O operator, we first define the ES stability concept

system is shown in Fig. 1. The inner controll€f¢ is fPIO.

designed so as to match the I/O characteristics to a nominalDefinition 3: A PIO, P~1(st), is said to beESor uni-
linear time-invariant in the angle domain, and the outeformly asymptotically stable) with rate-a,a > 0, if there
controllerC, is the prototype discrete repetitive controllerexist some positive constants k,a such that the state transi
to reject disturbance and provide tracking performance dfon matrix associated with the linear differential eqaati

the plant in the angle domain. satisfies||@(t,1)|| < kexgd—a(t—1)),t >1>0.

Given the above definition, it is clear that a system desdribe
by an 1/O operator is ES if all th®IO's in it are ES.

MRC design technique:

Later we are going to treat our systems as |/O operators
expressed as a combination BDO's and PIO’s. Such

a description leads it way to the fractional representation
approach in the analysis and design of stabilizing comrsl|

in the 1/0 perspective. So now we consider the LTV system
described by the following two forms:

Prform:

Fig. 1. Controller Scheme

1) MRC Controller Design: Since the plant model
in the angle domain is linear time-varying, the prototype
discrete repetitive control can’t be applied directly. TheR form:
model reference controller design techniques for linear yp:Dgl(s,t)Np(s,t)kp(t)[up] 4
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where Dp(s,t),Np(s,t) are monic PDOs with UB for a plant with I/O operator in th&s form(Eq.3),or
coefficients and of constant degree,denoted by n, m . B 1
respectively.And in Eq.(3)Dp(s,t),Np(s,t) are strongly No(s)Dp(st) —kmNa(st) = kmlDf(s)Dm(S)km ®)
right co-prime while in Eq.(4)Dp(s,t),Np(s,t) are strongly Na(sit) = Ky Na(s,t)Np(st)kn(9)
left co-prime. The need for strong co-primeness will befor a plant with 1/0 operator in the| form(Eq.4).

seen later in the controller design.

And the MRC objective is defined as follows: Determine d0té the change to minus sign in the Eq.(7) and Eq.(8) re-
control inputu,, such that the closed-loop plant is internallysuns from rearranging the controller structure with pesit

stable and the plant outpyy, tracks the outpuym of the feedback. o
LTI reference model: State space realization of I/O operators:

Till now, the MRC design problem is formulated in
Yim = Win(s)[] = k.nDr;l(s)Nm(s)[r] (5) the I/O operator perspective for plants also described by
an /O operator. The controller /0O operator has been
for any UB, piecewise continuous reference input signal. solved from a Diophantine equation. Next we are going
For this control problem to be feasible we need to mak find the state-space realization of the controller given
by 1/0 operator and address the internal stability of it.
Recall that the controller 1/O operators to be realized
y U are D1(s)Nx(s,t) and D~1(s)Ny(s,t).For the purpose of
P P -1 +I  state-space realization, we need to use right fGDO's
Gp(s 9 SON, (s 915 _ now,which will be clearly seen later.Not®~1(s)Nx(st)
is strictly proper andD~1(s)Ny(s,t) is proper, since
) dedNy(s,t)] =n—2, dedD(s)] =n—1, anddedN;(s;t)] =
D (9N(s ) n—1. Assuming the leading coefficient dfi(st) is
63(t) and letNy(s,t) = Ni(s,t) — D(s)83(t), we can write
D 1(s)Ny(s,t) = D L(S)Ny(s;t) + B3,where DL(s)Ny (s t)
is strictly proper. Now let

Fig. 2. Block diagram for the MRC controller

-d 1 0 0

" . . . . -d, 0 1 0
e following assumptionskp(t) is positive, smoothlUB F—

and bounded away from zerdNrjl(s,t) is an ESPIO. : Do 1

Dm(s)andNy(s) are monic and Hurwitz witldedNm(s)] < —dy-1 0 O 0

degDm(s)] — 1. degDm(s)] < degDp(s,t)], km > 0 and the ) . - B
plant have the same relative degree as the reference modiferedi is the coefficient ob(s) = s’ L+ 2d 40,

Consider the controller structure shown in Fig(2) with acas Mo No
cade compensatap(t)N, (s,t)D(s) and a feedback com- N1 N1
pensatoD~(s)Ny(s,t).Without loss of generality\, *(s;t) B1(t) = . ,02(t) = '
is chosen as monic. Als®(s) is chosen as a monic : :
and Hurwitz PDO to ensure that the cancellation Df(s) M2.n-2 N1n-2
and D~1(s) is permitted.The results about MRC design isyhere np; is the coefficient ofNp(st) = S"2npo+ ... +
summarized in the following theorem: Non2 , Ny is the coefficient oNl(s,t) _ §q’2f11',o+---+
Theorem 4 (Tsakalis,loannou,[17]Consider the plant Nin-2. and
(Eq.3) or (Eq.4) and the control law: q" = [ 100 .. 0 ]
u=co(N; (s)D(S)[r+DH(INu(S Y (6)  Then it is trivial to verify that
where D(s) is monic,Hurwitz PDO of degreen —1 DY(9)Np(s,t) = qT (sl — F)~184(t)

and such thatNpy(s) is right factor of D(s),i.e.D(s) =
D;(s)Nm(s);N1(s,t)andN(s,t) are PDOs of degree n-1
with Nx(s,t) monic andcp(t) is scalar function of time.

