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Abstract— This paper investigates the stabilization of vehicle  provided that they remain connected. In [7], [8], [9], [12],
formations using techniques from algebraic graph theory. The  [14] the authors use artificial potentials to generate faeklb
vehicles exchange information according to a pre-specified |4,y5 The resulting nonlinear feedback laws can be shown to

(undirected) communication graph,G. The feedback control is tabilize the f i d . tri .
based only on relative information about vehicle states shared stabilize the formation under various geometric consaten

via the communication links. We prove that a linear stabilizing ~ Criteria.
feedback always exists provided thaG is connected. Moreover, In this paper we study the communication graph ap-

we show how the rate of convergence to formation is governed proach. We consider a general vehicle model and use state-
by the size of the smallest positive eigenvalue of the Laplacian 3. techniques to prove that stabilizability of a forovati
of G. Several numerical simulations are used to illustrate the . . ..
results. can be achieved, provided that the communication graph
is connected. We show that the rate of convergence to
|. INTRODUCTION formation is governed by the smallest positive eigenvalue

of the Laplacian matrix of the communication graph. We

From minisatellites to drone planes, the need to contrc();{ISO demonstrate how, for a fixed feedback gain matrix,
the coordinated motion of multiple autonomous vehicles h nvergence can be improved by choosing alternative com-
received increasing attention recently [2], [3], [4], [6T], munication graphs

{ﬁ]’ [13]{ [I14]’t'[1'?]. One OL the malr_1blgoalﬁ_||s t?_”dlstrl_bu_te The paper is organized as follows. In section Il we set
€ cor:j_ro ta%'v'g{ asi.mucThas ptc)).s&t_ ew |ets_ : tafjhwllh.up the basic model. The relevant graph theoretic definitions
a coordinated objective. The objective investigated I8 i, 4 eq1ts are collected in section I1l. The main resulés ar

paper is that O.f attg|n|ng a moving formgtlop. That is, th oved in section IV. Numerical simulations are presented
goal of the vehicles is to achieve and maintain pre-specifi F{section v

relative positions and orientations with respect to eablot

Each vehicle is provided information only from a subset of II. M ODEL

the group. The specific subset is given through the set of

“neighbors” in the communication graph. This graph need We assume giveN vehicles with the same dynamics

not be related to the actual formation geometry. . :
The feedback scheme investigated is inspired by the % =Averi +Bretti i =1...N xR

motion of aggregates of individuals in nature. Flocks Ofyhere the entries of; represenn configuration variables

birds and schools of fish achieve coordinated motions g, vehiclei and their derivatives.

large numbers of individuals without the use of a central \ye are also given a grapB which captures the com-

controlling mechanism [10]. A computer graphics model tqnnication links between vehicles (see next section for

simulate flock behavior is presented in [11]. In a differenpecise definitions of graph theoretic concepts). Eactexert

context, a simple model is proposed in [15] that capturgpresents a vehicle and two vertices are connected by an

the observed motions of self-driven particles. These n®0delqqe if the corresponding vehicles communicate directly

employ feedback laws in which the motions of nearesyith each other. We refer to such vehicles as “neighbors”.

neighbors are averaged. The notion of a communicatigf,, each vehiclg, J; denotes the set of its neighbors.

graph is introduced in [2], and an averaging feedback law |, g model, each vehicle only knows its state relative

is Pfopc_’sed pased o_n the ﬂO_W of information. to its neighbors. That igy; is a function ofx; —x; for each
Keeping with the information flow approach, a proba-; e .

bilistic model for communication losses is introduced ih [4~ 110 study will focus on the simplest such rule: use as

where it is shown that if the probability of losing a link j,5+ an average based on the neighbors’ states. To make
is not too low, the formation is still achieved. A dlscretethiS more precise we make the following definitions.

averaging law is used in [6] to achieve a common heading. o 1
There, the communication graphs are allowed to change,Definition 2.1: A formation is a vectorh =hp ® (0 €

. . . R?>N (where ® denotes the Kronecker product). Tie
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subscriptp refers to the position componentsyf and the diagonal entries of . A direct calculation using the special
subscriptv refers to the corresponding velocities. form of A, B, andF gives

(U 1@ 1) (A+BFL)(U ®1n) = Iy ® Aven+ Lo @ ByenFuen
7 .

The right hand side is block upper triangular. Its diagonal
blocks are of the form:

Aveh+ A Bvetheh

whereA is an eigenvalue dfs. There is one block for each
eigenvalue. Therefore, the eigenvalue\af BFL are those
of Aven+ AByenFven for A an eigenvalue ofg.

