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Abstract 
This paper presents a novel method for early 

detection of fatigue crack anomaly in complex 
mechanical structures, which is built upon the concepts 
of Symbolic Dynamics and Finite State Machines.  The 
experimental apparatus, on which the crack detection 
method is tested, is a multi-degree of freedom mass-
beam structure excited by oscillatory motion of two 
vibrators.  The evolution of fatigue crack at one or more 
of the three failure sites causes slow variations in the 
natural frequencies of the mechanical structure, which 
are detected at an early stage from the time series data of 
displacement sensor signals.  The proposed anomaly 
detection method has been validated by comparison with 
existing pattern recognition techniques. 

1 Introduction 
An anomaly is defined as a deviation from the 

nominal behavior of a dynamical system and is often 
associated with parametric and non-parametric changes 
that may gradually evolve in time.  Anomalies may 
manifest themselves with self excitation, or under 
excitation of certain exogenous stimuli.  These anomalies 
may be benign or malignant depending on their impact 
on the mission objectives and operating conditions.   

Major catastrophic failures in complex engineering 
systems could often be averted if the malignant 
anomalies are detected at an early stage.  Anomaly 
detection is based on observed time series data under 
known external stimuli (i.e., input excitation) or under 
self excitation of the dynamical system.  The goal is to 
make inferences on occurrence of slow-time-scale 
anomalies based on observed changes in behavior pattern 
of the fast-time-scale process dynamics. 
 From the above perspectives, anomaly detection in 
dynamical systems is formulated as a two-time-scale 
problem, in which the phase trajectories evolve in the fast 
time scale and anomalies, if any, progress in the slow 

time scale.  Progression of anomalies takes place in the 
form of parametric or non-parametric variations in the 
system response and the objective is to capture this 
information from the observed time series data as early 
as possible.  Thus, early detection of malignant 
anomalies allows the decision and control system to avert 
catastrophic failures and possibly satisfy the mission 
requirements albeit at a degraded level of performance. 

A laboratory test apparatus has been constructed to 
experimentally validate the concepts of anomaly 
detection and life extending decision and control policies 
[ZRP00] in complex mechanical systems.  The test 
apparatus is designed to be complex in itself due to 
partially correlated interactions amongst its individual 
components and functional modules [ZR99].  This paper 
focuses on experimental validation of anomaly detection 
due to fatigue crack in mechanical structures that exhibit 
self oscillations or can be excited by external stimuli.   

The paper is organized in seven sections including 
the present one.  Section 2 briefly describes the test 
apparatus for anomaly detection.  Section 3 presents 
generation of fatigue crack anomalies on the test 
apparatus.  Section 4 introduces the general concept of 
anomaly detection in complex systems.  Section 5 
presents the novel concept of anomaly detection based on 
symbolic dynamics, and describes the construction of 
state machines. Section 6 presents and discusses the 
experimental results. Finally, the paper is summarized 
and concluded in Section 7 with recommendations for 
future research. 

2 Description of the Test Apparatus 
The test apparatus is designed and fabricated as a 

multi-degree of freedom (DOF) mass-beam structure 
excited by oscillatory motion of two vibrators as shown 
in Fig. 1.  Physical dimensions of the pertinent 
components are listed in Table I.  Two of the three major 
DOF’s are directly controlled by the two actuators, 



 

  
 
 

Shaker #1 and Shaker #2, and the remaining DOF is 
observable via displacement measurements of the three 
vibrating masses: Mass#1, Mass#2 and Mass#3.  The 
inputs to the multivariable mechanical structure are the 
forces exerted by the two actuators; and the outputs to be 
controlled are the displacements of Mass #2 and Mass 
#3.  The failure site in each specimen, attached to the 
respective mass is a circular hole (of radius 3.81mm) as 
shown in Fig. 1. 

