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Abstract 
 

A new sensor technology based on Electromagnetic 
Acoustic Transducers (EMAT) for nondestructive testing is 
developed and used for real-time fault recognition of 
energized overhead transmission lines. The fault detection 
is achieved by analysis of the reflected signatures from 
broken strands on the transmission line. Reflected waves 
received by the EMAT are analyzed using an artificial 
neural network (ANN) technique for failure detection and 
signature identification. From the field tests done at two 
towers of live transmission lines, this EMAT system shows 
prospective potential for fault detection in electric 
transmission lines.  
 

1 Introduction 
 

Transmission line inspection and maintenance are the 
most elaborate and challenging functions in supporting 
stable electric power transmission and distribution. This 
infrastructure is the backbone of the national grid. 
Transmission lines are normally exposed and operated at a 
wide range of meteorological conditions for a long period 
of time. This necessitates a regular inspection of the 
transmission lines to assure their health and normal 
operation against damage caused by undamped vibration 
from wind, corrosion, large temperature variations, ice 
loading and mechanical stresses due to high tension. While 
operation and maintenance are major expense that has to be 
contained, electric power reliability is directly affected by 
the quality of maintenance.   

Typically, visual inspection has been the common 
method used for transmission lines. Other inspection 
methods include: distance, current differential, phase 
comparison and directional comparison protection schemes. 
Unfortunately, these methods are rarely used in the field. 
The aluminum strands, which form the outmost layer and 
inner layers near the conductor surface of a transmission 
line, can be overtime fatigued and worn during normal 
operation. Because there is no reliable method to detect 
wear and broken strands of a conductor without 
disassembly of the hanging mechanisms at the towers, the 

damage may occur internally or underneath the mounting 
hardware is not possible to visually inspect. To answer this 
major monitoring need, we have developed a new 
transducer and automatic failure detection technique based 
on both ANN and EMAT technology. The resulting 
monitoring system would not require de-energizing electric 
transmission lines and disassembling of the mounting gear 
at the towers. 

Several types of non-destructive monitoring techniques 
have been developed based on the principles of 
radiography, ultrasonics, magnetic particles, optics, thermal 
imaging, liquid penetrants, leak testing, acoustic emissions, 
and electromagnetics. Blitz [1], Migliori and Sarrao [2], 
and Maldague [3] discuss many of these methods in details. 
Magnetic flux leakage applies a magnetic field to the 
specimen under test and any changes in the flux are 
observed. In [1], this method is analyzed with several 
geometries of metals. This technique can only be used on 
ferromagnetic materials and the magnetic field must cross 
the discontinuities at close to right angles to measure the 
amount of divergent flux. Also in [1] several eddy current 
methods are described. In this technique, a coil is placed 
near the surface of the test specimen and an impedance 
measurement of the material is made. Since this method 
only tests specimen placed directly under the coil, it 
requires access to the entire specimen. In [2], ultrasonic 
transducers are used to find the resonant frequencies of test 
specimens. This method of testing can take into account 
microscopic and macroscopic properties of test specimens. 
Properties such as elastic module and ultrasonic attenuation 
can be measured with this technique. A band of frequency 
is swept, using a transducer, and the mechanical response 
of the test specimen is measured. A particular resonant 
mode in a test specimen corresponds to a certain resonant 
frequency that may be measured using ultrasonic technique. 
Infrared methodologies used for non-destructive evaluation 
are presented in [3]. These techniques use thermal radiation 
from the test specimen to create an infrared signature. This 
signature can highlight flaws in a specimen. The 
shortcoming of this method is its robustness. Namely, 
signatures can be corrupted by the presence of thermal 



insulation between the specimen and the surrounding 
material.  

In this research, a new monitoring system based on the 
principle of EMAT has been developed to assess the 
conductor’s mechanical integrity in terms of connectivity, 
corrosion, wear, loss of cross-sectional area, and broken 
strands. This technology is applied to a typical transmission 
line conductor, commonly known as Aluminum Conductor 
Steel Reinforced (ACSR) to monitor and diagnose potential 
failures. ACSR is the most common type of conductor 
presently used by the electric utility industry. The 
monitoring system using an EMAT technology will sense 
the state of the conductor and through applications of ANN 
techniques would identify potential failures.  

