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A Decentralized Output Feedback Controller for a Class of
Large-Scale Interconnected Nonlinear Systems

Prabhakar R. Pagilla and Yongliang Zhu

Abstract— The decentralized output feedback control prob- known that the separation principle may not be applicable to
lem for a class of large-scale interconnected nonlinear systems nonlinear systems [12]. In [13], the decentralized colgrol
is conS|dered. The nonlinear interconnection functlon_ of each and observer design problems were formulated in the LMI
subsystem is assumed to satisfy a quadratic constraint on the f K for | | ¢ ith i int
entire state of the large-scale system. A decentralized estimated ram_ewor or arge-scae_ Systems with nonlinear In erpon
state feedback controller and a decentralized observer are Nections that are quadratically bounded. Autonomous finea
designed for each subsystem. Sufficient conditions, for each decentralized observer-based output feedback consdder
subsystem, under which the proposed controller and observer g|| subsystems were obtained. The existence of a stalgjlizin
can achieve exponential stabilization of the overall large- ¢qniroller and observer depended on the feasibility of-solv
scale system are developed. Simulation results on a numerical . timizati bl in the LMI f K- furth
example are given to verify the proposed design. Ing an op Imlza lon F’ro e_m Inthe . ramewor . urther,
for a solution to exist, this formulation also required, for

. INTRODUCTION each subsystem, that the number of control inputs must be

Large-scale interconnected systems can be found in sugfual to the dimension of the state.
diverse fields as electrical power systems, space strsgture In this paper, we consider a class of large-scale system
manufacturing processes, transportation, and communicéith quadratically bounded nonlinear interconnectiohs; t
tion. An important motivation for the design of decentral-same class of large-scale systems were also considered in
ized schemes is that the information exchange betweéh3]. We design a decentralized controller and observer
subsystems of a large-scale system is not needed; thilat can achieve global exponential stabilization under tw
the individual subsystem controllers are simple and usgfficient conditions. The tools used in the paper are re-
only locally available information. Decentralized conted  lated to concepts from the literature on the distance to
large-scale systems has received considerable intertfs in uncontrollability (observability) of a pair of matricé#, B)
systems and control literature. A large body of literature i ((C,A)) [14], [15], [16]. As opposed to the LMI framework,
decentralized control of large-scale systems can be faund@ur design does not require as many control inputs as the
[1]. In [2], a survey of early results in decentralized cohtr number of state variables for each subsystem; further, the
of large scale systems was given. Decentralized contrBroposed design results in computable sufficient condition
schemes that can achieve desired robust performancef@i each subsystem as opposed to solving an optimization
the presence of uncertain interconnections can be foufoblem for the overall large-scale system. Insights into
in [3], [4], [5]. A decentralized control scheme for robustthe problem are provided by considering various special
stabilization of a class of nonlinear systems using thearine cases which are practically relevant. Simulation resutts o
Matrix Inequalities (LMI) framework was proposed in [6]. & numerical example are given to validate the proposed

In many practical situations, complete state measuréecentralized design.
ments are not available at each individual subsystem for The rest of the paper is organized as follows. In Section
decentralized control; consequently, one has to considBrthe class of considered large-scale systems is givem wit
decentralized feedback control based on measurements oflydiscussion of the problem and related results available
or design decentralized observers to estimate the stateiBfliterature. Some important results from literature and
individual subsystems that can be used for estimated staedefinition that will be used in the developments of the
feedback control. There has been a strong research effgaper are given in Section Ill. In Section IV, the pro-
in literature towards development of decentralized cdntrgPosed decentralized controller/observer structure isrgiv
schemes based on output feedback via construction siifficient conditions under which exponential stabiliaati
decentralized observers. Early work in this area can bre derived. Simulation results on an example are given in
found in [7], [3], [1]. Subsequent work in [8], [9], [10], [11 Section V. Section VI summarizes the paper and highlights
has focused on the decentralized output feedback problgigme future research topics on the problem.
for a number of special class of nonlinear systems. Thg Il PROBLEM EORMULATION
design of an observer-based output feedback controller is

a challenging problem for nonlinear systems. It is well The following notation is usedR represents the set
of real numbersAmin(M), Amax(M), MH, andM' denote
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M is symmetric positive definite (symmetric positive semi-OI Two bT'oa?j methodsf aréab usEd to de”sign fobslerver—basled
- A ecentralized output feedback controllers for largeescal
definite). omin(M) = \/Amin(M"M) . The spectral norm of gystems: (1) Design local observer and controller for each

the matrixM is denoted by||M||. The identity matrix is subsystem independently, and check the stability of the

denoted byl. The term dia¢M,...,My,) denotes a block overall ‘?'059%'00% system. In thisd n&ethod, th?( intercon-
: L T nection in each subsystem is regarded as an unknown input
diagonal matrix withM; to M,, as its diagonal blocks. [9]. (2) Design the observer and controller by posing

