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Abstract— The decentralized output feedback control prob-
lem for a class of large-scale interconnected nonlinear systems
is considered. The nonlinear interconnection function of each
subsystem is assumed to satisfy a quadratic constraint on the
entire state of the large-scale system. A decentralized estimated
state feedback controller and a decentralized observer are
designed for each subsystem. Sufficient conditions, for each
subsystem, under which the proposed controller and observer
can achieve exponential stabilization of the overall large-
scale system are developed. Simulation results on a numerical
example are given to verify the proposed design.

I. INTRODUCTION

Large-scale interconnected systems can be found in such
diverse fields as electrical power systems, space structures,
manufacturing processes, transportation, and communica-
tion. An important motivation for the design of decentral-
ized schemes is that the information exchange between
subsystems of a large-scale system is not needed; thus,
the individual subsystem controllers are simple and use
only locally available information. Decentralized control of
large-scale systems has received considerable interest inthe
systems and control literature. A large body of literature in
decentralized control of large-scale systems can be found in
[1]. In [2], a survey of early results in decentralized control
of large scale systems was given. Decentralized control
schemes that can achieve desired robust performance in
the presence of uncertain interconnections can be found
in [3], [4], [5]. A decentralized control scheme for robust
stabilization of a class of nonlinear systems using the Linear
Matrix Inequalities (LMI) framework was proposed in [6].

In many practical situations, complete state measure-
ments are not available at each individual subsystem for
decentralized control; consequently, one has to consider
decentralized feedback control based on measurements only
or design decentralized observers to estimate the state of
individual subsystems that can be used for estimated state
feedback control. There has been a strong research effort
in literature towards development of decentralized control
schemes based on output feedback via construction of
decentralized observers. Early work in this area can be
found in [7], [3], [1]. Subsequent work in [8], [9], [10], [11]
has focused on the decentralized output feedback problem
for a number of special class of nonlinear systems. The
design of an observer-based output feedback controller is
a challenging problem for nonlinear systems. It is well
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known that the separation principle may not be applicable to
nonlinear systems [12]. In [13], the decentralized controller
and observer design problems were formulated in the LMI
framework for large-scale systems with nonlinear intercon-
nections that are quadratically bounded. Autonomous linear
decentralized observer-based output feedback controllers for
all subsystems were obtained. The existence of a stabilizing
controller and observer depended on the feasibility of solv-
ing an optimization problem in the LMI framework; further,
for a solution to exist, this formulation also required, for
each subsystem, that the number of control inputs must be
equal to the dimension of the state.

In this paper, we consider a class of large-scale system
with quadratically bounded nonlinear interconnections; the
same class of large-scale systems were also considered in
[13]. We design a decentralized controller and observer
that can achieve global exponential stabilization under two
sufficient conditions. The tools used in the paper are re-
lated to concepts from the literature on the distance to
uncontrollability (observability) of a pair of matrices(A,B)
((C,A)) [14], [15], [16]. As opposed to the LMI framework,
our design does not require as many control inputs as the
number of state variables for each subsystem; further, the
proposed design results in computable sufficient conditions
for each subsystem as opposed to solving an optimization
problem for the overall large-scale system. Insights into
the problem are provided by considering various special
cases which are practically relevant. Simulation results on
a numerical example are given to validate the proposed
decentralized design.

The rest of the paper is organized as follows. In Section
II, the class of considered large-scale systems is given with
a discussion of the problem and related results available
in literature. Some important results from literature and
a definition that will be used in the developments of the
paper are given in Section III. In Section IV, the pro-
posed decentralized controller/observer structure is given;
sufficient conditions under which exponential stabilization
are derived. Simulation results on an example are given in
Section V. Section VI summarizes the paper and highlights
some future research topics on the problem.

II. PROBLEM FORMULATION

The following notation is used.R represents the set
of real numbers.λmin(M), λmax(M), MH , and M⊤ denote
the minimum eigenvalue, the maximum eigenvalue, the
complex conjugate transpose, and the transpose of the
matrix M, respectively.M > 0 (≥ 0) denotes that the matrix



M is symmetric positive definite (symmetric positive semi-

definite).σmin(M)
△
=

√
λmin(MHM) . The spectral norm of

the matrix M is denoted by‖M‖. The identity matrix is
denoted byI . The term diag(M1, . . . ,Mn) denotes a block
diagonal matrix withM1 to Mn as its diagonal blocks.

