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A Frequency Domain Condition for Stability of Interconnected
MIMO Systems

Ather Gattami, Richard Murray

Abstract— In this paper analysis of interconnected dynam- unmanned air vehicles (UAV), robots, and sattelites arg onl
ical systems is considered. A framework for the analysis of few examples.
the stability of interconnection is given. The results from
Fax and Murray[2] that studies the SISO-case for a constant B. Previous Work
interconnection matrix are generalized to the MIMO-case .
where arbitrary interconnection is allowed. The analysis Bow There has been a lot of research on interconnected sys-
existness of a separation principle that is very useful in t&  tems where some focused on patrticular "real-world" prob-
sense of the simplicity for stability analysis. Stability ould  |ems and some on trying to find a more general approach
be checked graphically using a Nyquistike criterion. The 5 anaiyze interconnected systems and give a constructive

problem with time-delays and interconnection variation ard for desianing the d tralized wroller. In F d
robustness appear to be natural special cases of the general Wway lor designing the decetralized controlier. In Fax an

framework, and hence, simple stability criteria are derived ~ Murray [2] a Nyquist-like criterion is derived for stabilit

easly. check under a constant feedback matrix for SISO systems.
Also a sufficient condition is given for interconnected
. INTRODUCTION MIMO systems. In Olfati-Saber and Murray [3] the average-

A. Motivation consensus problem was considered for the case of single

In recent years there has been a large amount of interdidtegrators. Briefly, the average-consensus problem istabo

in analysis of interconnected systems and networks, wheff¢/ind 10 make a group of plants to agree on the average of
the relation between the interconnection and stabilityhef t their states or outputs under some interconnection between

resulting systems are related. In particular, there has are différent plants. Also, [3] touches the idea of introducing

attempt to focus on distributed systems where the controlld" intérconnection matrix that is frequency dependent and
is decentralized, i.e each plant of the interconnectedsyst €xamine its eigenvalues to derive stability conditionse Th
makes a decision based on limited information that migh#ork by V. Guptaet al[4] derives stability conditions for
be available to it. Interconnection can be found in ouptochastically varying interconnection. In A. Jadabatsiie
everyday life. There are many examples of such system%l,[S] the problem with switched interconnection is also
and here we give only a sample of different problems th&onsidered for the case where the switching rule is resttict
have the issue of interconnection in common. The intern&® certain properties. M. Rotkowitzt al [7] introduces the
is a very large network where stability issues are of gre&0tion of quadratic invariance and how it could be used in
interest. The information flow transported along differenfOnstructing a descentralized control law by minimizing th
links could, for instance, be delayed which makes it hard t6/0S€d-loop norm of the feedback-controlled system subjec
stabilize the entire network if the delays are not taken intl constraints on the controller structure. G. Vinnicomile [
account. Economy markets are another example of rathgpnsiders the effect of time-delays in the stability of end-
complicated pricing system where we do have a lot of°-€nd congestion control for the internet.

manual control, and at the same time a lot of interconnectiqR - ~qniributions of the Paper

between different pricing dynamics. The power network . ) N
is probabely one of the most complex networks. We can Initially, the problem of how time-delays affected statlyili

find stability problems not only when trying to robustIyOf vehicle formgtions was considered, building on the work
ne in [2]. Trying to find an approach to solve the problem,

stabilize the physical power network(which is hard enoughgO k ; :
but also stabilize the economics market that is embedd&eg framework given in [2] needed to be extended, starting
with translating the problem formulation from the time-

into it. Consumers, distributers, and power generatorsotry X . ,
optimize their profit. Therefore, we have to take into actourfiomain to the frequency domain. The new formulation
the economics network that could be unstable also, whePd the problem was one of the vital parts of this paper.
the pricing plays a large role. An example is the Californidntéresting properties showed up and proved to be very
power crisis of 2000. In later years, even stability of vénic USeful for other kind of problems.

formations has been of great interest, e.g. formation ¢fence the main goal of the paper is to introduce a general
framework for interconnected systems where we try to
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Richard M. Murray is with the Control and Dynamical Systenepatt- reveals_ many properties that give us an easy way of Stab”'ty
ment, California Institute of Technology, Pasadena, CA251 1JSA analysis and system design. Here we try to show how the

0-7803-8335-4/04/$17.00 ©2004 AACC 3723



problem with time-varying connections and delays could be sl p
easly modelled using the general framework. Also we show 5’ (s) (s)

a Nyquist-like criterion inspired by the one in [2], that édu
ease the analysis of the interconnection.

z H(s) ®I,

Il. PRELIMINARIES
A. Notation Fig. 1. The interconnected system.

