
Application of a Recursive Minimum-Norm
Learning Controller to Precision Motion
Control of an Underactuated Mechanical

System
Ai-Ping Hu Nader Sadegh

Dept. of Mechanical & Industrial Engineering Woodruff School of Mechanical Engineering
Southern Illinois University at Edwardsville Georgia Institute of Technology

Edwardsville, IL 62026 Atlanta, GA 30332
ahu@siue.edu nader.sadegh@me.gatech.edu

Abstract— A recursive method is first presented for ob-
taining the minimum-norm solution of a linear system of
equations. The formulation is then extended to the case of
a nonlinear system of equations, the result of which is used as
the basis of a repetitive learning controller that is applied ex-
perimentally to precision motion control of an underactuated
mechanical system tracking a periodic trajectory.

I. INTRODUCTION

This paper describes the development of a repetitive
learning controller based on a recursive formulation of
the minimum-norm solution of a system of equations. The
recursive method is first developed for a linear system of
equations and then extended to the nonlinear case, which is
used as the basis of the repetitive learning controller. The
repetitive learning controller is applied to motion control
of a testbed system consisting of a cart and down-hanging
pendulum (i.e., a mechanical system resembling a crane)
tracking a periodic trajectory.

II. RECURSIVE MINIMUM-NORM SOLUTION OF A

LINEAR SYSTEM OF EQUATIONS

Consider the following system of linear equations:

yk = ΦkX , for k = 1, 2, . . . , N , (1)

where yk ∈ R
n and Φk ∈ R

n×m are known quantities
and X ∈ R

m is the unknown vector being solved for. It is
assumed that the matrix

Ak =

⎡
⎢⎢⎢⎣

Φ1

Φ2

...
Φk

⎤
⎥⎥⎥⎦ (2)

is full rank for each k and that m = nN . It is well-known
(see, e.g., [1]) that the minimum-norm solution of (1) at step
k is given by X̂k = A+

k Yk, where the so-called pseudo-
inverse A+

k = AT
k (AkAT

k)−1 and Yk = [y1; y2; · · · ; yk].

To recursively compute X̂k = A+
k Yk, the following

recursive formula for computing A+
k is applied:

A+
k =[
A+

k−1−Pk−1ΦT
k D−1

k−1ΦkA+
k−1 Pk−1ΦT

k D−1
k−1

]
,

(3)

where Pk = I − A+
k Ak and Dk−1 = ΦkPk−1ΦT

k . I is
the k × k identity matrix. Expressing Yk as [Yk−1; yk],
the following is then obtained:

X̂k = X̂k−1 + Pk−1ΦT
k D−1

k−1

(
yk − ΦkX̂k−1

)
. (4)

Using the recursive expression for A+
k from (3) in Pk =

I − A+
k [Ak−1; Φk] yields

Pk = Pk−1 − Pk−1ΦT
k D−1

k−1ΦkPk−1, (5)

with P0 = I. Observe that the above formulation renders
the unique solution X∗ � A−1

N YN at k = N . In situations
where there is uncertainty about the process, it is desirable
to use a priori information about X and update X̂k at a
slower rate. That is,

X̂k = γA+
k Yk + (1 − γ)X̂0, (6)

where X̂0 is the initial estimate of X and 0 < γ ≤ 1
is a constant scalar, referred to as the update gain of X̂k.
Defining the estimation error at step k as

ek � yk − ΦkX̂k−1, (7)

it then follows that at k = N ,

eN = (1 − γ)e0. (8)

The recursive version of X̂k in (6) is given by:

X̂k = X̂k−1 + Pk−1ΦT
k D−1

k−1ēk (9)

ēk = γek + (1 − γ)Φk

(
X̂0 − X̂k−1

)
. (10)

The above formulation may be extended to k beyond N in
order to drive the error ek asymptotically to zero.