The following class of large-scale interconnected nonlin-
ear systems is considered:

ẋi(t) = Aixi(t)+Biui(t)+hi(t,x), xi(t0) = xi0, (1a)

yi(t) = Cixi(t) (1b)

wherexi ∈ R
ni , ui ∈ R

mi , yi ∈ R
l i , hi ∈ R

ni , t0, andxi0 are
the state, input, output, nonlinear interconnection function,
initial time, and initial state of thei-th subsystem. System
(1) consists ofN subsystems, that is,i = 1 :N. The intercon-
nections are assumed to be piecewise-continuous functions
in both variables, and satisfy the quadratic constraints [13]

hT
i (t,x)hi(t,x) ≤ α2

i x⊤H⊤
i Hix (2)

whereαi > 0 are interconnection bounds,Hi are bounding
matrices, andx⊤ = [x⊤1 ,x⊤2 , . . . ,x⊤N ] is the state of the overall
system. It is assumed thatαi and ‖Hi‖ are known. Also,
it is assumed that,(Ai ,Bi) is controllable and(Ci ,Ai) is
observable. Without loss of generality, it is assumed thatAi

is stable, that is, all eigenvalues ofAi have negative real
parts. The overall system (1) can be rewritten as

ẋ(t) = ADx(t)+BDu(t)+h(t,x), x(t0) = x0, (3a)

y(t) = CDx(t) (3b)

whereAD = diag(A1, . . . ,AN), BD = diag(B1, . . . ,BN), CD =
diag(C1, . . . ,CN), u⊤ = [u⊤1 , . . . ,u⊤N ], y⊤ = [y⊤1 , . . . ,y⊤N ], and
h⊤ = [h⊤1 , . . . ,h⊤N ]. The nonlinear interconnectionsh(t,x) are
bounded as follows:

h⊤(t,x)h(t,x) ≤ x⊤Γx (4)

whereΓ = ∑N
i=1 α2

i H⊤
i Hi . The pair(AD,BD) is controllable

and the pair(CD,AD) is observable, which is the direct result
of each subsystem being controllable and observable.

Since the system (3) is linear with nonlinear interconnec-
tions, a common question to ask is under what conditions
can we design a decentralized linear controller and a decen-
tralized linear observer that will stabilize the system in the
presence of bounded interconnections. Towards solving this
problem, one can consider the following linear decentralized
controller and observer:

u(t) = KDx̂(t), (5)
˙̂x(t) = ADx̂(t)+BDu(t)+LD(y(t)−CDx̂(t)) (6)

whereKD = diag(K1, . . . ,KN) andLD = diag(L1, . . . ,LN) are
the controller gain matrix and the observer gain matrix,
respectively. Rewriting (3) and (6) in the coordinatesx(t)

andx̃(t), wherex̃(t)
△
= x(t)− x̂(t) is the estimation error, the

closed-loop dynamics is

ẋ(t) = (AD +BDKD)x(t)−BDKDx̃(t)+h(t,x),
˙̃x(t) = (AD −LDCD)x̃(t)+h(t,x). (7)

Two broad methods are used to design observer-based
decentralized output feedback controllers for large-scale
systems: (1) Design local observer and controller for each
subsystem independently, and check the stability of the
overall closed-loop system. In this method, the intercon-
nection in each subsystem is regarded as an unknown input
[7], [9]. (2) Design the observer and controller by posing
the output feedback stabilization problem as an optimization
problem. The optimization approach using LMIs can be
found in [13]. We give a brief overview of this approach.
It is assumed thatHi is known. The controller gainKD
and the observer gainLD are obtained from the following
minimization problem, provided it is feasible.