We denote a set of elemera;, ay, ...,an} by {ai}. A®B
defines theKroneckerproduct between the matricésand

B. We letl be thek x k identity matrix. Though, we will make a slight modification and define the

Laplacian as
B. Matrix Algebra 1 if i — j
For a set ofN matrices{Mg,...,Mn} of _sizer xS, we Lij = _‘/%‘ Vie g
define thedirect sumas theNr x Ns blockdiagonal matrix 0 ' otherwise
M whoser x s diagonal blocks are the matricé4, ..., M, .
(in this order), and the other entries are zero, which w8r more algebraically
write as R N L=D1D-A)
M=) M . . , —_
& assuming thab; # 0 for all i(note that the first definition

does not require the latter condition). The question of
which definition to be used depends on the application. The
o Laplacian is useful since many studies has been focused on
Qu =Q® Ik : : ) _
its properties, and especially the spectral properties.

For a givenN x N matrix Q, define anNkx Nk matrix Q)
by the equation

Finally, we state theGerSgorin disc theoreffor a proof
consult e.g. [8]):
Proposition 1: Let A= [A;j] be ann x n matrix, and let A. Stability of Interconnection Represented by Feedback

IIl. M AIN RESULTS

n Transfer Matrix
CiA = > IAjl We start by considering a set &f identical plants and
I=L17] its controllers given by the matrix functiori®s) andK(s)
Then all eigenvalues ok are located in the union efdiscs  of sizen x m andmx n respectively. Let
n
N
U{zeC:lz—Ajjl <G} P(s):@ZlP(s)
j=1 i=
C. Algebraic Graph Theory and N
A (simple) graph¥ is a mathematical structure that Kis)=a S K(s)
consists of finite set of elements = {v1,vy,..., vy} called i;

vertices or nodes with a prescribed sef” of unordered
pairs ofdistinct vertices of#. Every elemenec & can be
written ase= (vj,vj), vi,vj € ¥, ande is called anedge
or arc, of the graph¥. We callv; andv; the endpoints
of e. We say thatv; ar_1d vj are connected ifvi,vj) € &. relation that was first shown in [2]:

We also infer the notion of @irectededgeej = (vi,V)), Lemma 1:Let Q be anN x N matrix, M be anr x s
which could be considered geometrically as an arrow from ,ivix with M of size Nr x Ns such thatM — INOM =
the nodev; to vj. A graph with directed edges is called adiag(M,...,M) and letQy = Q® Ik where® denotes the

directedgraph. Consider a matrid such that the element \.,necker product, antk is thek x k identity matrix. Then
a;j is equal to one ifvi,v)) € £(¢) and zero otherwise. This

matrix is called theadjacencymatrix of 4. The outdegree MQ(S) = Q(r)M. (1)
of a vertex is the number of incident edges with the vertex Theorem 2:Let U (s) be a vector of sizenN, Y(s) and
that point outfrom the edge. The set of vertices that pointZ(s) be vectors of sizenN, H(s) a matrix of sizeN x N.
out from vertexv; is denoted by 7. Hence, the outdegree Also set N

of vi is simply|_#|. There is a special matrix that has been B =a S P(s)

used frequently in connection with modelling of networks. i;

Let D be a diagonal matrix witl; equal to the out-degree and

of vertexi. The Laplacianof a graph is defined as N

L=D-A

Now consider thenterconnectedIMO system given as in
Figure 1, wheréH (s) is the interconnection matrix function
with proper dimensions. We can state a simple stability
theorem for the system above, but first we need a very useful
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where P(s) and K(s) are matrices of sizen x m and IV. APPLICATIONS

mx n respectively. LetT(s) = S(s)*H(s)S(s) where §(s) Theorem 2 is stated in such a way to give as general
is the unitary Schur-transformation matrix such tfids)  framework as possible for the interconnection of systems
is upper triangular with the eigenvaluddi(s)} of H(s)  ith homogeneous dynamics. There are many interesting
on its diagonal. Lep be the number of unstable poles ofgpecial cases that are far from being trivial when trying

Hin)(S)P(9)K(s). Then the control lawd (s) = K(s)(Uret—  to use traditional techniques. But the use of our new
Z(s)) stabilizes the system framework, together with Theorem 2, enables us to analyse
Y(s) = FA’(s)U(s) @ complicated interconnections easly.
Z(s) = Hp(s)Y(9) A. The Consensus Problem
iff the Nyquist plotof It_is of great interest to make a group of p_Ia_nts, e.g. gerial
. vehicles, to reach agreement,aamsensusas it is called in
defin + Ai(S)P(SIK(S)] Olfati-Saber and Murray[3]. We would like, for instance, to
l_l ' make these plants to agree on some common state or output.