III. EXTENSION TO NONLINEAR SYSTEMS OF

EQUATIONS

Now consider the following system of nonlinear equa-
tions:

yk = fk(X), for k = 1, 2, . . . , N , (11)

where yk ∈ R
n and fk : R

m → R
n are known quantities,

X ∈ R
m is the unknown vector, and m = nN . The

system of equations in (11) may be expressed as Y =
F (X), with Y = [y1; y2; · · · ; yN] and F (X) =
[f1(X); f2(X); · · · ; fN (X)]. Similar to the linear case,
the following equations may then be used to iteratively
solve for the unknown vector X that satisfies the system of
nonlinear equations (11):

X̂k+1 = X̂k + γA−1
N (X̂k)Ek (12)

Ek = Y − F (X̂k), (13)

where

AN =

⎡
⎢⎢⎢⎢⎣

∂f1(z)/∂z
∣∣∣
z= X̂k

∂f2(z)/∂z
∣∣∣
z= X̂k

...
∂fN (z)/∂z

∣∣∣
z= X̂k

⎤
⎥⎥⎥⎥⎦

(14)

is the matrix of Jacobians. It is proved as Theorem 1 in [2]
that there exists 0 < γ̄ ≤ 1 such that if γ < γ̄ then ‖Ek‖
converges to zero exponentially. (‖ ‖ denotes the 2-norm.)

A recursive minimum-norm algorithm based on a modi-
fied version of the equations (12) and (13) forms the basis of
the repetitive learning controller implemented in this paper.

IV. REPETITIVE LEARNING CONTROLLER

The nominal form of the discrete-time repetitive learning
controller developed in this section will match that of
equations (12) and (13). This particular form is governed
by the fact that the reference trajectory to be tracked, y d(t),
is (restricted to be) periodic in time, t. We designate the
period of yd(t) by τ , which is assumed to be an integer
multiple of the discrete-time sample period, T , i.e., τ =
NT , where N is an integer. Let the output of the learning
controller at sample index k be denoted by r(kT). The
complete control input that r(kT) is part of is developed
fully in [2], which addresses tracking control of nth-order
SISO nonlinear, non-minimum phase dynamical systems
of the form: ẋ = f (x) + g(x)u, with output defined
to be the scalar function y = h(x), where x ∈ R

n

is the vector of state variables, ˙ denotes differentiation
with respect to time, f (x) ∈ R

n and g(x) ∈ R
n are

smooth vector fields, and u ∈ R is the control input. The
controller sought to achieve exponential output tracking
of yd(t) in a neighborhood of the region C, a connected
subset of the set of equilibrium states defined by C0 �
{x0 : ∃ u0 such that f(x0) + g(x0)u0 = 0}. The subset C
is comprised of states that satisfy a linear controllability
assumption. (Refer to [2] for details.) The primary purpose
of the present paper is to describe how the learning control

update law results in a recursive minimum-norm solution,
and then to apply it to an experimental testbed.

We note here, for use below, that it was shown in [2] that
r(kT) may be expressed as a linear combination:

r(kT) = r̄(kT) + a1r̄((k − 1)T) + . . . + anr̄((k − n)T).
(15)

In addition, it is also shown in [2] that the nonlinear
dynamical system’s output, denoted y(kT) in discrete-time,
may be expressed as

y(kT) = h(r̄(kT), r̄((k − 1)T), . . . , r̄((k − n)T)). (16)

The action of the learning controller may be described
as progressively refining, through practice, the value of
r(kT) at a given point in discrete-time with the goal of
achieving perfect tracking of yd(t) by the output y(kT)
of the nonlinear dynamical system. Having the desired
reference trajectory be periodic means that the system being
controlled is mandated to repeatedly perform the same task.
The learning controller takes advantage of this repetition by
essentially trying to solve the same problem over and over
again, with its present iteration an improvement upon past
attempts (this is what is meant here by “practice”).