Minimize
N

∑
i=1

γi subject to

P̃1 > 0, P̃2 > 0,



A⊤
D P̃1 + P̃1AD +M⊤

D +MD −MD P̃1 H⊤
1 · · · H⊤

N

−M⊤
D A⊤

D P̃2 + P̃2AD −C⊤
D N⊤

D −NDCD P̃2 0 · · · 0
P̃1 P̃2 −I 0 · · · 0
H1 0 0 −γ1I · · · 0
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
HN 0 0 0 · · · −γNI




< 0 (8)

whereγi = 1/α2
i , and

P̃1BDKD = MD, P̃2LD = ND. (9)

Under the assumption that the above optimization problem,
(8), is feasible, the gain matricesKD andLD were extracted
as follows:

KD = B−1
D P̃−1

1 MD and LD = P̃−1
2 ND. (10)

The LMI formulation given above requires the invertibility
of the input matrixBD; that is, it requires as many indepen-
dent control inputs as the number of state variables in each
subsystem. Although the formulation as an optimization
problem using the LMI framework is quite elegant from
a numerical perspective, as it not only computes the gains
but also maximizes the interconnection bounds, it can be
applied only to a restrictive class of systems in which the in-
put matrix is invertible which is more restrict than matching
condition. Further, obtaining block diagonal positive definite
solutions,P̃1 and P̃2, from the optimization problem (8) is
itself a challenging problem; the solutions need to be block
diagonal for the computedKD andLD to be block diagonal;
otherwise, one does not get a decentralized solution.

Notice that, because of the nature of the interconnection,
hi(t,x), in some cases, system (1) may not be stabilizable
even with full-state feedback control. For example,

ẋ1 =

[
0 1
−2 −3

]

︸ ︷︷ ︸
A1

x1 +

[
0
1

]

︸ ︷︷ ︸
B1

u1 + γ1

[
x11−x12

x21

]
, (11)

y1 =
[
1 0

]
x1. (12)

If γ1 = 1, then the first state ofx1, x11, has the dynamics
ẋ11 = x11, which is unstable and we lose controllability
of the system. One cannot design a controller to stabilize
the system (11) with the given interconnection, although
(A1,B1) is controllable. From the example, it is clear
that the structure and bounds of the interconnections will



affect controllability of subsystems. The same holds true
for observability of the system. So, there must be some
conditions on the system matrices and the interconnections
under which the controllability and observability properties
are preserved.

The objective of this paper is to design a totally decentral-
ized observer-based linear controller that robustly regulates
the state of the overall system without any information
exchange between subsystems. In this paper, we reduce the
problem of decentralized exponential stabilization of the
large-scale system via output feedback into the existence
of symmetric positive definite solutions of two Algebraic
Ricatti Equations (AREs). Further, we develop sufficient
conditions for the existence of symmetric positive definite
solutions; the conditions are developed using the concepts
of distance to controllability and distance to observability
[14] and their related results.

III. PRELIMINARIES

In this section, a definition and some results relevant to
the Algebraic Riccati Equation (ARE) which will be used
in the subsequent developments of the paper are introduced.

Definition 1: The real numberδ (M,N) is defined as

δ (M,N)
△
= min

ω∈R

σmin

[
iωI −M

N

]
(13)

where i =
√
−1, M ∈ R

n×n, N ∈ R
p×n.

See [17] for a discussion of the numberδ .
Lemma 1: [17] Consider the Algebraic Ricatti Equation

A⊤P+PA+PRP+Q = 0. (14)

If R= R⊤ ≥ 0, Q= Q⊤ > 0, A is Hurwitz, and the associated

Hamiltonian matrixH =

[
A R
−Q −A⊤

]
is hyperbolic, i.e.,H

has no eigenvalues on the imaginary axis, then there exists
a uniqueP = P⊤ > 0 to be the solution of the ARE (14).

Lemma 2: [17], [18] Let γ ≥ 0 and define

Hγ =

[
A I

C⊤C− γ2I −A⊤

]
.