We want to explore how the information topology and
dynamics affects the stability of the interconnected syste
We will consider the problem based on the framework

makesp anti-clockwise encirclements of the origin.
Proof: The closed-loop dynamics are given by

Z(s) = Hpm(s)Y(s) prese_nted in Fax and Murray [2], but with a frequency-
= Hp(9 P(s)U(s) domam_approach. "
Hiny (SP(SIK (8) (Urer — Z(9)). Consider a system df plants#? = {R}" such that each

plant hasm inputs andn outputs. Note that assuming that
Thus, the transfer matrix betweits) andUys is given by  the plants have the same dimensions does not imply any loss
of generality. We assume that the dynamics for each plant

S PN
(InN -+ Hin) (S)P(S)K(S)) ™ Hin) (S)P(S)K (5)Uret($) are decoupled from the othé& — 1 plants in the system.
Using the generalized Nyquist Theorem, we see that theen we can write the system for plainin the frequency
closed-loop system is stable iff the Nyquist plot of domain as
X = RSU(E (5)

deflnn+ Hny (S)P(9K(9)]

makesp anti-clockwise encirclements of the origin. But by
applying Lemma 1 and the fact that (8t,)) = det(Szn)) =

for all i € {1,...,N}. The outputYi(s) is considered as
a sensed information which represents theernal state
measurement for plant The externalstate measurements

1, we get Zjj(s) for V; relative to other plants is given by
deflnn + Hiny (P(9K (s)] = Zij(s) =Yi(s) - Yj(s),Vi € 7 (6)
detlnn+ S (8) Tn) Sy (5) (s)P()K(s) where #; C {1,...,N}\{i} represents the set of plants that

5 R can sense. For simplicity, we assume thg| > 1, Vi €
det[s(”)(I”N+T(”)( SP(EK (S))S@] R {1,...,N}. This condition implies that each plant can sense
deflnn+ Ty (S)IP(S)K(s)].  (3)  at least one other plant. Notice that a single plant cannot
drive all the termsZ;; (s) to zero simultaneously. Therefore,

Since Ty (s) is block upper triangular and both(s) and 5| errors must be synthesized into one signal. We introduce

K(s) are block diagonal, we get the new error measureme#i(s) by building a weighted
o sum over the relative state measurements. For simplicity,
deflnn + Tin) (SIP(S)K(8)] = we assume that the terridg (s) are equally weighted, hence
N
1
defln+Ai(S)P(5K(s)]. (4) Zils=— Y Zi(s). @)
M ©=7 2 A0
so the number of anti-clockwise encirclements of the origiNote that this assumption doast give us a weaker result.
made by the Nyquist plot of LetK;(s) denote the decentralized control law for plarin-
detlon+ Ty (PR (9) troduceU (s) = (U1(s),...,Un(9)), Y(8) = (Ya(9),...,\N(9))

and Z(s) = (Z41(s),...,Zn(s)). Thus, IettmgL' denote the
is the same as the number of encirclements of the origith row of L, we see that

made by the Nyquist plot of Zi(s) = L Y(s)
1A= =(n)
N . L
r!det[ln+)\i(s)P(s)K(s)]. Hence, the equation for tHetaAI system is given by
{ Y(S) = P(S)U (S) (8)
[ | Z(s) = LpnY(9
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where P(s) is the direct sum for the set of plant® = MLQ;_,IQ(S) : P(s) g
(PL(S),....Pu(3)). R

We will explore the stability of the interconnection with

plants of equal dynamics, i.e.R(s) = P(s) for all i € A8,
1,..,N}L
{ } Fig. 2. The interconnected system with interconnectionettamty.
B. Stable SISO Plants and Interconnection
Let us consider the case whé&ts) andK(s) are SISO- “;@

stable, and the interconnection matHxs) is stable, that is -

H(s) has no poles in the RHP. Then the criterion for stability

of the interconnected system (1) is that the Nyquist plot of
n

[+ AEPEK ()

makes zero encirclements around the origin, or equivalentl
that the Nyquist plot of

Ai()P(s)K(s)
It is very interesting to explore the robustness of an

makes no encirclements arounrd + 0j, fori=1,....n. . . .
; : ; ._interconnected system, where links between differenttplan
Now let the interconnection matrix be the Laplacian . . :
. . could be broken or intentionally changed to achieve perfor-
matrix, that isH(s) = L. Then we see that the system

is stable iff the Nyquist plot ofAiP(S)K(s) makes no mance. Consider a system mterc_onnecte_d by the Laplacian
. . O : matrix L. Let £ be a set of Laplacian matrices such that the
encirclements around 1+ 0j, which is equivalent to that

the Nyquist plot ofP(S)K(s) does not encircle—/\—li for closed loop system with respect to every Lapladian.¥

Fig. 3. The interconnected system with interconnectionettamty.

