
A Time-Varying Iterative Learning Control Scheme 
 

Marina Tharayil and Andrew Alleyne, Senior Member, IEEE 
 

 
Abstract - This paper presents an Iterative Learning Control 
scheme that uses a time-varying Q-filter. The purpose of the 
time-varying Q-filter is to utilize the enhanced robustness 
given by a low bandwidth filter, while taking advantage of the 
superior performance properties of a high bandwidth Q-filter 
where needed.  Simulations are provided to demonstrate the 
benefits of the proposed scheme.  In addition, stability and 
convergence issues involved with using a time-varying filter 
are investigated.  Finally the ILC algorithm developed here is 
implemented on a Microscale Robotic Deposition (µRD) 
system to provide experimental verification. 
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I. INTRODUCTION 
ANY of the applications of Precision Motion Control 
(PMC) are repetitive or periodic in nature.  For 

example, robotic applications such as pick and place 
assembly operations involve repeated iterations of motion 
trajectories [4], [6], [8].  In these scenarios, it is common to 
have disturbances that repeat each time the command is 
given.  Conventional feedback controllers, which are more 
suitable for set-point regulation, would result in repeated 
errors in these applications.  Because of the increased 
significance of transient performance, feedforward control 
strategies are usually applied.  It is natural then to seek to 
learn from the previous iterations somehow to improve the 
performance of the current iteration.  Iterative Learning 
Control (ILC) is one such feedforward algorithm that 
utilizes previous control and error signals to modify the 
control input of the current iteration, nominally aiming to 
converge to zero tracking error.  For instance, an Iterative 
Learning Controller showed 97% improvement over 
feedback controllers in the Microscale Robotic Deposition 
system described in Section 4 [3].   

Figure 1 shows a schematic of an ILC scheme. Here the 
subscript j represents the trial or repetition number, and the 
reference signal yd(t) is defined on the interval [0, T].  At 
any given repetition, j, a control input of uj(t) is applied to 
the system to produce output yj(t), t∈[0 T], where T is the 
length of the periodic reference.  The input and output of 
the jth trial are stored in memory and used along with the 
fixed reference to calculate the input for the j+1th

 trial.   

Thus the goal of the algorithm is to design an update law to 
produce the lowest possible error as j tends to infinity.  In 
most ILC systems, it is assumed that the plant initial 
conditions are reset at the start of every period (xj(0)=x0).  
Also, the system is assumed to be stable, or stabilized, 
using feedback control.   
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Fig. 1. Learning Control Configuration 

As the scale of the operations grow smaller and 
tolerances tighter, nonlinearities arising due to friction 
components (coulomb, viscous, and stiction) or force 
ripples resulting from imperfections in the underlying 
components take on a more significant role [1], [8], [9].  
What's more, often times the controllers are designed based 
on local linearized models of inherently nonlinear systems.  
Under these conditions robustness of the controller is 
highly desirable, in addition to its ability to render the 
required performance.  Thus it is clear that development of 
ILC algorithms that provide additional robustness and good 
performance will be directly advantageous to many of these 
emerging technologies.  The time-varying ILC scheme 
presented in this paper is one such algorithm that can 
extend the robustness and performance boundaries given by 
traditional linear time-invariant (LTI) ILC algorithms.  The 
general ILC problem formulation and the structure of the 
time-varying ILC scheme are presented next.  

A general first order ILC update law is of the form: 

 ( ) ( )jjLj euftu ,1 =+  (1) 

where 

 ( ) ( ) ( )tytyte jdj −=  (2) 

Three attributes that are considered are:  
1) Stability / Convergence:  Existence of u*(t) such that  

 ( ) ( )tutu jj

∗

∞→
=lim  (3) 

2) Performance:  Existence of ε ≥ 0 such that the 
converged error e*(t) satisfies  

 ε<
p

te )(*  (4) 
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3) Robustness:  Satisfaction of stability / convergence 
condition in the presence of plant (P) uncertainties: 

 )1(~
∆+= PP  (5) 

The general traditional formulation for a linear ILC 
update law can be written in the following form [5]. 