Then γ < δ (A,C) if and only if Hγ is hyperbolic.
Lemma 3: [19] AssumeA,Q2,R∈ R

n×n, Q2 = Q⊤
2 and

R= R⊤ > 0. If P2 = P⊤
2 > 0 satisfies

A⊤P2 +P2A+P2RP2 +Q2 = 0

andQ1 = Q⊤
1 such thatQ1 ≤ Q2. Then there exists aP1 =

P⊤
1 > 0 such thatP1 ≥ P2, and

A⊤P1 +P1A+P1RP1 +Q1 = 0.

IV. T HE PROPOSEDDECENTRALIZED OUTPUT

FEEDBACK CONTROLLER

Consider the following linear decentralized controller and
observer for thei-th subsystem:

ui(t) = Ki x̂i(t), (15)
˙̂xi(t) = Ai x̂i(t)+Biui(t)+Li(yi(t)−Ci x̂i(t)) (16)

where Ki and Li are the controller and observer gain
matrices. Substituting these into the system, (1), we obtain

ẋi(t) = (Ai +BiKi)xi(t)−BiKi x̃i(t)+hi(t,x), (17)
˙̃xi(t) = (Ai −LiCi)x̃i(t)+hi(t,x) (18)

wherex̃i = xi − x̂i . For simplicity define the following:
ABi = BiKi and ACi = LiCi . (19)

Consider the following Lyapunov function candidate:

V(x, x̃) =
N

∑
i=1

(
x⊤i Pixi + x̃⊤i P̃i x̃i

)
. (20)

The time derivative ofV(x, x̃) along the trajectories of (17)
and (18), after some simplification, is given by

V̇(x, x̃) =
N

∑
i=1

{
x⊤i [(Ai +ABi)

⊤Pi +Pi(Ai +ABi)]xi + x̃⊤i [(Ai −ACi)
⊤P̃i + P̃i(Ai −ACi)]x̃i

−x̃⊤i A⊤
BiPixi −x⊤i PiABix̃i︸ ︷︷ ︸

+h⊤i Pixi +x⊤i Pihi︸ ︷︷ ︸
+h⊤i P̃i x̃i + x̃⊤i P̃ihi︸ ︷︷ ︸

}
. (21)

Using the inequality
X⊤Y +Y⊤X ≤ X⊤X +Y⊤Y, X,Y ∈ R

m×n (22)

for terms with under braces in (21), we obtain
x̃⊤i (−ABi)

⊤Pixi +x⊤i Pi(−ABi)x̃i ≤ x̃⊤i A⊤
BiABix̃i +x⊤i PiPixi , (23a)

h⊤i Pixi +x⊤i Pihi ≤ h⊤i hi +x⊤i PiPixi , (23b)

h⊤i P̃i x̃i + x̃⊤i P̃ihi ≤ h⊤i hi + x̃⊤i P̃iP̃i x̃i . (23c)

Each interconnection function,hi(t,x) satisfies
h⊤i (t,x)hi(t,x) ≤ α2

i x⊤H⊤
i Hix≤ α2

i νix
⊤x, (24)

whereνi = λmax(H⊤
i Hi). We also have

N

∑
i=1

2h⊤i hi ≤
N

∑
i=1

2α2
i vi(x

⊤
1 x1 + · · ·+x⊤NxN) = γ2

N

∑
i=1

x⊤i xi (25)

whereγ2 △
= ∑N

i=12α2
i vi . Using (23) and (25) in (21) we have

V̇(x, x̃) ≤
N

∑
i=1

{
x⊤i

[
(Ai +ABi)

⊤Pi +Pi(Ai +ABi)+2PiPi + γ2I
]
xi

+ x̃⊤i
[
(Ai −ACi)

⊤P̃i + P̃i(Ai −ACi)+A⊤
BiABi + P̃iP̃i

]
x̃i

}
. (26)

Choose the following gain matrices:
Ki = −(B⊤

i Bi)
−1B⊤

i Pi , Li = εiP̃
−1
i C⊤

i /2, εi > 0. (27)

Substituting the gains into (26), we have

V̇(x, x̃) ≤
N

∑
i=1

{
x⊤i

[
A⊤

i Pi +PiAi +2Pi(I −Bi(B
⊤
i Bi)