 
Fig. 1 Schematic Diagram for the Test Apparatus  

Table I  Structural dimensions of the test apparatus 
Component Material Length (mm) & Mass (kg) 

Length x width x thickness 

Mass # 1 Mild Steel 2.82 
Mass # 2 Aluminium 6063-T6 0.615 
Mass # 3  Mild Steel 3.87 
Beam # 1 Mild Steel 800 x 22 x 11 
Beam # 2 Aluminium 6063-T6 711.2 x 22.2 x 11.1 
Specimens  Aluminium 6063-T6 203.2 x 22.2 x 11.1 

The test apparatus system is logically partitioned 
into two subsystems: (i) the plant subsystem consisting 
of the mechanical structure including the test specimens 
to undergo fatigue crack damage), actuators and sensors; 
and (ii) the instrumentation & control subsystem 
consisting of computers, data acquisition and processing, 
and communications hardware and software. Frequency 
of the reference signal is 10.39 Hz that is the resonating 
frequency associated with Mass#3 in the mechanical 
structure.  The test specimens are thus excited by 
different levels of cyclic stress as two of them are 
directly affected by the vibratory inputs while the 
remaining one is subjected to resulting stresses, thus 
functioning as a coupling between the two vibrating 
systems.  In the present configuration, three test 
specimens are identically manufactured and their 
material is 6063-T6 aluminum alloy; different materials 

can be selected for individual specimens that may also 
undergo different manufacturing procedures.  

 The real-time instrumentation & control subsystem 
of the test apparatus is implemented on a Pentium PC 
platform.  The software runs on the Real-Time Linux 
Operating System and is provided with A/D and D/A 
interfaces to the amplifiers serving the sensors and 
actuators of the test apparatus.  The excitation signal is 
fed at the resonant frequency so as to facilitate the 
development of sufficient stress to break the specimens.  

3 Generation of Fatigue Crack Anomaly 
The mechanical system of the test apparatus in Fig. 1 

is persistently excited near resonance so as to induce a 
stress level that causes fatigue failure to yield an average 
life of ~20,000 cycles having a total duration of 
approximately 40 minutes. There exists considerable 
scatter in fatigue data, and variations have been seen in 
the actual observed life of the specimens tested at same 
stress level.  The scatter results as a consequence of 
fatigue sensitivity to a number of test and material 
parameters including specimen fabrication and surface 
preparation, metallurgical variables, specimen alignment 
in the apparatus, mean stress, and test frequency [SS92] 
[R99].  These uncertainty factors were taken into 
consideration during design of the three failure sites, 
shown in Fig. 1.  In the present configuration of the test 
apparatus, the three specimens are made identical in 
terms of the material and manufacturing method to 
reduce uncertainties.  Future research will allow different 
materials and manufacturing methods for individual 
specimens.  

The dynamical system attains stationary behavior (in 
the fast time scale) under persistent excitation in the 
vicinity of the resonant frequency.  The applied stress is 
dominantly flexural (bending) in nature and the 
amplitude of oscillations is symmetrical about the zero 
mean level, i.e., it is a reversed stress cycle [KL92]. 
Under such loading conditions, the specimens undergo 
high cycle fatigue where the gross stress is elastic and 
plasticity is only localized, which eventually leads to a 
catastrophic failure. Close observation indicates that 
fatigue failure develops in the following pattern: (i) 
repeated cyclic stressing causes incremental 
crystallographic slip and formation of persistent slip 
bands (PSB’s); (ii) gradual reduction of ductility in the 
strain hardened areas results in the formation of 
submicroscopic cracks; and (iii) the notch effect of the 
submicroscopic cracks concentrates stresses until 
complete fracture occurs.  Crack initiation may occur at a 
microscopic inclusion or at a site of stress concentration 
that is localized by creating a hole in the specimens.  

Since the mechanical structure of the test apparatus 
consists of beams and masses, it can be approximated as 
a set of ordinary differential equations with parameters of 
damping and stiffness. The damping coefficient is 
essentially very small and the stiffness slowly changes 
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due to the evolving fatigue crack.  The objectives of the 
work reported in this paper are: (i) to detect the slowly 
evolving anomaly (i.e., decrease in stiffness) at an early 
stage by observing time series data of available sensors; 
and (ii) to formulate a control policy to mitigate fatigue 
failure in the specimen structures and thereby extend 
service life of the apparatus without any significant loss 
in performance.  To achieve this goal, time series data 
need to be generated in real time by remote sensing if the 
failure site is not directly accessible to the measuring 
instruments. 