One of the essential steps for developing effective fault 
detection is the pre-processing of raw data to extract useful 
and appropriate information and features. Since the raw 
data is often too voluminous to be used directly as an input 
to a classifier, reducing the number of variables embedded 
within the data can significantly impact the classification 
process. The process of mapping the original raw data (time 
domain measurements) into fewer and descriptive features 
is called feature extraction. Feature extraction method 
makes it possible to reduce data dimensionality, improve 
the generalization ability of classifiers, and decrease the 
computational requirements of pattern classification. 
Because of these reasons, feature extraction has received 
considerable attention for the past twenty years [4]. 
Recently, many artificial neural networks and learning 
algorithms have been proposed for feature extraction and 
data projection [5-7]. In this research, two feature 
extraction methods are applied using multilayer perceptron 
(MLP) feature extractor [8-9] and principal component 
analysis (PCA) [4, 7].  
 
2 Design of The Monitoring System For Fault Detection 

 
In the design of a robust and reliable monitoring 

system, our investigation considered all key aspects of an 
automatic fault detection technique, namely, a unique and 
non-invasive sensory system, design of an effective feature 
extraction method, and development of a robust classifier.  
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Figure 1: Procedure for Fault Diagnosis  

    in Transmission Lines 

Figure 1 summarizes the functional block diagram of 
the proposed monitoring system. The first three blocks 
delineate the functions of an EMAT hardware for the 
monitoring system, and the other blocks describe 
operations that take place within the software for ANN, 
embedded within the EMAT monitoring system. 
 

3 Operational Principles of EMAT 
 

An EMAT consists of a transmitter and a receiver. The 
basic design of these two units is shown in Figure 2. The 
EMAT couples ultrasonic energy into conductive materials. 
The simplest form of an EMAT is a wire loop held near a 
conductive material with a magnet placed above the wire. 
The transmitter operates based on similar principles as an 
electric motor, which develops torsional waves. A copper 
coil is placed as close to the test medium as possible and an 
alternating current is injected. This current produces a 
dynamic magnetic field (H), which varies in time and 
space. The resulting eddy current density (J) produced in 
the test medium is given by the Maxwell’s equation 
[10,11]. 
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From Maxwell’s equations for quasi-static conditions, this 
eddy current flows in the medium. To create a force in the 
metal, permanent magnets with high intensity are placed 
directly over the coil to immerse the medium with magnetic 
flux. The eddy current interacts with the external magnetic 
flux density (B), to produce a force density given by: 
 

)2(BJF
���

×=  
 
Coupled to the lattice of the metal sample, this force is 
called a Lorentz force and acts in a direction indicated in 
Figure 2. An elastic disturbance involving particle 
displacements (u) and velocity (du/dt) propagates through 
the test specimen. The receiving EMAT works similar to an 
electric generator.  When the elastic waves pass under the 
receiver, the surface of the material is displaced in the 
magnetic field. An electric field (E) because of the resultant 
elastic displacement of the test specimen arises according to 
the following equation [10]: 
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where dutot /dt is the total particle velocity, which 
incorporates reflected, as well as incident elastic waves at 
the surface. With the resulting conduction current density, a 
related magnetic field (HR) and the resulting electric field 
(E) for a sinusoidal time variations would be generated as 
described below [11]: 
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where A is the vector electric potential outside the test 
specimen and around the receiver coil, µo is the 
permeability of free space and ω is the frequency of the 
alternating current.  
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Figure 2: Basic Diagram of EMAT Transducer 
 

A high-amplitude current with high frequency excites 
the coils of an EMAT transmitter, then an eddy current is 
induced in the conductor. Combining the eddy current with 
the magnetic flux created by the magnets, Lorentz force 
described by Equation (2) is generated. This force causes a 
small, high frequency localized displacement or acoustic 
pulse in the conductor. This displacement then propagates 
down the conductor where the EMAT receiver then detects 
this wave propagation. The EMAT receiver operates in the 
same fashion as the transmitter, but instead of producing an 
eddy current by the coils, the particle displacement along 
with the magnetic flux of the magnets induces a small 
voltage in the coils that is translated into the received 
signal. Since the EMAT system is designed to clamp on to 
the surface of the conductor, it is considered as a non-
invasive monitor and would not require any disassembly of 
the suspension hardware that holds the conductor in place. 