−1B⊤
i )Pi + γ2I

]
xi

+ x̃⊤i
[
A⊤

i P̃i + P̃iAi + P̃iP̃i + Q̃i1− εiC
⊤
i Ci

]
x̃i

}
. (28)

where Q̃i1
△
= K⊤

i B⊤
i BiKi . From the above, we have the

following result. For someηi > 0 andη̃i > 0, if there exist
positive definite solutions to the AREs

A⊤
i Pi +PiAi +2Pi(I −Bi(B

⊤
i Bi)

−1B⊤
i )Pi + γ2I +ηi I = 0, (29)

A⊤
i P̃i + P̃iAi + P̃iP̃i + Q̃i1 + η̃i I − εiC

⊤
i Ci = 0, (30)

then
V̇(x, x̃i) ≤−

N

∑
i=1

[
ηix

⊤
i xi + η̃i x̃

⊤
i x̃i

]
(31)

whereεi and η̃i are chosen such that̃Qi1 + η̃i I − εiC⊤
i Ci >

0. As a result, the problem reduces to the following: If



there are positive definite solutions to the AREs (29) and
(30), thenV(x, x̃) is a Lyapunov function; that is,V(x, x̃) is
positive andV̇(x, x̃) is negative.

Remark 1:The control gain matrixKi given by (27)
requires thatB⊤

i Bi is invertible;B⊤
i Bi is invertible if Bi has

full column rank, which is always possible.
Remark 2: If Ai is not stable, then we can stabilizeAi

by changingKi andLi given by (27), to the following:

Ki = −(B⊤
i Bi)

−1B⊤
i Pi − K̄i , Li =

1
2

εiP̃
−1
i C⊤

i + L̄i (32)

whereK̄i andL̄i are pre-feedback gains such thatAc
i
△
= Ai −

BiK̄i andAo
i
△
= Ai − L̄iCi are Hurwitz. In such a case,Ai in

(29) and (30) must be replaced byAc
i andAo

i , respectively.
Notice that we cannot design the controller and observer

independently, that is, the separation principle does not
hold; the ARE (30) depends on the control gain matrix
Ki . It is well known that the separation principle generally
does not hold for nonlinear systems. But it should be
noted that the above reduction procedure has yielded the
following: one can design the controller gain independent of
the observer and further, only the first ARE, (29), explicitly
depends on the interconnection bounds.

The problem now reduces to the following: What are the
conditions under which there exist positive definite solutions
to the AREs (29) and (30). In the following, two sufficient
conditions will be derived.

A. Sufficient conditions

We first consider the ARE (29). The associated Hamil-

tonian matrix is given byHi =

[
Ai Ri

−Qi −A⊤
i ,

]
where

Ri = 2
(
I −Bi(B⊤

i Bi)
−1B⊤

i

)
≥ 0, Qi =

(
γ2 +ηi

)
I > 0. The

following lemma gives a condition under whichHi is
hyperbolic; thus, by lemma 1, it gives a sufficient condition
for the existence of a uniquePi = P⊤

i > 0 to the ARE (29).
Lemma 4: Hi is hyperbolic if and only if

δ
(

A⊤
i ,

√
2(γ2 +ηi) (B⊤

i Bi)
−1/2B⊤

i

)
>

√
2(γ2 +ηi) . (33)

Proof: Consider the determinant of the matrix(sI−Hi)

det(sI−Hi) = det

[
sI−Ai −2

(
I −Bi(B⊤

i Bi)
−1B⊤

i

)

(γ2 +ηi)I sI +A⊤
i

]

= (−1)ni det

[
(γ2 +ηi)I sI +A⊤

i
sI−Ai −2

(
I −Bi(B⊤

i Bi)
−1B⊤

i

)
]

Since (γ2 + ηi)I is non-singular, using the formula for
determinant of block matrices [20, p. 650], we obtain

det(sI−Hi) =

(−1)ni det
[
−2(γ2 +ηi)

(
I −Bi(B

⊤
i Bi)

−1B⊤
i

)
− (sI−Ai)(sI+A⊤

i )
]

△
= (−1)ni det(G(s)).