4 Anomaly Detection in Complex Systems 
Anomaly detection in complex dynamical systems is 

formulated as a two-time-scale problem, in which the 
phase trajectories evolve in the fast time scale and 
anomalies may evolve in the slow time scale.  Anomalies 
take place as parametric or non-parametric variations in 
the system response.  The goal is to capture this 
information by recognizing the patterns of the time series 
data as early as possible.  The existing approaches for 
pattern recognition [DHS01] that are potentially 
applicable to the above anomaly detection problem 
include: (i) Feature Extraction; (ii) Artificial Neural 
Networking.   

Linear or nonlinear feature extraction methods 
determine an appropriate subspace of dimension m  
(using either linear or nonlinear methods) in the original 
feature space of dimension n  ( )m n≤ .  The best known 
linear feature extractor is the Principal Component 
Analysis (PCA) that computes the m  largest 
eigenvectors of the ( )n n×  covariance matrix of the 
patterns.  
 The most commonly used family of neural networks 
for pattern classification is the feed-forward network, 
including the Multilayer Perceptron (MLP) that is a 
collection of connected processing elements called nodes 
or neurons, arranged together in layers.  Different layers 
in the MLP may contain different numbers of neurons. 
Signals pass into the input layer nodes, progress forward 
through the network hidden layers and finally emerge 
from the output layer.  
 This paper has adopted a novel approach to anomaly 
detection resulting from small cracks, which relies on the 
time series data of vibration signals in the test apparatus.  
The anomaly detection method that is built upon the 
concepts of Symbolic Dynamics and Finite State 
Machines is described in the next section.  

5 Symbolic Dynamics for Anomaly Detection 
The idea of behavior identification of complex 

dynamical systems stems from using formal languages 
[M97] and conversion from continuous to discrete 
representation  using  symbolic dynamics [LM99].  The 
concept of using automata theory for measure of 
complexity was suggested by Kolmogorov in terms of 
algorithmic complexity [CF01].  This idea was primarily 

based on a deterministic automaton.  Crutchfield and 
Young [CY89] applied this concept to stochastic 
automata to construct the so-called ε-machine that was 
updated by Shalizi et al. [SSC02].  A data sequence (e.g., 
time series data) can be converted to a symbol sequence 
by partitioning the space Ω (over which the data evolves) 
into finitely many discrete blocks [A96] [BP97].  If 

1 2{ , , , }mϕ ϕ ϕΦ ≡ L  is a partition of Ω  (i.e., 

1
 

m

j
jϕ

=
= ΩU  and j kϕ ϕ = ∅I  kj ≠∀ ), then each block 

jϕ ∈Φ  is labeled as the symbol jσ ∈Σ , where the 

symbol set Σ is called the alphabet consisting of m  
different symbols.  (Note that a block jϕ ∈Φ  is not 

necessarily a connected subset of the space Ω .)  In this 
way, a data sequence, obtained from a trajectory of the 
dynamical system, is converted to a symbol sequence 
{ , , , }i j kσ σ σ L  that characterizes the system dynamics 
represented by the data sequence.  The graphical display 
in Fig. 2 depicts a partitioning of a finite region of the 
phase space and a mapping from the partitioning into the 
symbol alphabet, which becomes a representation of the 
system dynamics defined by the trajectories.  

 
Fig. 2  Continuous Dynamics to Symbolic Dynamics 

Finding dimensionality of the phase space of 
mechanical system dynamics can be difficult especially if 
the time series data are noise-corrupted [A96] [KB03].  
Since the phase space dimension could often be very 
large, finding a generating partition, in which the set of 
time series data is bijectively mapped onto the set of 
symbols, can be difficult if not impossible.  There are 
potentially a number of ways to (non-bijectively) 
partition the phase-space. Two such methods to perform 
the partitioning are described below. 