The periodicity of the reference trajectory naturally fa-
cilitates the use of a circular buffer. This circular buffer
will be an array of length N that contains the values of
r̄((k − j)T). The first element of the circular buffer (to
which we assign the index 0) will correspond to the first
discretized point of (one period of) the desired trajectory
and the last element of the circular buffer (with index N−1)
will correspond to the final discretized point of one period
of the desired trajectory. r̄((k−j)T) is stored as the element
in the circular buffer with index ((k − j) modulus N). In
other words, the elements of the circular buffer, which we
denote as R̄ =

[
R̄0 R̄1 · · · R̄N−1

]T
, are (over-)written

to sequentially and, when the end of the circular buffer
is reached (index N − 1, corresponding to the end of a
period), the index is re-set to 0, signifying the start of a
new period. R̄ is referred to as the learning array. At any
given discrete-time kT , the learning control output r(kT)
will be comprised of a linear combination of n+1 elements
of the learning array, where we assume that N > n. The ex-
pression y(kT) = h(r̄(kT), r̄((k − 1)T), . . . , r̄((k − n)T))
may thus be equivalently written as y(kT) = h(R̄).

A given period of the desired trajectory is to be di-
vided into N segments, each of which is associated with
a distinct left-hand endpoint. We designate the vector
holding the values of yd(t) at these endpoints as Yd �
[yd(0) yd(T) · · · yd((N−1)T)]T . We will be interested in
keeping track of what is taking place at particular indices
0, 1, . . . , N−1 within a given period. We thus introduce two
new indices, i and j, which will be used as a double index
appearing as subscripts separated by a comma. j will take
on integer values from 0 to N − 1, and serves to denote
at which time step we are at within period number i. For
example, the output at the jth step within period number i

is denoted by hi,j(R̄). The relationship among i, j, and our
discrete-time index k is given by k = (i − 1)N + j, where
we note that the period number count starts from i = 1.

With the above bookkeeping notation, the objective of
our learning law may be explicitly stated as: iteratively
refining the learning array R̄i (i.e., the learning array R̄
corresponding to period number i) such that F (R̄i) �
Yd − [

hi,0(R̄i) hi,1(R̄i) · · · hi,N−1(R̄i)
]T → 0 as the

period number i → ∞. For later use, we define H(R̄i) �[
hi,0(R̄i) hi,1(R̄i) · · · hi,N−1(R̄i)

]T
.

Determining the correct R̄i such that F (R̄i) = 0
constitutes a root-finding problem for a system of nonlinear
equations. The Newton-Raphson root-finding method for
systems of nonlinear equations (see, e.g., Press et al. [4])
is an algorithm that seeks to determine the required R̄i

iteratively. The learning law will be a modified version of
this particular algorithm.

The Newton-Raphson root-finding method for systems
of nonlinear equations may be correctly thought of as an
extension into higher-dimensions of the familiar Newton-
Raphson root-finding method for a nonlinear function of
a single variable; its development proceeds in a way that
is completely analogous to the scalar case. We start with
the Taylor’s series expansion of F (R̄) ∈ R

N in a neigh-
borhood of (i.e., a small deviation δR̄i from) R̄i ∈ R

N ,
as given by F (R̄i + δR̄i) = F (R̄i) + A(R̄i) δR̄i +∑N

j=1 δR̄i
T
Mj(R̄i) δR̄i + . . ., where A(R̄i) represents

the Jacobian of F (R̄) with respect to R̄, evaluated at
R̄i, and Mj(R̄i) represents the Hessian of the jth com-
ponent of F (R̄) with respect to R̄, evaluated at R̄i (it
is assumed that the components of F (R̄) are at least
twice differentiable with respect to R̄). Upon neglecting
the terms nonlinear in δR̄i, the following iterative formula
(starting with an initial guess R̄0) yields gradually improved
estimates of the root of F (R̄) = 0:

R̄i+1 = R̄i + δR̄i (17)

= R̄i − A(R̄i)−1 F (R̄i), (18)

where the various Jacobian matrices A(R̄i) are assumed to
be non-singular.

The learning law is based on the following modification
of the Newton-Raphson method of equation (18):

R̄i+1 = R̄i + γδR̄i (19)

= R̄i − γA(R̄i)−1 F (R̄i) (20)

= R̄i + γC(R̄i)−1 · (Yd − H(R̄i)
)
, (21)

where 0 < γ ≤ 1 is a constant we will refer to as the
learning gain and C(R̄i) is defined to be the Jacobian of
H(R̄) with respect to R̄, evaluated at R̄i (this replacement
accounts for the change in sign in equation (21) from (20),
since C(R̄i) = −A(R̄i)). From (21), we point out that
the current learning array is determined by its value one
full period ago, corrected by a term based on the tracking
error incurred over the period just completed. For γ = 1 we

simply have the Newton-Raphson method. For values of γ
less than 1, however, the effect is that R̄i is updated more
slowly.