Then the controller can be designed so that the closed-lt.IS (;Iear from the above that Fig.(3) is the state space
. . realization of the controller 1/O operators solved from the
loop 1/O operatorSy : r — y is BIBO stable and equal

Diophantine equation. The above discussion leads to the
to the reference model(Eq.5).The controller parameters . .
. : ollowing two theorems about the state-space realization o
smoothlJB functions of time and can be calculated b

. ) . . YMRC law and it internal stability issue.
solving the algebraic design equations

» Theorem 5 (State-space realization,[17])o realize in
Na(s,t)cy " (t)Dp(s,t) = Nu(st)kp(t)Np(s,t) = (7)  state-space the TV MRC scheme of Theorem (4) the plant
D2(S)Dm(S)kmtKp(t)Np(s; t) outputyp and inputu, are used to generate (@n—1)-
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dimensional auxiliary vectow as follows:

_ 0 1 0 .. 0 0

= For+06up (10) 0 0 1 ... 0 0

w = Fup+6yp A=| 0 1 | ,B=1| :

ws = B3yp 0 0 O 1 0
w= 0], 00}, 3] 7,0 = [6],67, 85T andF e RM-1x(-1) s & & & ... & L]
stable matrix withdet(sl —F) = D(s). The input to the plant then we have:
is taken as 1

Up = Co(t)[g" w+1] (1) O ap 9 o O [0
whereg=[q",q", 1] is constant vector such th@d™,F)is A 0 0 &g 0 B 0
an observable pair. Then, there exifs, co.(t)]Tsuch that o) = : : : : 0] = :
the control law Eq.(11) satisfies the TV MRC objective. 0 0 0o ... ﬁ 0
Further,[6.,co.(t)]" is UB and at least once differentiable & & ag ﬂ) -

o oy oy @y - o)

with UB derivative,provided that the plant parameters are
UB and possess a sufficiently large but finite numbeuBf Recalling the definition of the controllability matrix of
derivatives. time-variable systems,we have the controllability mag#x

follows:
, . . Qc = [PoP1--- Pn-1]
47"% Plant . @ < + h
where B q B
% 1y g, ,% o pk+1——@pk+apk7po—@-
T(sl-F) T(sl-F) . . B
alst-h \“_1_1 Plugging j[he expressions of th‘-ﬁ—),m we can get the
+F U controllability matrix:
Fig. 3. State-space realization of the MRC scheme [ 0 0 0 0 (—1)n+1ﬁ ]
0 0 0 (—1)”W S
Theorem 6 (Stability,[17]):Under the conditions given Q¢ = : : o o
in Theorem (4) and Theorem ( 5),the closed-loop plant is 0o -1,
ES and therefore BIBS stable for any extertd input. 1 ‘;(t)
w(t)

Angle domain MRC design analysis:
Let's see how the above design techniques can be applids clear that ifc(t) is smooth) B, and bounded away from

to the angle domain motor plant described in Eq.(2).Firstero, then|det(Qc)| > ¢ > 0. So the angle domain plant is
we need to show that the angle domain plant given ietrongly controllable. Similarly the strong observapilitan
state-space form of Eq.(2) admits RDO factorization be proved.

form such that MRC design techniques can be used. Th®llowing the theorem, the angle domain plant can be
following assumptions are made on the plant: 1. A,B,C areritten as thel /O operator form. The MRC control design
constant finite dimension matrices aadt) is smoothJB  discussed before can be applied to match the plant to a LTI
and bounded away from zero. 2. The order of the plantference model in the I/O operator perspective.

is constant and finite. 3. The original system in the time

domain described by Eq(1) is completely controllable

and observable, which means [A,B,C] is completely i I . di he i
controllable and observable. And we can see from the 2) Repetitive Controller DesignAccording to the inter-

following theorem that the converted angle domain systeﬁ’ff"I model principle proposed by Francis and Wonham(1],

will be strongly controllable under these assumptionsghi asymptotic tracking of periodic signals of periad may

ensures that the angle domain system admits a left or rigﬂ? achieved by including a periodic signal generator in the
PDO factorization control loop.The discrete prototype repetitive contmoike

applied to the nominal linear time-invariant plant resti
. . from the linearized plant model by using the model refer-
Theorem 7:The tnple[% B_ C] for the angle domain P y using

. wlt)’ w(t)’ ence control design techniques.
plant is strongly controllable and observable under thﬁrototype Discrete Repetitive Controller:

above three assumptions. . ] Let the discrete nominal linear time-invariant model be
Proof:First,we prove the strong controllability. Withoutgescribed as:
loss of generality, we can write the original time domain

system in the controllability canonical form,i.e.

z9B8(z Y

Gz = Az D

12)
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where d is the plant delay arg is nonzero. HereD(s) = Dz(S)Nm(s) = Nm(s) =s+0,Dz(s) =1,

The prototype repetitive controllévi(z™1) is given by: PluggingDp(s,t),Np(s,t) into the above equation ,we get:
- R(z %) Na(st) =1 (21)
1y _ 2(S,
MED) = g (t3) o ap
R(z'1) z N+d+nup(z-1) (7B (77 1)) Ni(st) = —&—— (22)
= (14) km
Sz ) B (z )b o
wherek; is the repetitive control gainu is the order of No(st) =s+ Gy b0+5 (3)

) o jy2
B™(z7),and b > maxB (e *)[%w € [0,7. The asymp- anq the corresponding state-space realization parameters
totic stability of the closed loop system is guaranteed.[4]} ..