Kennel and Buhl [KB03] have formulated a phase-
space partitioning method that is built upon the concept 
of symbolic false nearest neighbors (SFNN), where a 
statistical algorithm is introduced to define empirical 
partitions for symbolic state reconstruction.  This method 
avoids topological degeneracy; this is an essential feature 
of a generating partition [BP97].  A salient feature of the 
SFNN method is that the partitioning is entirely based on 



 

  
 
 

the time series data.  The partitions are defined with 
respect to a set of radial-basis influence functions: 

k
2

k
k

|| x - z  ||
f (x) =  α , each associated with a symbol ks  

with the center kz  and weight kα . For each element x  
of the time series data set, one mf (x)  is generally 
expected to be greater than other kf (x)  with k m≠ .  
Then, the data point x  in the phase space is transformed 
to a symbol s  in the symbol space. The parameters of 

kz and kα  are the free optimization variables, with the 
constraint 0kα ≥ k∀ . There may be one or more 
influence functions assigned to each of the symbols in 
the alphabet.  The partitions remain invariant at all 
epochs of the slow time scale. 

An alternative scheme for obtaining partitions is 
based on wavelet transform of time series data, which 
yields a graph of coefficients versus scale at each time 
shift.  After the wavelet transform is applied to the data, 
we partition the space of wavelet coefficients that is a 
function of scale and time.  These graphs are stacked 
from end to end starting with the smallest value of scale 
and ending with the largest value.  For example, the 
wavelet coefficients versus scale at time shift kt  are 
stacked after the ones at time shift 1kt −  to obtain the so-
called scale series data in the wavelet space, which is 
analogous to the time series data in the phase space.  The 
wavelet space is partitioned into horizontal slabs. The 
number of blocks in a partition is equal to the size of the 
alphabet and each block of the partition is associated 
with a symbol in the alphabet.  For a given stimulus, the 
partitioning of wavelet space must remain invariant at all 
epochs of the slow time scale. 
5.1 Finite State Machine Construction 

Finite state machines, generated from the symbol 
sequences of a dynamical system, identify its behavioral 
pattern.  This section presents the concept of finite state 
machine construction from the wavelet transformation of 
time series data.    

A probabilistic finite state machine is constructed 
from each symbol sequence, where the states of the 
machine are defined corresponding to the given alphabet 
of size A  and window length D .  The states are joined 
by edges labeled by a symbol in the alphabet.  The state 
machine moves from one state to another upon 
occurrence of an event as a new symbol in the symbol 
sequence is received.  The machine language is complete 
in the sense that there are A  different outgoing edges 
marked by different symbols σ ∈Σ ; however, it is 
possible that the some of these arcs may have zero 
probability.  The effects of an anomaly are reflected in 
the respective state transition matrices. Thus, the 
structure of the finite state machine is fixed for a given 
alphabet size A  and window lengthD .  Furthermore, 

the number of edges is also finite because of the finite 
alphabet size.  The elements of the state transition matrix 
that is a stochastic matrix are identified from the symbol 
sequence.   

 
Fig. 3  State Machine with D =2, and Σ={0,1} 

The states are chosen as words of length D  from the 
symbol sequence, thereby making the total number of 
states to be equal to the total permutations of the alphabet 
symbols within word of length D .  Thus, the number of 
states is DA  because each symbol takes on one of the A  
possible values.  For machine construction, the window 
of length D  is shifted to the right by one symbol upon 
receiving a new symbol σ ∈Σ , such that it retains the 
last (D -1) symbols of the previous state and appends it 
with the new symbol σ  in the end.  The symbolic 
permutation in the current window gives rise to a new 
state that might be a different one or the same as the 
previous one (i.e., forming a self loop on that state).  The 
entire state machine is constructed in this way.  As an 
example, let us choose D = 2  and Σ={0,1}, i.e., A = 2 .  
Consequently, the number of states are: 4=DA ; and the 
states are 00, 01, 10 and 11.  Figure 3 elucidates the state 
machine construction for this specific example. 

As the system trajectory evolves, different states are 
visited with different frequencies.  The number of times a 
state is visited as well as the number of times a particular 
symbol σ ∈Σ  is received, while sliding the window 
from a state leading to another state, is counted.  The 
state probabilities as well as the state to state transition 
probabilities are calculated for each state in this way.  