The learning controller works by gradually updating the
learning array, R̄i, via the application of a correction term
δR̄i (or, more precisely: δR̄i,N−1). Equation (21) is of the
exact same form as the recursive minimum-norm solution
of equations (12) and (13). Observe that in (12) and (13),
the “learning array” is updated only once per “period.” In
the context of the recursive algorithm, this update takes
place after N iterative steps. For each of the N −1 interim
steps, corresponding to j = 0, 1, . . . , N − 2, a minimum-
norm “best fit” correction term is computed, δR̄i,j . Each of
these terms is temporarily stored in memory, to be expressly
used in the very next iteration step. We next propose to
modify the learning law by making use of δR̄i,j , for j =
0, 1, . . . , N − 2, by utilizing these intermediate correction
terms to update the learning array at every iteration step.
(And, of course, δR̄i,N−1 is still used as well, in what will
be for the final update per period.) The reasoning behind
the change is that by updating the learning array more
frequently (and in a proper manner), the learning controller
may be made more responsive.

Since we will now have a learning array associated with
every discrete-time step k, we invoke our double subscript
indexing notation for use with the learning array: at time
kT , let the learning array be denoted by R̄i,j . Our proposed
modified learning law may then be readily expressed as

R̄i,j = R̄i,−1 + γ C+
j (R̂i,j−1)

(
Ydj − Hj(R̄i,−1)

)
,

(22)
where i = 1, 2, 3, . . . and j = 0, 1, . . . , N − 1. The
learning array is initialized to be R̄1,−1 = 0 and, for
i ≥ 2, we adopt the notational convention that R̄i,−1 =
R̄i−1,N−1. We use R̂i,j−1 to denote the set of learn-
ing array vectors

{
R̄i,−1, R̄i,0, . . . , R̄i,j−1

}
. The pseudo-

inverse C+
j (R̂i,j−1) is then defined as

C+
j (R̂i,j−1) � CT

j (R̂i,j−1)
(
Cj(R̂i,j−1)CT

j (R̂i,j−1)
)−1

,
(23)

where Cj(R̂i,j−1) is the (j + 1) × N matrix, which is
assumed to be full rank, given by

Cj(R̂i,j−1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂hi,0(R̄)
∂R̄

∣∣∣∣∣∣
R̄ = R̄i,−1

∂hi,1(R̄)
∂R̄

∣∣∣∣∣∣
R̄ = R̄i,0

...
∂hi,j(R̄)

∂R̄

∣∣∣∣∣∣
R̄ = R̄i,j−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (24)

i.e., Cj(R̂i,j−1) consists of the first j+1 rows of a Jacobian
matrix whose rows are each evaluated at different points

(i.e., evaluated at different learning arrays). Define

Φi, 0(R̄i,−1)� ∂hi,0(R̄)
∂R̄

∣∣∣∣∣∣
R̄ = R̄i,−1

,

Φi, 1(R̄i,0)� ∂hi,1(R̄)
∂R̄

∣∣∣∣∣∣
R̄= R̄i,0

,

...

Φi, N−2(R̄i,N−3)� ∂hi,N−2(R̄)
∂R̄

∣∣∣∣∣∣
R̄= R̄i,N−3

, and

Φi, N−1(R̄i,N−2)� ∂hi,N−1(R̄)
∂R̄

∣∣∣∣∣∣
R̄ = R̄i,N−2

(25)
to be these rows.