To ensure robust stability, a low pass fil@(z z *)can be

incorporated into the control la@(z',z ') can be chose g, — <q Gxd(;rzaod)> ko(t)/Km
as:
14N ~ o~ ~
Q(z7zl)={z+2%} 6 — 3 - +3-p)- L+ P +as
Km
And it should be noted that robust stability sacrifices &Lrao—p
tracking performance. 0; — %0

From the above expressions, we can see that in order to
design MRC controller for the linear time-varying plant in
Ill. DESIGNEXAMPLE AND SIMULATION the angle domain, we need to know about the information
of how the rotation speed chandges, w,®,®,.... The
Consider a second order linear motor model in the timalCtLIaI coefficients are as follows:
domain: 80 = 1053065b; = 579265,a9 = 1.378%2,a; =
' bos—+ by 7.90765.
T Prasta (15)  Now lets assume the nominal rotational speed is
@n = 600rpm = 62.831%ad/s , a reasonable nominal
reference model in the angle domain would be replacing s
in the above equation withy,0, and we get:

Gp(s)

The model in the angle domain is is derived using th
following two equations:

dy dy.
dy _ dy. 1.6760 + 14673
d;“ do 2 . Gr(0) = 52321940 + 2003 (24)
d_tg’ _ a,Zd_(;Z/ 60 d_g’ _ L676(0+87.5477)
02+2.1940 + 2003

And we get .that the model plant in the angle domain %0 the reference model parameters will pg= 2194, p; =
described as:

2003,kn =1.676 q=87.5477
Y x 3 Plugging into Eq. 22-24, we can get the MRC controller
(Sz+(uxd+aow>s ﬂ)y <bo(d b1>u (16)

= ~ —S+ ==
R R B + 2 parameters. . _
i . o And for 1.40625 degree (256 interrupts per revolution)
Now the system can be written in tHeDO factorization gampling interval time, the discrete transfer functionhwit

form as follows: zero order hold is
Yo = DostNp(stke(Dlup (A7) G(z) 0082200030 25
™ ~ 72—-1.8313%+0.9476
2 W + agh a; 1 1
Dp(st) = s+ ez )Ste (18) z1(0.0822+0.003 1)

T 1-1831% 1+0.947& 2

b W . . .
Np(sit) = s+ 50 B (19)  According to the repetitive control law in Eq. (14) we have:
bo
Ko(st) = -2 20
plS) @ (20) RzY) = z251-1831% 140.94762) (26)
Suppose the reference model is: Sz = 0.0822+0.003% * 27)
(8 + Pos+ P1)¥m = kin(S+)r We also add a low pass filtexz!,z 1) = 222~ to ensure

In order to get the MRC controller parameters, we need t@bust stability against unmodelled dynamics.
solve the corresponding Diaphantine equation:

Na(s,t)Dp(s,t) — kmNi(S,t) = kmD2(S)Dm(S)ky A simulink model was constructed using the above con-
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L

[2

Fig. 5. Nominal Performance in the angle domain

[3

troller design. Simulation results are presented as falow
Fig. 4 and 5 shows the nominal performance. A sine[4
reference and disturbance oftare applied in the angle
domain to the simulated system. We can clearly see that the
reference is periodic in the angle domain, where in the time
domain, its period is varying.Nonetheless, the trackimgrer g
goes to zero in both domains, which validate our approach
of repetitive control plus model reference control in the [6]
angle domain. Also this approach show some extent of

[71

B S— P Y Y A

gl - (9]

o ' : : T ’ ) ’ * [10]
Fig. 6. Tracking Performance in the time domain

[11]

AVAVAVAVAYAVAVAVAYAVAVAVAVAVAYA! I

4 [13]

g ool ] [14]

B T . [15]

Fig. 7. Tracking Performance in the angle domain [16]

robustness. Fig 6 and 7 shows the tracking performance of
this approach when the plant was perturbed in the angle
domain from its nominal model a little bit . Though thelt
tracking error becomes larger, we can see that asymptotical
stability can be still achieved.

o

IV. CONCLUSION

We have addressed asymptotic output regulation of ex-
ogenous periodic signals for linear time varying systems by
employing Model Reference Control to render linear time
invariant input-output model and then applying repetitive
control to achieve asymptotic tracking of periodic signals
This approach advances the widely used electronic cam
follower motion control from the present open loop master-
slave reference generation to closed loop repetitive obntr
with asymptotic tracking performance. Simulation results
have shown the validity of this control algorithm. Experi-
mental work is being conducted to implement this control
algorithm.
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