   ( ) [ ])()(1 teLtuQtu jejj +=+  (6) 

Here learning parameters Q and Le are LTI operators.  It 
has been shown that such formulation results in a trade off 
between robustness and performance [4].  For example, 
using Laplace transforms to represent the signals u, e and 
the LTI Transfer Functions Q(s), Le(s), it can be shown that 
increasing the bandwidth of Q(s) results in improved 
performance at the cost of robustness, and vice versa.   

This paper proposes to circumvent the frequency domain 
bandwidth conditions by using a time-varying Q-filter.  The 
ILC update law proposed uses one form of a time-varying 
Q-filter: 

 ( ) [ ])()()(1 teLtutQtu jejj +=+  (7) 

The scheme presented here modifies the traditional 
formulation to give the designer an additional degree of 
freedom by allowing him or her to vary the balance 
between performance and robustness at each point in the 
period.  This can be very beneficial systems with either (1) 
localized nonlinear behavior entering at specific regions 
within the period or, (2) system model accuracy varying 
during the period – i.e. ∆ = ∆(t).  Another scenario where 
the time-varying Q-filter is advantageous is when the 
reference signal, yd(t), has significant changes in its 
frequency content during the course of the period.  For 
example, in such case the bandwidth of the Q-filter can be 
increased when yd(t) has high frequencies for enhanced 
performance.  In the case where there are high uncertainties 
at known portions within the period, the bandwidth of the 
Q-filter should be decreased for additional robustness. 

The remainder of the paper is organized as follows.  
Section 2 introduces the ILC scheme and develops the 
stability/convergence conditions for discrete-time systems.  
Next, the design procedure for such a scheme is 
demonstrated using a motivational example in Section 3, 
after which experimental results on the µRD section are 
reported in Section 4.  Section 5 concludes the paper. 

II. ILC ANALYSIS 
A discrete formulation of the system is used in this 

investigation as it is more natural for digital 
implementation.  Consider a stable linear, time-invariant, 
causal discrete-time plant P of the form: 

 )()()( zUzPzY =  (8) 

where z-1 is the standard delay operator.  P(z) has state 
space representation (9), and its input output behavior can 

be written in the form of a convolution sum shown in (10).  
Here k is the discrete time index and n is the number of 
time steps in a period. 
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Assuming zero initial conditions, P(z) can be written as 
follows [6], [7].  Here pi, sometimes called the Markov 
parameters of the plant, are given by BCAi 1− . 

 L+++= −−− 3
3

2
2

1
1)( zpzpzpzP  (11) 

Note that it is assumed the plant is of relative degree 1 
here.  For a transfer function of relative degree r, the first 
nonzero element will be multiplied by z-r.  Again, letting n 
be the number of time steps in the period T, and j be the 
iteration number, define vectors jŷ , dŷ  and jû  as follows:   
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Then the linear plant (8) can be written as follows: 

 duPy jj
ˆˆˆ +=  (13) 

where d̂  is a vector of the form (12) containing the effects 
of periodic disturbance, and P is a matrix of Markov 
parameters of the plant. 
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The most general ILC update law can be written in the 
form:   

 ( )jejj eLuQu ˆˆˆ 1 +=+  (15) 

where Q and Le are nxn matrices that determine the updated 
control vector of the j+1th iteration based on the current 
control and error vectors.   

Theorem 1: A necessary and sufficient (N&S) condition for 
convergence of jû to *û  as ∞→j  is given by:   

 ( ) niPLIQ ei ,,2,1   1)( L=∀<−λ  (16) 

Proof: 
A shift operator is defined as follows and applied to jŷ : 



 1
ˆˆˆ

−−= jjj fffδ  (17) 

 [ ] [ ] uPduPduPyyy jjjjjj ˆˆˆˆˆˆˆˆ 11 δδ =+−+=−= −−  (18) 

The shift operator is applied to the control vector next. 
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It is now obvious that uj ˆδ  converges to zero if and only if 
all eigenvalues of the matrix Q(I-LeP) lie within the unit 
circle.          