From the above equation,s is an eigenvalue ofHi if
and only if G(s) is singular. Hence, to prove thatHi is

hyperbolic, one can prove thatG(−iω) is non-singular for
all ω ∈ R. Notice that

∆c(−iω)
△
= −(−iωI −Ai)(−iωI +A⊤

i )+2(γ2 +ηi)Bi(B
⊤
i Bi)

−1B⊤
i

=

[
iωI −A⊤

i√
2(γ2 +ηi) (B⊤

i Bi)
−1/2B⊤

i

]H [
iωI −A⊤

i√
2(γ2 +ηi) (B⊤

i Bi)
−1/2B⊤

i

]
.

Therefore, if

δ
(

A⊤
i ,

√
2(γ2 +ηi) (B⊤

i Bi)
−1/2B⊤

i

)
>

√
2(γ2 +ηi) ,

thenG(−iω) > 0 for all ω ∈R. Thus,Hi is hyperbolic. This
completes the sufficiency part of the proof. The necessary
part of the proof is similar to that of lemma 2. ¥

The Hamiltonian matrix associated with the ARE (30) is

H̃i =

[
Ai R̃i

−Q̃i −A⊤
i

]
(34)

whereR̃i = I > 0 andQ̃i = Q̃i1+η̃i I−εiC⊤
i Ci . Choosẽηi > 0

and εi > 0 such thatQ̃i > 0. The following lemma gives a
condition under which̃Hi is hyperbolic; thus, by lemma 1, it
gives a sufficient condition for the existence of a symmetric
positive definite solution to the ARE (30).

Lemma 5:H̃i is hyperbolic if and only if
√

λmax(Q̃i1)+ η̃i < δ (Ai ,Ci). (35)
Proof: Similar to lemma 4. ¥

Theorem 1:For the large-scale system given by (3), the
decentralized controller and observer as given by (15) and
(16) will result in exponential stabilization of the overall
system, if (33) and (35) are satisfied for alli = 1 : N.

Proof: If (33) and (35) are satisfied for alli = 1 : N,
then from lemmas 4, 5 and 1, the AREs (29) and (30) have
symmetric positive definite solutions,Pi andP̃i , respectively.
Thus, one can chooseV(x, x̃) given by (20) as the Lyapunov
function of the overall system (3). Exponential stabilization
of the overall closed-loop system is achieved. ¥

Remark 3:Since δ
(

A⊤
i ,

√
2γ2 (B⊤

i Bi)
−1/2B⊤

i

)

is a continuous function of γ, f (γ)
△
=

√
2γ2 −

δ
(
A⊤

i ,γ(B⊤
i Bi)

−1/2B⊤
i

)
is also a continuous function

of γ. Therefore, if f (γ) < 0, then there exists aγ1 > γ such
that f (γ1) < 0. Hence, if f (γ) < 0, then there exists an
ηi > 0 such thatf (

√
2(γ2 +ηi) ) < 0, that is, (33) holds.

Same arguments hold for condition (35). Hence, instead
of checking conditions given by (33) and (35), one can
respectively check the following two conditions

√
2 γ < δ

(
A⊤

i ,
√

2 γ(B⊤
i Bi)

−1/2B⊤
i

)
, (36a)

√
λmax(Q̃i1) < δ (Ai ,Ci). (36b)

Notice that the conditions given by (36) guarantees the
existence ofηi > 0 and η̃i > 0, but not their values.
Conditions (33) and (35) with specifiedηi and η̃i give
the rate of convergence of the controller and observer,
respectively.

Remark 4: If the sufficient condition given in lemma 4
is satisfied, then there exists aPi = P⊤

i > 0 satisfing (29)



and aKi can be obtained by (27). As a special case, when
the matrixBi is invertible, we have the following result.

Lemma 6: If Bi is invertible, then there always exists a
symmetric positive definite solutionPi to the ARE (29).