The transition probabilities associated with state to 
state transitions are dependent on the dynamics of the 
complex system as reflected in the symbol sequence from 
which the state transition probabilities are generated.  
This is the key factor in detecting an anomaly because 
perturbations in the system dynamics may cause 
significant changes in the state probabilities that, of 
course, are also dependent on the space partitioning.  

Having obtained the state probability vector at 
(slow-time) epochs, the next step is to calculate the 
anomaly measure that signifies the change in the 
stationary behavior under the specific stimulus.  First, the 
state probability vector under the nominal condition is 



 

  
 
 

determined as a benchmark.  At different slow-time 
epochs (when an anomaly might have occurred), the state 
probability vector is determined again from the time 
series data collected on the fast-time scale at that 
particular slow-time epoch.  The anomaly measure M  at 
a given (slow-time) epoch is obtained as the distance 
(e.g., a norm of the vector difference, or the angle 
between two directions) between the state probability 
vector at that epoch and the state probability vector under 
the nominal condition.  Obviously, the anomaly measure 
at the nominal condition is zero.  In general, the anomaly 
measure at an epoch is different under different stimuli.   

From the above perspective, the problem of anomaly 
detection is categorized into two parts: 
a) Forward problem:  The primary objective of the 
forward problem is to identify how the system 
performance is affected by gradually evolving anomalies 
and to classify the parametric and non-parametric 
conditions that affect the system behavior.  The problem 
of anomaly detection focuses on identification of the 
patterns followed by the dynamical system as the 
anomaly develops slowly.  Solution of the forward 
problem requires the following steps: 

• Generation of time series data from an experimental 
apparatus under a number of exogenous stimuli. 

• Partitioning of the phase space (or wavelet space) for 
generation of symbolic sequences (on the fast time 
scale) at different epochs of the slow time scale. 

• Finite state machine construction from the symbol 
sequences and computation of the respective state 
probabilities.  

• Computation of anomaly measures the respective 
state probability vectors with reference to the state 
probability vector under the nominal condition. 

b) Inverse Problem: The inverse problem focuses on 
inferring the anomalies from the anomaly measures 
based on the observed time series data.  Since this 
problem may be ill-posed, selection of appropriate 
stimuli is critical for prediction of the anomaly range. 

6 Experimental Results and Discussion 
The proposed anomaly detection methodology has 

been evaluated with time-series data generated from the 
test apparatus in Fig. 1.  Both vibrators were excited by a 
sinusoidal input of amplitude 0.85 V and frequency 10.39 
Hz throughout the run of each experiment.  The time 
series data of Mass#3 displacement sensor, which serve 
as an indicator of the system performance, were collected 
from the beginning of the experiments until breakage of 
specimens.  The ensemble of data were saved in a total of 
80 files, with each file containing half a minute of sensor 
time-series data.  Following the procedure outlined in 
Sections 4 and 5, the anomaly measure was obtained 
from the data at each half minute interval from the sensor 
data contained in each file. The time-series data sets were 
collected after the dynamic response attained the 
stationary behavior.  The first data set was taken as the 

reference point representing the nominal behavior of the 
dynamical system.  These data sets were used to compare 
the anomaly detection capability of the symbolic 
dynamics approach relative to that of two existing pattern 
recognition techniques: Principal Component Analysis 
(PCA) and Multilayer Perceptron Neural Network (MLP 
NN).  Since symbol generation from time series data is 
the crucial step in symbolic-dynamics-based anomaly 
detection, we have investigated two alternative 
approaches  Symbolic False Nearest Neighbor (SFNN) 
partitioning and Wavelet Space (WS) partitioning. 