The following class of large-scale interconnected nonlinthe output feedback stabilization problem as an optinozati
ear systems is considered: roblem. The optimization _aPproach using LMls can be
Iom_md in [13]6 r? ive akbrle ov_lt_arr]wew of tn|s apprr‘gach.
% (1) = Ax (1) £ Biu (1) - hi (£.X). % (tn) = X 1a) It is assumed thaH; is known. The controller gairKp
i(t) = Axi(t) +Biui(t) +hi(t,x), x(to) =%o0, (1a) and the observer gaibp are obtained from the following
yi(t) =Cix(t) (1b)  minimization problem, provided it is feasible.
. ; ) . i h ] g
wherex; G.R”, ucRM, y e R , hi € R", to, an_dx.o are Minimize iy' subject to
the state, input, output, nonlinear interconnection fiomgt =

initial time, and initial state of thé-th subsystem. System P.>0. R>0,

(1) consists o subsystems, that is= 1:N. The intercon- ASﬁlﬁ\f#ADﬂ’B*MD Mo e P Hof HOJ
nections are assumed to be piecewise-continuous function B ADP”PZAD*CF%Z oD le 0 0
in both variables, and satisfy the quadratic constraing$ [1 Hy 0 0 -yl 0 | <0 (8
h' (t,x)hi (t,X) < a?x"H; Hix 2 : : o
|(a)|(7)—| i | () Hay 0 0 0 gl

wherea; > 0 are interconnection boundd; are bounding
matrices, anck’ = [x{,X;,...,x}] is the state of the overall
system. It is assumed thqﬁ and ||Hi|| are known. Al§o, P.BoKp = Mp, PoLp = Np. (9)

it is assumed that(A;,B;) is controllable and(C;,A) is

observable. Without loss of generality, it is assumed #at Under the assumption that the above optimization problem,
is stable, that is, all eigenvalues 8f have negative real (8), is feasible, the gain matricés andLp were extracted

wherey = 1/a?, and

parts. The overall system (1) can be rewritten as as follows:
X(t) = ApX(t) +Bpu(t) +h(t,x), X(to) =X,  (3a) Kp =Bp'P*Mp and Lp =P, *Np. (10)
y(t) = Cox(t) (D) ' The LMI formulation given above requires the invertibility

whereAp = diag(As, ..., An), Bp =diagBy,...,By), Co =  Of the input matrixBp; that is, it requires as many indepen-
diagCy,...,Cn), U = [u],...,u}], y" =[y{....,ys,], and dent control inputs as the number of state variables in each
h" =[h{,...,h}]. The nonlinear interconnectiohgt, x) are subsystem. Although the formulation as an optimization
bounded as follows: problem using the LMI framework is quite elegant from
- - a numerical perspective, as it not only computes the gains
h™(t)h(t,x) <x Tx (4)  put also maximizes the interconnection bounds, it can be
wherelr = ZiN=1 a?H."H;. The pair(Ap,Bp) is controllable applied only to a restrictive class of systems in which the in
and the pai(Cp,Ap) is observable, which is the direct resultput matrix is invertible which is more restrict than matafin
of each subsystem being controllable and observable. ~condition. Further, obtaining block diagonal positive dité
Since the system (3) is linear with nonlinear interconnecsolutions,Py and P, from the optimization problem (8) is
tions, a common question to ask is under what conditioritself a challenging problem; the solutions need to be block
can we design a decentralized linear controller and a decetiagonal for the computeldp andLp to be block diagonal;
tralized linear observer that will stabilize the systemtie t Otherwise, one does not get a decentralized solution.
presence of bounded interconnections. Towards solvirsg thi Notice that, because of the nature of the interconnection,
problem, one can consider the following linear decentealiz hi(t,x), in some cases, system (1) may not be stabilizable

controller and observer: even with full-state feedback control. For example,
= KpXl . 0 1 0 X11— X
u(t) KoX(t), ©) Xy = { o _3 :|X1+ [ 1 } Ul+yl|: 11X 12 } , (12)
X(t) = ApX(t) + Bpu(t) +Lp(y(t) —CoX(t))  (6) 2