Ill. SPECTRAL GRAPH THEORY

For our purposes, graph G consists of a finite sev
of verticesand a setE of 2-element subsets of to be
referred to aedges By construction, then, observe that
is undirected and has no loops or multiple edges.
We say a grapl@ is connectedf for any verticesi, j €
Goal: design an output feedback law that steers th& . there exists a path of edges @Gfromi to j. If G is
vehicles to the desired formation. connected, then for anyj € 7, we define thedistance
betweeni and j to be the number of edges in a shortest
Error output functions;, are computed from an averagepath joiningi and j. Thediametero of a connected graph
of the relative displacement of the neighboring vehicles & is the maximum distance between any two vertice&of

Fig. 1. Vehicles in formation

follows Let G denote a graph with vertex set and edge set.
1 ) Let Mat, (R) denote the set of all matrices with real entries
z=(x—h)— (xj—hj) i=1,...,N.

whose rows and columns are indexed by the verticeS.of

3l 4, ; ! :
IS By the adjacency matrixof G we mean the matrixQ
As a result, the corresponding output vectocan be Mat,, (R) with entries

written asz=L(x—h) whereL = Lg® Iz, and Lg is

; ; e 1 if{i,j}eex, .
tsr;it:_oa:]pllﬁ():}an matrix of the communication gra@gh(see aj = { 0 otéerjv%/ise (i,jev).
Collecting the equations for all the vehicles into a singl8ecauseG is undirected, the matriQ) is symmetric. The
system we obtain degree matrixof G is the diagonal matrbD € Mat,, (R)
% — Ax+BuU with diagonal entries
L(x—h) di={iev:{iifez}l (iew)
with A= Iy ® Aver, B= In @ Benr The degree matrix encodes the number of vertices adjacent
We will show below that the vehicles are in formation ifto €ach vertex. We will assume that the graph is connected
and only ifz=0. and so the matriD is invertible. TheLaplacianof G is the
With this formulation we pose the following: matrix Lg defined by
Problem: Find matricesF,...,Fy such that if F = Lg=In—D0Q,

diag(Fy,...,Fy) and

, where N = |¥|. This is, in general, different from the

X = Ax+BFL(x—h) traditional Laplacianz = D — Q that is commonly used in
thenz— 0. the graph theory literature. In the case wii&is k-regular,

This is an output stabilization problem. The particulaD = Kln, S0 Lg = k™ '£. It follows that an eigenvector

structure of the matrices, B, andL offer opportunities for 0f £ with eigenvalueA is also an eigenvector okg
characterizing stabilizing matrices in terms of specific With eigenvalueA/k. We refer to the set of eigenvalues
properties of the communication graﬂ] We show below of Lg (together with their mU|t|p|lC|t|ES) as the Laplacian
how the eigenvalues of the graph Laplaciag play a spectrumof G, and properties of these eigenvalues and

central role. their associated eigenvectors are collectively referoedst
Given the block structure of the matricédsand B, we  spectral properties
will look for F in the formF = Iy ® Fyen (@ “decentralized” Some relatively simple, but powerful, results about the
control with the same feedback law for all vehicles). spectrum ofLg are (see [1]):
Let U be a matrix such thatg = U~LgU is upper 1) All of the eigenvalues olLg are nonnegative real
triangular. In particular, the eigenvalues bt are the numbers< 2.
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2) Zero is an eigenvalue dfg. indexv the velocity components. In particulag = x,. Then
3) The zero eigenvalue occurs with multiplicity one 1 0
. . —h=(x,—h . Then,
whenever the grapks is connected. In this case, theX (xp—hp) @ 0 TXE 1
eigenvectors associated with the zero eigenvalue are

all scalar multiples of the all one’s vector. Thus, the Lix—=h) = (Le®Ih®l2) ((xpfhp)®( é )>
null space ol is the same for all connected graphs.
4) If Gis connected, then each nonzero eigenvalué + (Le®Ih®ly) (xv®< (1) >)
Lg satisfies 1
As L ~ (eomio-m)e( § )
D Ficy di’ o
where D denotes the diameter @. + ((LG®|n)Xv)®( 1 )

We include below as example a list of spectra of varlous

well known classes of graphs, Since by hypothesik(x—h) — 0 we must have

Name # ver. | Eigenvalues _
Complete grapip n 0, ilgs it (Lo @1n)(xp—hp) =0 @)
Complete bipartitcKmn | m+n | 0,1,...,1,2 (Le®In)xy — 0 2)
PathP, n 1—cog & . o .
3 K=0 .S(”*nlz 1 By taking derivatives in the formula fdr(x— h), and since
CycleCy n 1— cog 21K) h is constant, we get
n
k=0,...,n—1 ) 1
n-cubeQy n X Lx—h) = (Le®In)Xp® < 0 )
k=0,...,n
For additional graph theoretic terms and results see [5]. + (Le@h)}® ( )
IV. STABILIZABILITY = (Lg®In Xv®( é )
We show first that for the present decentralized feedback
law to_achieve formation st_ability, the individual vehicle + (Le®Iy Xv®( 0 )
dynamics must have a particular form. We start from the

assumption that we have a second order model on eaghe first term converges to 0 ds— « (by (2)). On the

coordinate with acceleration as the input variable, antl thather hand, using the dynamic equations for the vehicles,
the equations for each configuration variable are decouplegle get:

To simplify the presentation we assume further that each .
coordinate satisfies the same dynamic equations. Except féf{X—h) = L(Ax+BFL(x—h)) = LAX+LBFL(x—h)
re-scaling, the matrices,en and Byeh have the form

where
3 0 1 B 0 1 0
Aveh=In® (a21 a22> B=Ih® <1) LAX = (Le®lan)(In®Aven) (Xp@ <O> +Xv® <1>>
Observe that Aveh has the form B 0 1
diag((:2, 2L )..... (2, 5L )). The results stil hold if = Le@lhxp®(, J+Leohxe(,
0 1 0 1 Therefore, from (1) and (2), we get thbfx converges as
Aveh— dlag 1 e gn an . 0 .
GV b1 Y22 t — oo, In fact, lim_ LAX=a21(Le ® In)hp ® . Since

1
that is, if different 2< 2 blocks are used for each configu-| BFL(x—h) — 0 we conclude thafLg ® I)%, converges,

ration variable. . _ and so, it must converge to 0. Since
Proposition 4.1:If for every formationh there exists a _ _ _
stabilizing feedback matri¥ = Iy ® Fyen Such thatl(x — Jim LAx= lim Lx, =0

h) — 0, thenap; = 0. : .
Proof: As mentioned above the feedback matFixis Y choosing a formatiom, such that(Lc @ In)hp # 0, we

such that lim_.., L(x(t) — h) — 0 (notice thath is constant ©Ptainaz: = 0. m
by definition). Remark 4.2:The vehicles are in formatioh if and only

We use Kronecker products to simplify the calculationsif L(x—h) =0. To see this notice that the null space of

We haveh = hy @ L= L ® o = Lg ® 1 ® 1. We L=Lg®Ix is spanned byl ® e; whereej, j=1,...,2n

0)' are the standard basis vectorsRA". Thus

also writex = Xp ® é +X® (2) Everywhere the index Lx—h)=0 < x—h=1®a for aeR™
p denotes the position components of the vehicles and the S (Xp)i—(hpi=q (x)i=w
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fori=1,...,N, wherea = q® é +W® 2 . An element of s has the formy = ( 1N6®a ) +
The next result shows that if we can simultaneously 1

stabilize Aven+ AByenFven for all eigenvaluesA, then the 0 . Then, from Equations (3), (4) we get

vehicles will converge to formation. B

Proposition 4.3:Let Fen=In® (f1  f2). Suppose that
the matrix_Aveth ABverFven i stable_ (H_urwitz) for_ each My <|nN®< 8 1 >> (1N®G+l3®< é ))
nonzero eigenvalug of the communication Laplaciabg. y= a2
ThenL(x—h) — 0. 0

Proof: As shown earlier the eigenvalues Af+ BFL are

) 1N ® Averﬂ

those of Ayen+ AByenFven for eachA in the spectrum of = 0 €S
Lg. Since 0 is an eigenvalue tig of multiplicity 1 (for . . ] .
connected graphs), then each e|genvaIuA\,gtwnI also be This calculation also shows that the matrix of the restric-
assumption is that all other eigenvalues/f- BFL have ( A‘éeh 00 ) The matrixM induces a linear transforma-
negative real part. \ h“N . N h . |

The structure of the proof is as follows. First we expan(ﬁIon on the quotient spacR=™/s w 0se elgenvailes are
the system toy = My using hp as a new variable in a those ofAven + AByerven fOr A anonzeroeigenvalue ot
standard form. Then we show that a suitable subspace %/ assumption the?‘? elgenvalges have negatlve_re_al p‘.’”ts'
M-invariant. Thirdly we show that the map induced on thT erefore the quotient dynamics are stable. This implies

quotient space is stable. Finally, we show that convergendat if y = ﬁ( 2 andy = My theny+s5 — s in the
. : i P
in the quotient space means convergence to formation. quotient space. From the definition of this means that
Since the desired formation is constant, the formatlon(x h) — 0. O

variable h, satisfiesh, = 0. We consider the extended ~\ye now want to show that stabilizing feedback matrices
system indeed exist.