The EMAT system consists of: a microcomputer, 
which contains necessary software for system operation, 
fault detection and classification; two transducers; DC/DC 
converters; batteries; power amplifier, electronics for the 
operation of the transducers and electric motor for 
automatic opening and closing mechanism. The EMAT 
transmitter generates pulses and impinges them onto the 
conductor through transmitting coils. The EMAT receiver 
captures the reflected signals and amplifies them. The 
amplified signal is stored in the memory of microcomputer 

and is processed through the ANN. The information on 
EMAT system operation and the result of diagnostics after 
classification process are displayed on a handset control 
panel. Figure 3 shows the developed EMAT hardware 
system and the handset. 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: EMAT Hardware System  
and a Control Handset 

 
4 Feature Extraction and Data Analysis 

  
The raw data is acquired at 5 MHz sampling frequency 

and the driving frequency range is set to 100 kHz to 200 
kHz. The first phase of this signature analysis technique is 
to mean zero the acquired data. The mean zeroed data sets 
are overlapped in a time domain and then a 5th order band-
pass filter (80 kHz to 250 kHz) is applied to reduce the 
noise influence. After the filtering, their maximum values 
are extracted from each row of the data vector and a time 
domain envelope data file is constructed. Data points 
representing a driving signal are removed. Finally, a 
running average filter with summing every 50 data points is 
applied to get the smooth signature envelope and the 
envelope is used as the input vector for the feature 
extractor.  Figure 4 illustrates results of the signature 
envelope extraction steps described.  
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Figure 4: The Process Results   
of Signature Envelope Extraction 

 
The data shown in Figure 4 is obtained from an actual 
transmission line in the field. By using the EMAT 



monitoring system, we have been able to classify this 
conductor as one with large number of broken strands. 
 
4.1 MLP feature extractor using auto-associative neural   
      network 
  

Multilayer perceptron (MLP) neural network can also 
be used for feature extraction in an unsupervised mode.  
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Autoassociative MLP Neural Network 
 
Figure 5 shows the architecture of a network, which is able 
to find the principal component analysis (PCA) subspace. 
Instead of nonlinear activation function, the neurons have 
linear transfer functions. When the number of hidden layer 
outputs is appropriately selected, the classifier network can 
easily separate the patterns represented in the projected 
space, spanned by the hidden layer, and the hidden layer 
may simultaneously supply means of data projection. This 
network has m inputs and m outputs, where m is the given 
number of features. The inputs are also used as targets, 
forcing the output layer to reconstruct the input space using 
only one hidden layer. For a given EMAT system data, 17 
principal component feature vectors are selected. If two 
more layers with nonlinear activation functions (sigmoid 
function) are also included in this network, then we can 
obtain nonlinear subspace features in the middle layer (so-
called the bottleneck layer).  
 
4.2 Principal Component Analysis 
  

Principal component analysis (PCA) is a well-known 
statistical method for feature extraction, data compression, 
and multivariate data projection and has been widely used 
in communication, signal and image processing, pattern 
recognition, and data analysis [4,7]. PCA is a linear 
orthogonal transformation from an m-dimensional input 
space to a d-dimensional space, d ≤ m, such that the 
coordinates of the data in the new d-dimensional space are 
not correlated and a maximal amount of variance (informa-
tion) of the original data is preserved by only a small 

number of coordinates. After PCA transformation, the 
original high dimensional vector (m) can be approximated 
with the least mean square error for a given d-
dimensionality. 

Since PCA method makes the transformed vectors 
orthogonal and uncorrelated, the collinearity problem be-
tween signatures will be removed. The PCA transformation 
requires the following steps. 
 
• Make a given raw data matrix Xo (m by n) mean zeroed    
   X 
• Calculate covariance matrix of X, Cov(X) (m by m) 
• Obtain eigenvectors and eigenvalues of covariance  
   matrix of X 
• Select most important d eigenvalues of Cov(X)  
   where, m > d 
• Obtain eigenvectors (Principal components, PCs)    
   corresponding to selected eigenvalues 
• Obtain a reduced dimensional feature vectors through the  
   vector multiplication by PCs, Y = PCs ∗ X where Y is a  
   d by n matrix.  
  

5 Classifier 
 

Neural networks have been applied widely for pattern 
recognition problems. The most popular one is a multilayer 
perceptron (MLP) classifier based on the back-propagation 
learning rule (BP algorithm). In this study, three different 
types of neural network have been constructed and 
employed. Since the main issue in classification is 
robustness to variances of general test sets, we have 
attempted to find the most appropriate neural network for 
the transmission line fault detection. This study has resulted 
in the use of an Adaptive Resonant Theory (ART) neural 
network for the classification.  
 
5.1 Adaptive Resonance Theory Neural Network 

 
The ART network was introduced to resolve the 

instability of feedforward instar-outstar systems [12]. The 
ART is designed not only to be stable enough for the 
significant past learning, but also to be adaptable enough to 
incorporate new information whenever it may appear. The 
ART network is composed of three layers, and in the first 
layer, the preprocessing for the other layers is 
accomplished. Usually, the input pattern preprocessing 
includes noise reduction, contrast enhancement, 
normalization, and input transformation.  