whereKp = diag(Ky, . ..,Ky) andLp = diag(Ly,...,Ly) are AL B1

the controller gain matrix and the observer gain matrix, Y1 = [1 Ox. (12)
respectively. Rewrit;ng (3) and (6) in the coordinatgs) | yi = 1, then the first state ofs, x1, has the dynamics
andX(t), whereX(t) = x(t) —X(t) is the estimation error, the x;; = x;1, which is unstable and we lose controllability

closed-loop dynamics is of the system. One cannot design a controller to stabilize
%(t) = (Ao + BoKp)x(t) — BoKpX(t) + h(t, ), the systgm (11) with the given mterconnectlop, .although
. _ (A1,B1) is controllable. From the example, it is clear
X(t) = (Ap — LpCp)X(t) + h(t, x). (7)  that the structure and bounds of the interconnections will
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affect controllability of subsystems. The same holds truehere K; and L; are the controller and observer gain
for observability of the system. So, there must be someatrices. Substituting these into the system, (1), we obtai
conditions on the system matrices and the interconnections
under which the controllability and observability propest Xi (t) = (A + BiKi)xi (t) — BiKiX (t) + hi (t,X), (17)
are preserved. SN sn ~ o !

The objective of this paper is to design a totally decentral- X() = (A = LG () +hitx) (18)
ized observer-based linear controller that robustly ragsl whereX = x —%. For simplicity define the following:
the state of the overall system without any information Agi = BiK; and Acj = LiG. (29)
exchange between subsystems. In this paper, we reduce
problem of decentralized exponential stabilization of th
large-scale system via output feedback into the existence V(x,%) = Z(X Px + %, px|) (20)
of symmetric positive definite solutions of two Algebraic
Ricatti Equations (ARESs). Further, we develop sufﬁmen&rhe time derivative o¥/(x
conditions for the existence of symmetric positive definiteyng (18) after some S|m?|
solutions; the conditions are developed using the concen
of distance to controllability and distance to observapili

e . . . .
onsider the following Lyapunov function candidate:

along the trajectories of (17)
fication, is given by

?N) Zl{ [(A+Aei) "R +R(A +Ag)]x + X [(A —Aci) R +R(A - Aci)I%

[14] and their related results. —%' AgiPx — X RAgiX +h R +x Rhi+h B “'iiTﬁhi} (1)
IIl. PRELIMINARIES Using the inequa“ty
In this section, a definition and some results relevantto X Y4+Y' X <X 'X+Y'Y, X,Y e R™" (22)

the Algebraic Riccati Equation (ARE) which will be used]c
in the subsequent developments of the paper are introduce
Definition 1: The real numbed(M,N) is defined as

c[ terms with under braces in (21) we obtain
X' (—Asi) T Px +x' B(—Ag)% < % AgiAgiXi +X' PPx, (23a)
, hTRx; +x" Rhi <hhi +x RPx;, (23b)
5(M,N) 2 miEUmin|: 'w'N_M ] (13) hi A% +% Ahi <h'h +% ARX. (23c)
we
herei — VT, M € RPN, N & RP¥7 Each interconnection functiom;(t,x) satisfies
wherei =+/-1,M € ,Ne . T 2, Ty T 20T
' : < q THx < g?v:
See [17] for a discussion of the numb&r M (L)hi(tX) < afx Hy Hix< afvxx, - (24)
Lemma 1:[17] Consider the Algebraic Ricatti Equation Where Vi = )\max(HTHu) We also have

AP+ PA+PRP+Q=0. (14) ZZhTh. < ZZG. Vi (X X+ - X) = VP ;xl (29)

If R=R" >0,Q=Q" >0, Ais Hurwitz, and the associated

wherey? 2 sV 2a2v;. Using (23) and (25) in (21) we have

Hamiltonian matrixH = is hyperbolic, i.e.H

R
-Q AT
has no eigenvalues on the imaginary axis, then there exists, X ) < (A +Ag) TR + R (A +Agi) +2RP + V21 | x
a uniqgueP =P' > 0 to be the solution of the ARE (14). (%) < Z\{ [ o) ARl ! Ry ]

Lemma 2:[17], [18] Let y > 0 and define % [(A. Aci) TR+ B (A — Ac)+AB.AB|+PF’] X|} (26)

H, = {CTCAL i —,IAT] ) Choose thf folli)wing gain matricles
Ki=—(B'B) 'B/R, Li=g&P C /2, &>0. (27)