The above theorem is a well-known N&S condition for 
convergence of the ILC law.  The matrices Q and Le in (15) 
were of the most general form. For an ILC update law 
described by causal, LTI discrete transfer functions, 
matrices Q and Le will be of the form 
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It is assumed the transfer functions Le(z) and Q(z) are of 
relative degree zero, or the matrices have been shifted 
accordingly.  In this case, the stability transfer function Q(I-
LeP) is lower triangular, with identical values across its 
diagonal.  This leads to the following theorem. 

Theorem 2: The N&S condition for convergence of the ILC 
system defined by (13) and the update law (20) is 

 1)1( 100 <− plq  (21) 

Proof: 
The eigenvalues of a lower triangular matrix are its 

diagonal elements.  The diagonal elements of Q(I-LeP) are 
q0(1-l0p1).         

A:  Time-Varying Q-filter: 
Define a time-varying Q-filter that switches between two 
causal LTI filters Qa(z) and Qb(z) as shown in (23).    Here 
qa,i and qb,i represent the Markov parameters of filter Qa and 
Qb respectively 

Theorem 3:  The N&S conditions for convergence of the 
ILC system defined by (13) using the update law (15) with 
Q filter of the form (23) is given by:   

 1)1( 100, <− plqa  and 1)1( 100, <− plqb  (22) 

Proof: 
Same as Theorem 2.         

 (23)   

 
It can be seen that this result can easily be extended to a 

system switching between m Q-filters.  It is noted here that 
the use of non-causal filters results in full matrices Q and 
Le, and (16) gives the N&S condition for convergence in 
such case.   

B:  Performance and Robustness 

Theorem 4:  For the ILC system described by (13) and the 
general update law (15), the converged *û  and *ê are 
given by: 

 [ ] ( )dyQLPQLQIuu deejj
ˆˆˆlimˆ 1* −+−== −

∞→
 (24) 

 [ ][ ]( )dyQLPQLQIPIee deejj
ˆˆˆlimˆ 1* −+−−== −

∞→
 (25) 

Proof: 
Using (15) and (13), for the converged *û  and *ê , we 

have: 

 ( ) ***** ˆˆˆ    ;ˆˆˆ yyeeLuQu de −=+=  (26) 

 ( )deee yLdLuPLuQu ˆˆˆˆˆ *** +−−=  (27) 

⇒ [ ] ( )dyQLPQLQIu dee
ˆˆˆ 1* −+−= −

 (28) 
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⇒ [ ][ ]( )dyQLPQLQIPIe dee
ˆˆˆ 1* −+−−= −

 (30) 

         

A measure of performance is given by the smallest ε ≥ 0 
such that (4) is satisfied, and a robustness measure can be 
viewed as the largest ∆ such that P~  defined in (5) satisfies 
(3).  Given variations in yd and d within the period, the rows 
of Q can be adjusted to minimize the converged error for a 
given set of yd and d.  Similarly, if plant uncertainties are 
high during known parts of the period, changing q0 for the 
corresponding rows ensures stability for the perturbed 
system.  Some suggestions on how to design a time-varying 
Q-filter that takes advantage of this freedom are given in 
the following section. 
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III. DESIGN AND IMPLEMENTATION 
A schematic of the LTI ILC is shown in Figure 2.  The 

ideal design for a model based ILC design is to let Le = P-1 
and Q = I.  It can be readily checked that this satisfies the 
stability conditions and results in zero steady state error.  
However, in real systems, exact inversion of the plant 
dynamics is almost never realizable, especially using a 
causal Le.  Thus it is recommended to use a low pass filter, 
Q, to ensure stability conditions are met even in the face of 
uncertainties.  However, introducing the Q-filter results in 
loss of zero steady state error, thereby initiating the trade-
off between performance and robustness.  This trade-off, as 
well as the benefit of utilizing a time-varying Q-filter are 
demonstrated using an example in 3.1   
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Fig. 2.  Causal, LTI ILC structure 
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ILC using time-varying Q
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Fig. 3.  Causal, LTV ILC structure 