The new learning law in equation (22) may be compared
to the former one in equations (12) and (13). The difference
between the two is that (12) and (13) proceed by “batch”
updates of the learning array while (22) performs “step-by-
step” updates. However, observe that for both, each element
in the vector and partial vector H(R̄i) and Hj(R̄i,−1),
respectively, is to be evaluated at the learning array deter-
mined at the end of the previous period. One might expect,
in order to be as current as possible, that we would instead
specify that the (partial) vector of output approximations for
the step-by-step learning law be evaluated at the set R̂i,j−1,
i.e., thereby yielding Hj(R̂i,j−1). The reason for our choice
will become clear once the recursive algorithm for (22) is
formulated in the next section. It is noted here that use
of the learning law (22) will lead to

∥∥Yd − H(R̄i,N−1)
∥∥

converging to zero exponentially.
Theorem 1: Consider the modified learning law given by

equation (22) for solving the system of nonlinear equations
Yd = H(R̄). Assume that for j = 0, 1, . . . , N − 1 the
matrix Cj(R̂i,j−1) defined by equation (24) is full rank
for R̂i,j−1 ⊂ R, which means that the corresponding
pseudo-inverse C+

j (R̂i,j−1) (defined in equation (23)) ex-
ists for R̂i,j−1 ⊂ R, where R is some region in R

N

that corresponds to permissable states of the considered
nonlinear dynamical system, i.e., R̂i,j−1 is such that x
is maintained to lie within a close neighborhood of the
equilibrium manifold C. In addition, assume the following
is satisfied, for j = 0, 1, . . . , N −1:

sup
R̂i,j−1⊂R

∥∥∥C+
j (R̂i,j−1)

∥∥∥ = σ1, (26)

where 0 < σ1 < ∞. Furthermore, there exists 0 < σ2 <
∞ such that the Hessian of the (j + 1)st component of
H(R̄) with respect to R̄ evaluated at a given R̄ = ξ,
denoted Kj(ξ), satisfies the following conditions, for j =
0, 1, . . . , N −1:

sup
ξja∈B�(R̄i,−1)

‖Kj(ξja)‖ = σ2 (27)

and
sup

ξjb∈B�(R̄i,N−1)

‖Kj(ξjb)‖ = σ2, (28)

where, e.g., B�(R̄i,−1) denotes an open “ball” of radius
� > 0 centered at R̄i,−1. Then, for any initial error Yd −
H(R̄1,−1), there exists 0 < γ̄ ≤ 1 such that if γ < γ̄ then∥∥Yd − H(R̄i,N−1)

∥∥ converges to zero exponentially.

Proof Refer to Hu [3].

V. RECURSIVE ALGORITHM FOR REPETITIVE

LEARNING CONTROL UPDATE LAW

The formulation of the recursive algorithm for the step-
by-step update learning law of equation (22) is able to make
expedient use of the development in section 2 for the linear
case. There, to solve for

X̂k = A+
k Yk, (29)

the recursive equations (9) and (10) were determined. The
learning law (22) may be re-written such that it is identical
in form to equation (29): upon defining

∆R̄i,j � R̄i,j − R̄i,−1, (30)

equation (22) may be equivalently expressed as

∆R̄i,j

γ
= C+

j (R̂i,j−1)
(
Ydj − Hj(R̄i,−1)

)
. (31)

Comparing (29) and (31), we see that X̂k, A+
k , and Yk

are analogous to, respectively, ∆R̄i,j/γ, C+
j (R̂i,j−1), and(

Ydj − Hj(R̄i,−1)
)
. Accordingly, then, the analogues of

recursive equations (9) and (10) are

∆R̄i,j = ∆R̄i,j−1 + P i, j−1(R̂i,j−2)ΦT
i, j(R̄i,j−1) ×

D−1
i, j−1(R̂i,j−1) · (γ ε̄i,j) (32)

and

γ ε̄i,j = γ (yd(jt) − ŷ(kT)) +
(γ − 1)Φi, j(R̄i,j−1)∆R̄i,j−1, (33)

where ŷ(kT) � hi,j(R̄i,−1)+Φi, j(R̄i,j−1)∆R̄i,j−1. The
term ŷ(kT) is equal to the sum of the first two terms in a
Taylor’s series expansion of hi,j(R̄) about R̄ = R̄i,−1. To
arrive at this truncated Taylor’s series is the reason why, in
the learning law of equation (22), we decided to evaluate
the hi,j at R̄i,−1 instead of, e.g., at some more-recently
updated learning array. Assuming that the state of the non-
linear dynamical system remains in a close neighborhood
of the linearly controllable equilibrium manifold C, the term
ŷ(kT) is a good approximation of the actual output y(kT).