_ 1 Proposition 4.4:Given A, B as above, and a connected

X = Ax+BFLx—BFL (lnN® ( 0 )) hp  (3)  graph with LaplaciarLg, there existdyen such thathyen+

h — o @ AByerFven is stable for each\ # 0 in the spectrum ofg.
p =

Proof: In fact, we will restrict the feedback matricésto
) 1 ) have the formF = InN®( f1 ) The problem reduces

Notice thath = ('nN® ( 0 )) hp. We write the above 5 showing thatf; and f, may be chosen to stabilié, =
0 1 0 O
( 0 822(\3 f1

of Lg. The matrixH, has characteristic polynomigix) =
X2 — (ag2+Af2)x—Afy. So the matrix is stable if and only

v [A+BFL —BFL(InN®(é)) :
B 0 0 ap+Af<0  Afp<O. (6)
nN

equations ag = My wherey = (hx> andM is the(3nN) x ) for all A # 0 in the spectrum
P

(3nN) matrix given by

Recall that all eigenvalues dfs are nonnegative. Lek;

Define th . .
efine the subspace by denote the minimum nonzero eigenvalueLgf Choosef;

_ X\ . Lx—L (h 1 ol and f, so thatay,+ A1 f> < 0 andAq f; < 0. With this choice
S = hp/)~ x= P& o)) of Fen the matrixH, is stable for all nonzero eigenvalues
A of Lg. O
_ X\ . _ The above proof also shows how the eigenvalueg®f
= :L(x—h)=0 . S
hp affect the rate of convergence to formation. The discrimi-

nant of the polynomialp(x) is (ag+ Af2)% +4Af1. Thus,

Since the nullspace dfg is spanned by thél-dimensional for a fixed f,, choosingf; so that

all one’s vectorly, a basis ofs is given by
(aga+Af2)? S

4\
_ Ih®e . n ;i
B = {( 0 > ‘g E€RTI=1,...,2n ®) for every nonzero eigenvaluge of Lg guarantees complex

1 (non-real) roots, thereby providing the fastest rate of-con
U € ® < 0 > e eR™ j=1 nN vergence. Thus we have proved the following.
- ’ T Proposition 4.5:For f; and f, as above, the rate of

convergence to formation @2+ A1f2)/2.
Claim: The spaces is M-invariant. This is illustrated in the numerical simulations below.
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Remark 4.6:For a fixed numbeN of vehicles, stabiliz-

ing gains f; and f, can be chosen independently of the e
graph. To see this recall the inequalities

; <AL2

D Yicw i .

and note that for a graph witN vertices,» <N—1 and
Yiey Gi <N(N-1).

V. EXAMPLES

We illustrate the results with various numerical simula- 2
tions. First we assume thab, = 0 so each coordinate is
modelled as a double integrator. In all these examples the
desired formation is specified as the vertices of a regular
pentagon. Figure 2 shows convergence to formation using
the same feedback matrix but two different graphs, the path
Ps and the complete grapKs. The increase ifA1 accounts
for achieving the formation sooner. The formation drifts

in space at a constant speed because the vehicles were )
in motion at the start. The common velocity vector is the
average of all velocities. o

6 4 -2 0 2 4 6 8

Fig. 3. Cycle with different feedback gains

: ] Figure 5 shows simulations for a model including orienta-
0 ] tion of the vehicles. The communication graph is a 5-cycle
- ] and the formation is a regular pentagon with all vehicles
orientated in the same direction. In the first plot the vedscl
are given an initial velocity while in the second they start
from rest. The final positions are indicated with circles.

VI. CONCLUSIONS

We have demonstrated the close connection between
spectral graph theory and one of the current methods of
control of vehicle formations. We have made explicit how
to choose stabilizing feedback gains in terms of estimates
for the eigenvalues of the Laplacian of the communication
graph. Furthermore, we have derived an expression for the
Fig. 2. Path on topN; = 0.2929), complete graph on bottoiu(=1.25)  rate of convergence to formation that is a linear function of
the smallest positive eigenvalue of the Laplacian.

For a fixed feedback gain matrix, convergence to for-
mation can be improved by modifying the communication

In Figure 3 the same graph is used (the cyClg but

d|ﬁgrent feegll:aack matrlﬁes. - ¢ th in th graph in such a way as to increase the value of
Figure 4 illustrates the effect of thap, term in the For simplicity we have restricted our analysis to undi-

resulting formatlons. While these ex'an'wples use the SaM&cted graphs. However, analogous results hold for didecte
2 x 2 matrix for each controlled quantity in a single Veh'degraphs

the effect of different values for each of them should b

clear from these pictures. The model still assumes that REFERENCES
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