The time-varying ILC scheme proposed in this paper can 
be represented as shown in Figure 3.  The time-varying Q-
filter, Qtv, effectively switches between fixed filters Q1, 
Q2,…,Qm during the course of each iteration.  It is assumed 
that the switching order is fixed for all iterations.  The 
matrix representation of Qtv will be of the form (23).  The 
filters Q1, Q2,…,Qm are chosen as follows.  Let Qi be a low 
pass filter with cut-off frequency ωi, where ω1<ω2<…<ωm.  
The switching order is to be such that Q1 is the nominal 
filter (lowest cut-off frequency for highest robustness) and 
filters of higher bandwidth are used when necessary to meet 
performance requirements.  Thus the switching order of Qi 
is based on the desired bandwidth at any given time, as 
shown in Figure 4.  A smooth bandwidth profile is 
recommended to preserve continuity of signals.  The design 
of the bandwidth profile can be based on the frequency 
content of yd and known periodic disturbances, d.   

low

high

T  
Fig. 4.  Example bandwidth profile for Qtv 

A:  Simulation Example 

The following example problem is based on the 
linearized  dynamic model for a linear motor used by the 
µRD system described in [2],[3].  Given a true plant P~ , and 
a simplified model P(z), the goal is to design an ILC 
algorithm for output tracking. The simplified model (31), 
designed for sample time of 0.001sec, does not include the 
high frequency structural resonances and is assumed to be 
stable.  The true plant transfer function is given by (32) and 
the desired trajectory, yd, is shown in Figure 5.  Note that 
robustness of the ILC update law is critical here because the 
design is based on a simplified linear model, as is common 
in practice.  ILC update laws using two different fixed Q-
filters, and a time-varying one that varies between the two 
values, are offered to demonstrate some of the advantages 
of using a time-varying Q-filter.  These update laws are 
simulated on the simplified plant model and the true model 
for comparison. 

 
[ ]

L+++=
+−+−
+−−

=

−−−

−

321

234

234

0041.00025.00009.0        
74.014.306.566.3
40.646.824.664.810)(

zzz
zzzz
zzzzP  (31) 

 

[ ]
63.017.56.1871.3896.5044.434.2328.7

56.09.25.53.32.33.68.382.010
0030.00022.00008.0)(~

2345678

2345673

321

+−+−+−+−
+−+−−+−

=

+++=
−

−−−

zzzzzzzz
zzzzzzz

zzzzP L   

  (32) 

 
0 0.2 0.4 0.6 0.8 1

0

0.5

1

time (sec)

yd

 
 Fig. 5.  Desired Trajectory, yd 

We let Le ≈ P-1 as follows to preserve causality:  
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It is noted that the stability condition (21) can be met 
using the above Le without the use of a Q-filter.  However, 
this can still result in bad learning transients where the error 
can grow to be very large before converging [10].  A low 
pass Q-filter tends to improve the transient performance at 
the cost of increased conservatism.  Furthermore, a low-
pass Q-filter is important in actual systems for additional 
robustness as well as noise attenuation.  Two first order 
butterworth filters of cut-off frequencies 100 rads/sec and 
2000 rads/sec each are chosen as follows: 
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As was mentioned above, the N&S condition (21) can be 
met using either filter.  The RMS values of converged 
errors for either case can be calculated using (25).   