Proof: When Bi is invertible, I −Bi(B⊤
i Bi)

−1B⊤
i = 0, as

a result, the ARE (29) reduces to Lyapunov equation

A⊤
i Pi +PiAi +(γ2 +ηi)I = 0. (37)

Since(γ2 +ηi)I > 0 andAi is stable, there always exists a
Pi = P⊤

i > 0 satisfying (37) for anyγ,ηi > 0. ¥

Similarly, we have the following lemma onCi .
Lemma 7: If Ci is invertible, there always exists a sym-

metric positive definite matrix̃Pi to the ARE (30).
Proof: BecauseQ̃i1 + η̃i I is a constant matrix,εi can be

chosen large enough such that

Q̃i
△
= Q̃i1 + η̃i I − εiC

⊤
i Ci < 0. (38)

Notice that−Q̃i = G̃iG̃⊤
i > 0. The ARE (30) reduces to

(−Ai)
⊤P̃i + P̃i(−Ai)− P̃iP̃i + G̃iG̃

⊤
i = 0. (39)

Since(I ,−A⊤
i ) is observable and(−A⊤

i ,G̃i) is controllable,
ARE (39) has a unique positive definite solutionP̃i [21]. ¥

It is possible that a matrixCi is invertible, i.e., all state
variables of thei-th subsystem are available for feedback,
then the condition for existence of a positive definite solu-
tion to the ARE (30) is given by (38) instead of (35).

Remark 5:Since the constantεi affects the convergence
rate of the observation error and the stability of the overall
system, a natural question to ask is what happens if we
increase/decrease the value ofεi . The following lemma
gives a result related to this.

Lemma 8: If the sufficient condition (35) is satisfied for a
particularεi , then there exists a symmetric positive definite
solution to the ARE (29) for anyεi

′ ≥ εi instead ofεi .
Moreover, the solution corresponding toε ′i for the ARE
(30), P̃′

i , satisfiesP̃′
i ≥ P̃i .

Proof: Lemma 8 is the direct result of lemma 3. ¥

Remark 6:The convergence rate of each subsystem ob-
server can be increased by amplifying the observer gain
matrix Li obtained from (27) byε ′i /εi . Let Li = ε ′i P̃

−1
i C⊤

i /2,
whereP̃i = P̃⊤

i > 0 is the solution to the ARE (30) obtained
with εi . Then the inequality (31) becomes

V̇(x, x̃) ≤−
N

∑
i=1

[
ηix

⊤
i xi + η̃i x̃

⊤
i x̃i +(ε ′i − εi)x̃

⊤
i C⊤

i Ci x̃i

]
. (40)

Since ε ′i − εi > 0, the convergence rate of̃xi to zero is
increased.

Remark 7:The inequality (22) used in separating the
terms can be quite conservative. Instead of (22), one can
use the following inequality

X⊤Y +Y⊤X ≤ X⊤X/ε + εY⊤Y, ε > 0∈ R. (22′)

The disadvantage of this approach is that one has to choose
the constantsε in the design also. Using (22′) for the terms
with under braces in (21), we obtain

−x̃⊤i A⊤
BiPixi −x⊤i PiABix̃i ≤ x̃⊤i A⊤

BiABix̃i/εi1 + εi1x⊤i PiPixi , (23′a)

h⊤i Pixi +x⊤i Pihi ≤ h⊤i hi/εi2 + εi2x⊤i PiPixi , (23′b)

h⊤i P̃i x̃i + x̃⊤i P̃ihi ≤ h⊤i hi/εi3 + εi3x̃⊤i P̃iP̃i x̃i . (23′c)

Then by choosing same observer matrix as given by (27)
and the controller gain matrix as follows

Ki = −(εi1 + εi2)(B
⊤
i Bi)

−1B⊤
i Pi/2, (27′)

the two AREs give by (29) and (30), respectively, become

A⊤
i Pi +PiAi +(εi1 + εi2)Pi(I −Bi(B

⊤
i Bi)

−1B⊤
i )Pi + γ2I +ηi I = 0, (29′)

A⊤
i P̃i + P̃iAi + εi3P̃i P̃i + Q̃i1 + η̃i I − εiC

⊤
i Ci = 0. (30′)

The sufficient conditions for the existence of the positive
definite solutions to (29′) and (30′), respectively, are

δ
(

A⊤
i ,

√
(γ2 +ηi)(εi1 + εi2) (B⊤

i Bi)
−1/2B⊤

i

)
>

√
(γ2 +ηi)(εi1 + εi2) . (33′)

√
εi3(λmax(Q̃i1)+ η̃i) < δ (Ai ,

√
εi3εi Ci). (35′)

where Q̃i1
△
= (εi1 + εi2)

2PiBi(B⊤
i Bi)

−⊤B⊤
i Pi/(4εi1). Notice

that with this approach, one has to also choose three more
constants,εi1,εi2,εi3, for each subsystem in the design of
the decentralized controller and observer.