Fig. 4 Anomaly Measure under Persistent Stimulus 

The four plots in Fig. 4 compare the anomaly 
measures obtained by using the afore-described four 
anomaly detection approaches, SFNN, WS, PCA and 
MLP NN, for the first  70 files (i.e., up to 35 minutes) 
when the service life of the test specimen is largely 
expired, i.e., the specimen is about to break.  (Note: The 
estimated service life of the specimen under this load 
excitation is about 40 minutes.)  The symbolic dynamics-
based anomaly detection with SFNN partitioning (shown 
by red dash-dot line) yields the best performance and the 
MLP neural network (shown by blue dash line) yields the 
worst performance in terms of early detection of 
anomalies.  SFNN detects the anomaly within 18 minutes 
when the remaining life is about 50 percent of the total 
service life of 35 minutes.  In contrast, MLP neural 
network takes about 24 minutes to detect the anomaly at 
a similar level, which is equivalent to having the 
remaining life about 30 percent of the total service life. 

The remaining two plots in Fig. 4 show that the  
methods of symbolic dynamics with WS-partitioning 
(shown by black solid line) and PCA (shown by green  
dotted line) are comparable.  However, experience shows 
that WS-partitioning is significantly more robust than 
PCA.  The rationale is that the PCA method is dependent 
on eigenvalues and eigenvectors of the covariance matrix 
that is sensitive to measurement noise in the data 
acquisition process.  In contrast, the symbolic dynamic 
approach, with both SFNN and WS partitioning, are 
much less sensitive to (zero-mean) measurement noise 
because of the inherent averaging due to repeated path 
traversing in the finite-state machine. 



 

  
 
 

7 Summary, Conclusions and Future Research 

The anomaly detection technique, presented in this 
paper, is built upon the principles of Symbolic Dynamics 
and Finite State Machines, where anomalies are assumed 
to evolve slowly relative to the process dynamics.  The 
goal is to detect fatigue crack anomalies well ahead of 
reaching a critical condition such as the onset of wide 
spread fatigue damage.  This information, in turn, could 
be used for decision and control leading to life extension 
of complex mechanical system [ZRP00]. 

Upon the partitioning of the phase space (or wavelet 
space), a sequence of symbols is generated from the time 
series data under SFNN partitioning (or scale series data 
under WS partitioning) at slow-time epochs.  Then, a 
probabilistic finite state automaton is constructed from 
the symbol sequences at these slow-time epochs.  The 
anomaly measure at a given epoch is obtained as the 
distance, based on a chosen metric, between the state 
probability vector of the finite state machine at that 
epoch and the state probability vector of the finite state 
machine at the nominal condition.  Thus, the above 
measure quantifies possible growth of fatigue crack 
anomaly from the nominal condition as the system 
progresses in the slow time scale. 

A laboratory test apparatus has been constructed to 
experimentally validate the concepts of fatigue crack 
anomaly detection in complex mechanical systems.  
Time series data were generated from sensor signal 
outputs in the test apparatus to demonstrate efficacy of 
the anomaly detection method.  The test data sets were 
used to compare the anomaly detection capability of the 
symbolic dynamics approach relative to two existing 
pattern recognition techniques: Principal Component 
Analysis (PCA) and Multilayer Perceptron Neural 
Network (MLP NN).  Since symbol generation from time 
series data is a crucial step in the symbolic-dynamics-
based anomaly detection, two alternative approaches 
have been investigated for two types of partitioning  
Symbolic False Nearest Neighbor (SFNN) and Wavelet 
Space (WS). 

The symbolic dynamics-based anomaly detection 
with SFNN partitioning yields the best performance and 
the MLP neural network yields the worst performance in 
terms of early detection of anomalies.  Although the 
symbolic dynamics-based anomaly detection with WS-
partitioning and Principal Component Analysis (PCA) 
yield comparable performance, the former is significantly 
more robust than the latter.   

The results of analysis show that the effects of 
fatigue crack damage are detected within about fifty 
percent of the total service life.  This is an early 
prediction of incipient fatigue crack failures, which may 
not be easily detected by conventional fault detection 
techniques [B03].   

Future work would involve implementation of these 
anomaly detection techniques in real time and synthesis 
of control policies to mitigate failure and extend life 
without any significant loss in performance.  A variety of 
sensor data (e.g., ultrasonic, acoustic emission, optical 
metrology, and displacement transducers) would be used 
to accurately assess the fatigue crack damage and predict 
the onset of widespread fatigue damage. 
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