In addition (again, analogous to the linear case):

P i, j(R̂i,j−1) = P i, j−1(R̂i,j−2) − P i, j−1(R̂i,j−2) ×
ΦT

i, j(R̄i,j−1)D−1
i, j−1(R̂i,j−1) ×

Φi, j(R̄i,j−1)P i, j−1(R̂i,j−2), (34)

for j = 0, 1, . . . , N − 1. This matrix is initialized to be
P i, −1(R̂i,−2) = I , where the argument R̂i,−2 has no

meaning. And:

D−1
i, j−1(R̂i,j−1) =
(
Φi, j(R̄i,j−1) P i, j−1(R̂i,j−2)ΦT

i, j(R̄i,j−1)
)−1

, (35)

for j = 0, 1, . . . , N −1.
Making use of the fact that ∆R̄i,j = R̄i,j − R̄i,−1 and

by defining ēi,j � γ ε̄i,j , the recursive algorithm takes the
form of the following nested for loop.

for i = 1,2,3,...,
P i, −1(R̂i,−2) = I (36)

for j = 0,1,...,N-1,

ei,j = yd(jt) − ŷ(kT) (37)

ēi,j = γ ei,j + (1 − γ)Φi, j(R̄i,j−1) ×(
R̄i,−1 − R̄i,j−1

)
(38)

R̄i,j = R̄i,j−1 +

P i, j−1(R̂i,j−2)ΦT
i, j(R̄i,j−1) ×

D−1
i, j−1(R̂i,j−1) ēi,j (39)

P i, j(R̂i,j−1) = P i, j−1(R̂i,j−2) −
P i, j−1(R̂i,j−2)ΦT

i, j(R̄i,j−1) ×
D−1

i, j−1(R̂i,j−1)Φi, j(R̄i,j−1) ×
P i, j−1(R̂i,j−2) (40)

end

R̄i+1,−1 = R̄i,N−1 (41)
end

In practice, the term ŷ(kT) appearing in (37) would be
replaced by the actual (measured) output y(kT).

VI. EXPERIMENTAL APPLICATION TO CART AND

DOWN-HANGING PENDULUM SYSTEM

The recursive algorithm of the step-by-step learning up-
date law (the nested ’for’ loop of equations (36) through
(41)) has been implemented experimentally as a component
of the tracking controller described in [2] on a cart and
down-hanging pendulum system, illustrated in Figure 1.

This system consists of a uniform rigid bar (the pendu-
lum) of mass m hinged to a (rigid) cart of mass M at a pivot
point, O. The length of the pendulum (measured from point
O) is L. Let C denote a point that lies at the pendulum’s
center of mass; it is located at a distance L/2, along the
pendulum, from point O. And let I denote the moment of
inertia of the pendulum about point C, i.e., I = mL2/12.
The cart is constrained by pre-loaded, recirculating ball
bearings to travel back and forth along the horizontal track
(guide rails) of a permanent-magnet DC linear motor that is
used to apply a horizontal force to the cart. Let the variable
x denote the position of the cart on the linear motor track
and let θ denote the angle of the pendulum with respect to
vertical, i.e., with respect to the direction of gravity, g. The
positive sense of x and θ are as shown in Figure 1.

horizontal track
of linear motor

�
linear
encoder

M

cart

���rotary
encoder

O
�
�
�

�
�
�

�
�
��

�
�

�
�

�
�
�

�
��

� C

m, I

L pendulum

�
g

θ
�

x �

Fig. 1. Schematic diagram of cart and down-hanging pendulum experi-
mental hardware.

The control objective is to get the horizontal position of
the pendulum tip, x + L sin θ, to track a periodic reference
trajectory.

The permanent-magnet DC linear motor used to actuate
the system is manufactured by Anorad Corporation, as is the
three-phase, brushless DC amplifier that precedes it. Use
of the linear motor and the amplifier, as well as the ball
bearings and rail guides that provide (nominally) constant-
offset translation of the cart with respect to the linear motor,
gives rise to the presence of nonlinearities that are difficult
to model precisely: friction, cogging, and torque ripple.