V. SIMULATION

Consider the following large-scale system:

ẋ1 =

[
0 1

−125 −22.5

]
x1 +

[
0
1

]
u1 +h1(x), x1(0) =

[
5
5

]

y1 =
[

1 0
]
x1

ẋ2 =




0 1 0
0 0 1

−37.5 −50 −13.5


x2 +




0
0
1


u2 +h2(x)x,x2(0) =




5
5
5




y2 =
[

1 0 0
]
x2

where x⊤1 =
[
x11 x12

]
, x⊤2 =

[
x21 x22 x23

]
,

x⊤ =
[
x⊤1 x⊤2

]
, h1(x) = α1cos(x22)H1x, h2(x) =

α1cos(x11)H2x, α1 = α2 = 0.2, H1 = I2,5/
√

10 and
H2 = I3,5/

√
15 are normalized matrices.Ii, j denotes ani× j

dimensional matrix with all its elements being 1. The gain
γ is computed based on the values ofα1,α2,H1 andH2 as
γ = 0.4. The following constant gains are chosen:ε1 = 0.5,
ε2 = 0.125, η1 = 0.1, η̃1 = 0.5, η2 = 0.01 and η̃2 = 0.2.
It is checked that the conditions given by (33) and (35)
are satisfied for both subsystems. Thus, there exist positive
definite solutions to (29) and (30). These solutions are

P1 =

[
0.9317 0.0080
0.0080 0.0061

]
, P̃1 =

[
1.6912 0.0114
0.0114 0.0116

]
,

P2 =




0.7895 0.6622 0.0306
0.6622 0.8394 0.0378
0.0306 0.0378 0.0093


 , P̃2 =




0.4309 0.3852 0.0055
0.3852 0.6109 0.0149
0.0055 0.0149 0.0085


 .

The control and observer gain matrices from (27) are

K⊤
1 =

[
−0.0080
−0.0061

]
, K⊤

2 =



−0.0306
−0.0378
−0.0093


 , L1 =

[
0.1488
−0.1465

]
, L2 =




0.3358
−0.2157
0.1625


 .



To increase the convergence rate of the observers, we
choose 100L1 and 10L2 as the observer gain matrices for the
first and second subsystem, respectively, in the simulation.

The simulation results are shown in Figures 1 and 2. In
Fig. 1, the statex11 and its estimatêx11, the statex12 and
its estimatêx12, and the controlu1 are shown in the first,
second and third plot, respectively. Fig. 2 shows the states
x2, their estimateŝx2, and the controlu2. It can be observed
from both the figures that the state of the overall system,x,
and their estimates,̂x, converge to zero.

VI. CONCLUSION

In this paper, we proposed a decentralized control and
observer for a class of large-scale interconnected non-
linear systems. The interconnecting nonlinearity of each
subsystem was assumed to be bounded by a quadratic
form of states of the overall system. Local output signals
from each subsystem are required to generate the local
feedback controller and exact knowledge of the nonlinear
interconnection is not required for designing the proposed
decentralized controller and observer. Sufficient conditions
for the existence of the decentralized controller and observer
are given via the analysis of two AREs. Simulation results
on a numerical example verify the proposed design.

There are some challenging problems related to the quan-
tity δ . The quantitiesδ (A,C) or δ (A⊤,B⊤) are realization
dependent. The properties ofδ as a function of various
state-space realizations is of importance. In particular,find-
ing the state-space realization that maximizes the value of
δ will be useful.
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Fig. 1. Simulation results for the first sub-system.
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Fig. 2. Simulation results for the second sub-system.
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