 0071.0)1( 100, =− plqlow ; 0716.0ˆ*
, =RMSlowe  (36) 

 0913.0)1( 111, =− plqhigh ; 0028.0ˆ*
, =RMShighe  (37) 

Figure 6 shows the RMS value of the error of the 
nominal system as a function of iteration number for both 
the above cases, as well as error evolution using a time-
varying Q-filter.  The time-varying Q-filter, Qtv, of the form 
(23), is composed of a set of first order butterworth filters 
with bandwidth ranging from that of Qlow to that of Qhigh, as 
shown in Figure 9.  It is verified that condition (22) is 
satisfied by the set of filters in Qtv.  Details on the design of 
Qtv are given shortly.  It can be seen that the performance 
using the time-varying Q-filter is comparable to that of the 
ILC update law using fixed high bandwidth Q-filter on the 
ideal linear plant. 
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Fig. 6.  RMS values of e(t) per iteration using P 

Next, the same ILC laws are applied to the actual plant, 
P~ , and the evolution of the error is plotted in Figure 7.  
Clearly, the ILC law with time-varying Q-filter performed 
better than either fixed filter here.  The ILC update law 
using the fixed high bandwidth filter exhibits very poor 
learning transients.  The RMS value of the error reaches a 
peak value of approximately 2500 by the 200th iteration 
before convergence.  Some insight can be gained from the 
converged error plots shown in Figure 8.  The fixed law 
with Qlow shows good learning transients but results in large 
errors between t=0.3sec and t=0.45sec, coinciding with the 
high frequency content in yd.  The fixed law with Qhigh, 
which would have had better tracking performance, results 
poor learning transients.  The time varying update law 
results in tracking comparable to the fixed law using Qhigh, 
along with learning transients similar to the fixed law using 
Qlow. This clearly demonstrates that the time varying Q-

filter can simultaneously provide better robustness and 
performance than either LTI Q-filter. 
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Fig. 7.  RMS values of e(t) per iteration using P~  
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Fig. 8.  Converged value of e(t) using P~  
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Fig. 9.  Bandwidth profile of time-varying Q-filter. 

A time frequency distribution of yd reveals high 
frequency content during the interval ( )45.0,3.0∈t .  It is 
obvious that high frequency control is necessary during this 
interval for accurate tracking of yd.  Therefore, the time-
varying Q-filter used in the above example consists of a set 
of low-pass filters with varying bandwidth as shown in 
Figure 9.  Once again, the idea is that the bandwidth is 
increased when needed to improve performance while 
nominally remaining at the low value for increased 
robustness.  

IV. EXPERIMENTAL RESULTS 
The Microscale Robotic Deposition (µRD) system uses 

robotic positioning to deposit an ‘ink’ for 3-D construction 
of complex parts of small dimensions [2],[3].  A schematic 
of the system is shown in Figure 10.  Very precise X-Y-Z 
axis positioning of the robot end effector is required for the 
accurate manufacturing of the desired parts.  The algorithm 
described in this paper is applied to control the X-axis 



position here.  The simplified model used for the X-axis 
positioning system dynamics is shown in (39).  The actual 
system, in addition to having high frequency resonances, 
experiences friction and other nonlinear effects.   

 Y 
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Fig. 10. Schematic of µRD system 
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The ILC update algorithm uses a PD learning law as 
described in [2] with KpX =1.779 and KdX =111.  The 
reference trajectory shown in Figure 5 is used for a 1mm 
change in y.  The time-varying Q-filter used is of the form 
shown in Figure 9 with the cut-off frequency of Qlow at 50 
rads/sec, and that of Qhigh at 300 rads/sec.  Figures 11 and 
12 demonstrate the improved performance obtained by 
increasing the bandwidth for a short period, t∈[~0.3, 0.45].  
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Fig. 11.  Experimentally obtained RMS values of e(t)  
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Fig. 12.  Converged values of e(t) 

V. CONCLUSIONS 
This paper presents a new tool for PMC applications by 

developing the time-varying Q-filter.  Convergence 
conditions as well as performance and robustness criteria 
were formulated for the proposed ILC scheme.  The design 

issues involved were highlighted using an instructional 
example based on a Microscale Robotic Deposition system 
at the University of Illinois.  Finally, actual data from 
implementing an ILC with time-varying Q-filter is shown 
to verify the effectiveness of the proposed scheme.  
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