D. Time-varying Interconnection

1N is stable.
I 1) Stable Plants and Multiplicative UncertaintyCon-
C. Interconnection with Fixed Time-delays sider time-varying interconnection in the case where the

A common problem with interconnected systems is th@lants in the system are stable. lletienote the uncerttain
presence of time-delays. In this section, we will find-aplacian matrix for the system. A diagram for the closed-
necessary and sufficient conditions, using the techniqu¥op system is given by Figure 2.
discussed earlier. It is known that the eigenvalues for the Laplacian lie

Consider the interesting case whetés) = L, that is the inside the unit disc centered at+10j (a proof could be
interconnection is given by the Laplacian matrix. Supposderived using the GerSgorin disc theorem presented in the
that there is a fixed time-delay; for planti to get the second section). Thu§lL|[. =0 < 2.
sensed measurement from plgrthat it is connected with.  Then by the Small Gain Theorem, the interconnected
Then we can write the interconnection matrix as system is stable if

[H(s)ij = Lije 1is. PPN
, , y=[PSK(S)]]es = [[P(S)K(S)]ex < 5.
For instance, if the plants are SISO and stable, necessary
and sufficient conditions for stability of the interconrett ) unstable Plants and Additive Uncertaintiet
system is that the Nyquist plot of
N A={L-L|Le ¥}

|'l(1+Ai(S)P(S)K(S)) . . - : -
= It is not hard to find thaf|L — L||. < 2 using GerSgorin disc
makes zero encirclements around the origin, whgiie the theorem.

ith eigenvalue oH (s). This is equivalent to that the Nyquist Now consider the closed-loop system shown in Figure 3:
plot of By the Small Gain Theorem, the system is stable if

Ai(s)P(s)K(s) PN S
. L y = [ILP(S)K(s) (I +LP()K(S)) " |eo

makes zero encirclements around -1+0j, foriallSo we 1 (9)
can see that stability of the interconnected system depends = max||AiP(s)K(s)(I + AiP(s)K(s)) || < >
on the structure of the interconnection given by the matrix '
H(s), which is spanned by the topology of the interconnecthere are many ways of stabilizing the system. One way,
tion(the Laplacian), and the structure of the time-delays. that is straight-forward, is to change the feedback gain,

A similar argument is easy to obtain for MIMO plantswhich is simply multiplying the Laplacian matrik with
P(s) which are not necessarily stable, using the results isome proper real constant. Another way is to ugg —
section 3. control to minimizey.

1
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Fig. 4. The graph representing the interconnection betvieerplants. /|
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Fig. 7. Simulation results of the interconnected systenh tihe-delays.

3 2
/N
Ae o 1
Fig. 5. The Nyquist-like plot of the interconnected system . \.—>./
5 6
E. A Numerical Example Fig. 8. The graph to switch to in the example.
Consider a system of 6 stable plag®}® ; with equal
dynamics P(s) = bﬁ;’f’ associated with identical stable
crefo stable.

controllersk (s) = “-5°. Suppose that plar® can sense
plantB,; andR_; fori=1,...,6, » =P, andP_; = PFs.
The graph representing the interconnection is given

Simulation of the system is shown in Figure 7. Now
bconsider the case when we switch from the Laplacian above
% another Laplacian for the graph in Figure 8. Choosing a

Figure 4. Lett; be the time-delay fo? to recieve controller such that
the sensed signal oR,1 and B_;. Then building the
relative measuremedfj = [Yi(s) —Yi;1(s)|e 1i® gives us the [ILK(S)P(9)]|]e = [|AIK(S)P(9) |00 < 1
following interconnection matrix for the system (compare - ) ) )
with the problem setup): guarentees stability, as seen in the simulation result show
in Figure 9.
e us _leTls 0 .. _lel'lS
_lglss egrzs _lghs ... 20 V. CONLCLUSIONS AND FUTURE WORK
2 2 . .
H(s) = : : : . : In this paper a framework for interconnected systems was
. . : : ; extended from the one introduced in Fax and Murray [2].
—zgfes 0 _leTGS .. e T6S
2 2
Checking the Nyquist-like plot we see that the net encir- s

clement of the origin is zero, hence the system must be

L L L L L L L L L
0 2 4 6 8 10 12 14 16 18 20

Fig. 6. The Nyquist-like plot of the interconnected systanrmed around Fig. 9. Switching between two topologies of the interconioec First
-1+ 0j. we give a change of the reference values, then we switchdgjesl.
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An efficient Nyquist-like method for stability check is
developed for homogeneous and almost homogeneous in-
terconnected systems with arbitrary connection. We have
seen that many problems that arise in the context of system
networks could be modelled in a way that fits our general
framework, e.g. time-varying interconnection and the prob
lem with time-delays.

There is still a lot to explore. The problem where the
plants are heterogeneous is still important to analyze. It
is very interesting to find out whether there is a similar
separation principle when the plant dynamics are different
Another important issue is the problem whloundedime-
varying delays. It is also of great interest to explore tHe ro
of robust control theory to obtain less conservative result
and improve on the framework.
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