At the second layer, the preprocessed input feature is 
compared to each of the existing prototypes saved in the 
third layer. Among the prototypes, only one prototype, 
which is most similar to the input, becomes the "winner". If 
the similarity between the winner and input exceeds the 
vigilance number (ρ), learning is enabled and the winner is 
modified to more closely reflect the input. If the similarity 
between the winner and input is less than the vigilance 
number, the current winner is disabled and the search 
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process is repeated. If none of the successive winners 
exhibit adequate similarity, learning is enabled to form a 
prototype similar to the input. The subsystem, including the 
second and the third layers, is called the attentional 
subsystem. That subsystem incorporates a dimensionless 
vigilance number to decide if the match is satisfactory. In 
updating the weight matrix, the ART network uses the 
Kohonen learning rule.    
           
6 Implementation and Verification Through Field Tests  
 

In order to investigate the operation and performance 
of this monitoring system, the EMAT unit was deployed in 
the field. Within the experimental setup in the laboratory, 
EMAT displayed a very satisfactory performance in the 
simulated testbed [13]. The field test took place in Kearney, 
Nebraska. The conductor cable under investigation was a 
Linnet 336 ACSR cable, and was energized at 115 kV. The 
conductor has four layers of stranded cable with 26 
aluminum strands (outer layer) and 7 of the core steel 
strands. As verified by the sponsor utility, the first 
conductor to be tested does not have any failures. Thus, it is 
considered as the normal conductor. In the second tower, 
the Phase I conductor has nine broken strands and the Phase 
III conductor has four broken strands. For the convenience, 
we call Phase I conductor major abnormal one and Phase 
III minor abnormal one. Figure 6 shows a schematic 
diagram of the tower under investigation. Figure 7 shows 
the EMAT system operated by linemen at the tower in the 
field test. 

For the collection of comparative data sets, the EMAT 
system (transmitter and receiver) is mounted and clamped 
at the end of armor rod of the conductor during data 
acquisition.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6: Schematic Diagram of the Tower Under Test 
 

The first 17 data sets (Normal 6, Minor Abnormality 6, 
Major Abnormality 5) are used to train the classifiers and 

the other 17 data sets are used for the verification of the 
classifier (Normal 6, Minor Abnormality 6, Major 
Abnormality 5).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Operation of EMAT System By Linemen 
 

Each training data set and verification data set are 
processed according to the described feature extraction 
methods after pre-processing, and then the extracted feature 
vector, having much smaller data dimension, is input to the 
neural networks for classification. Table 1 shows the 
verification results of classification based on two feature 
extraction methods (the first column) and the ART 
classifier. Overall, using PCA feature extractor has shown 
the better performance. In the major abnormal case, two 
sets among five test sets were recognized as the minor 
abnormal case. By this way, we have sixty percentage of 
correct recognition in the major abnormal case. As shown 
in Table 1, the MLP feature extractor using a linear 
activation function is not satisfactory to generate distinctive 
features for the ART classifier and PCA method shows the 
better results except for the major abnormal case. Most 
confusion in major abnormal ones happened because those 
were recognized as the minor abnormal case. Based on the 
recognition in the ART classifier, we can say that the 
recognition performance is more dependent on useful 
feature extraction. Figure 8 represents typical signatures 
obtained for each condition. 
 

Table 1. Field Verification Results of the Classifier 
(Correct recognition %) 

Classifier/ 

Feature Ext. 
Cases ART 

Normal 66.7 

Minor AB 100 MLP 

Major AB 60 

Normal 100 

Minor AB 100 PCA 

Major AB 60 
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Figure 8: Typical Signatures According To ACSR 

Conditions 
 

7 Conclusion 
    
 Two feature extraction methods (Autoassociative MLP 
and PCA) and a neural network (ART) for classification 
have been employed and tested for the field implementation 
of the EMAT system. The results present better recognition 
performance using PCA method in classification rather than 
a MLP feature extractor. Basically, the signals (signatures) 
obtained in the field test showed highly nonlinear response. 
Because of this, autoassociative MLP feature extractor 
using the linear activation function did not show 
satisfactory results in the classification. Most of the 
confusion happened between the signatures of minor 
abnormal and major abnormal conductors. The most 
efficient feature extractor is the PCA method. This is 
because PCA extractor has the ability to identify reliable 
and key features from complex and correlated signatures. 
Using feature vectors from PCA extractor, the employed 
classifier displayed meaningful results. This indicates that 
employing EMAT, proper feature extractor and a robust 
classifier based on ANN techniques, can result in an 
effective tool for the health assessment of the energized 
transmission lines.   
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