Upon defining l � L/2, u to be the force ap-
plied by the linear motor to the cart, and x �
[x1 x2 x3 x4]T =

[
x θ ẋ θ̇

]T

, the system may be mod-
eled by a nonlinear dynamical system with the following

vector fields: f (x) =
[
x3 x4

w1(x2,x4)
w(x2)

w2(x2,x4)
−w(x2)

]T

and

g(x) =
[
0 0 I+l2m

w(x2)
l m cos x2
−w(x2)

]T

, where w(x2) = (I +
l2m)(m + M) − l2m2(cosx2)2, w1(x2, x4) = l m((I +
l2m)x2

4+g l m cosx2) sinx2, and w2(x2, x4) = l m(g(m+
M) sinx2 + l m x2

4 cosx2 sin x2). For this system to be
in a state of equilibrium, it is required that ẋ = 0, or,
that f(x) + g(x)u = 0. This requires that the velocities
x3 = 0 and x4 = 0, and that u = 0 and mgl sin x2 = 0,
i.e., no force is applied and the pendulum hangs straight
down (vertically: x2 = 0); we do not consider unstable
equilibriums, e.g., corresponding to x2 = π rad. The
cart position x1 may take on any value at equilibrium.
It is straightforward to show that the system is linearly
controllable in a neighborhood of these equilibrium states.
In addition, the system is non-minimum phase with respect
to the specified output y = x1 + L sinx2.

For this system, the set of linearly controllable equilib-
rium states is given by: C = {x : x1 ∈ (−∞,∞), x2 =
0, x3 = 0, x4 = 0, and ∃ u = 0}. C may be expressed as a
1-dimensional manifold. In fact, C is already in this form,
parameterized by x1.

The numerical values of the physical system parameters
are: M = 4 kg, m = 0.4321 kg, l = 0.4493 m, I =
0.0291 kgm2, and g = 9.81 m/s2. For the experiments, the
desired trajectory yd(t) is the offset cosine A−A cos(2πt),
with A = 0.0275 m, containing zero-velocity segments of
duration 0.2 s alternating with the offset cosine portions (the
resulting periodic trajectory resembles a rounded-corner
square wave).

The learning gain used for the experiments is γ = 0.065,
chosen because this value preserves stability and results in
an appreciable and settled diminishing of tracking error,
e = yd − y, over the 150 seconds of the experimental runs.
Figure 2 shows the learning control output, r, as a function
of time for a typical experimental run.

0 50 100 150

−100

0

100

200

Time (s)

r

Fig. 2. Experimental plot of the output of the step-by-step learning
controller, r, as a function of time.

After an initial transient, the response settles into periodic-
ity. The resulting tracking error, e, is shown in Figure 3. The
error is reduced by several orders of magnitude to achieve
precise tracking of the periodic reference trajectory.

0 50 100 150
−0.1

−0.05

0

0.05

0.1

Time (s)

e
=

 y
_d

 −
 y

Fig. 3. Experimental plot of the output tracking error, e = yd − y, as a
function of time when the step-by-step learning controller is applied (units
are meters).

The efficacy of the developed learning controller is strongly
dependent on the state of the system to be controlled’s
proximity to its equilibrium manifold, C. If the state remains
in a “close enough” neighborhood of C, then the learning
controller guarantees very precise tracking of a periodic
trajectory by the system’s output (with respect to which
the system may be non-minimum phase).

REFERENCES

[1] G. Strang, Introduction to Linear Algebra (Wellesley-Cambridge
Press, Welleseley, MA, 1993).

[2] A.-P. Hu and N. Sadegh, “Nonlinear non-minimum phase output
tracking via output redefinition and learning control” Proceedings
of the American Control Conference (2001) pp. 4264–4269

[3] A.-P. Hu, “Nonlinear non-minimum phase output tracking via output
redefinition and learning control” PhD thesis (Georgia Institute of
Technology, 2000).

[4] W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling,
Numerical Recipes (Cambridge University Press, New York, NY,
1986).

	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: ThP16.3
	Page0: 3776
	Page1: 3777
	Page2: 3778
	Page3: 3779
	Page4: 3780
	Page5: 3781