Theny < 6(A,C) if and only if Hy is hyperbolic. Substituting the gains into (26), we have
Lemma 3:[19] AssumeA, Qz,R€ R™", Q, =Q, and

i N
R=R' > 0. If B, =P, >0 satisfies V(x,%) < Z{x? [AJP. +RA+2R(1-Bi(B/B) B )PR +y2|}xi
i=
T _ o
APt PATRRR+Q =0 +X AR+ RA AR+ Qo -aCTClR). (@)
and Q1 = Q; such thatQ; < Q.. Then there exists B = ~ A
P/ > 0 such that; > P,, and where Qi1 = K;' B/ BiK;. From the above, we have the
o following result. For some); > 0 andn; > 0, if there exist
A'PL.+PA+PRR+Q;=0. positive definite solutions to the AREs
AR +RA +2R(1-Bi(B/B) B )R+ 21+l =0, (29)

IV. THE PROPOSEDDECENTRALIZED OUTPUT e~ S .
FEEDBACK CONTROLLER AR+RA+RR+Qu+nl-&G G =0, (30)

Consider the following linear decentralized controlledan then
observer for thé-th subsystem:
ui(t) = Kixi(t 15 _ ~ _
.A'( ) 'f( ) R (15) whereg andn; are chosen such th&i; + nil — &G Ci >
%(t) = A%(t) +Biui(t) +Li(yi(t) —Cixi (1) (16) 0. As a result, the problem reduces to the following: If
3713
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there are positive definite solutions to the AREs (29) anbyperbolic, one can prove th&(—iw) is non-singular for
(30), thenV (x,X) is a Lyapunov function; that i&/(x,x) is ~ all w € R. Notice that

positive anadV (x,X) is negative. Ae(—iw) 2 — (=il — A) (il + AT )+ 2(y2+n)Bi (B B) 1B
Remark 1:The control gain matrixK; given by (27) o ~160) ( ) A+ 2+ m)Bi(BTB) B,

. H .
. L S S . e |_AiT |w|_A1.T
requires thaB' B; is invertible; B/ B; is invertible if B; has — H B ] [/7 _ .
full column ralnk: which is alwalys Ipossible. | 207 +m) (B B) 78/ 2(y>+m) (8B) /28]
Remark 2:If A is not stable, then we can stabilize ~ Therefore, if

by changingK; andL; given by (27), to the following: 5<A1'T7 202+ m) (BiTBi)il/zBiT> =202 +m) .

. va 1 = =
Ki=—(B'B) 'B/R—Ki, L= ESiPi T +L (32) thenG(—iw) > 0 for all w € R. Thus,H; is hyperbolic. This
completes the sufficiency part of the proof. The necessary

whereK; andL; are pre-feedback gains such tmﬁéAj _  part of the proo?c is simil_ar to thgt of Ierr_lma 2. | _

BK and A° A A — LG are Hurwitz. In such a casé in The Hamiltonian matrix assocLated with the ARE (30) is

(29) and (30) must be replaced B§ andA?, respectively. g A R (34)
Notice that we cannot design the controller and observer ' —Q —AiT

independently, that is, the separation principle does not ~ ~ o~ T ~
hold; the ARE (30) depends on the control gain matrifVN€reRi=1>0andQ = Qi1 +nil —&C Ci. Choose)i >0
Ki. It is well known that the separation principle generallypdé >0 such thatQ; > 0. The following lemma gives a
does not hold for nonlinear systems. But it should b&ondition under whicli is hyperbolic; thus, by lemma 1, it
noted that the above reduction procedure has yielded t§&€S & sufficient condition for the existence of a symmetric
following: one can design the controller gain independént d°0S'tve def|.n|~te.solut|on to the ARE (30).
the observer and further, only the first ARE, (29), explicitt -8mma S:Hi is hyperbolic if and only if
depends on the interconnection bounds. =~ ~ A

The problem now reduces to the following: What are th%’roof' Similar to/\ln:a?n)((r?;): i <O(A,G). (32
conditions under which there exist positive definite solugi Theorem 1:For the large-scale system given by (3), the

o th(_e_AREs_(Zg) and_ (30). In the following, two SU1:f'c'entdecentralized controller and observer as given by (15) and
conditions will be derived. (16) will result in exponential stabilization of the ovdral
system, if (33) and (35) are satisfied for b 1 : N.

Proof: If (33) and (35) are satisfied for all= 1 : N,
We first consider the ARE (29). The associated Hamilthen from lemmas 4, 5 and 1, the AREs (29) and (30) have

A. Sufficient conditions

tonian matrix is given byH; = A R|T where Symmetric positive definite sglutionE, andR, respectively.
-Q A, Thus, one can chood&x, X) given by (20) as the Lyapunov
R=2(1-Bi(B'Bi)™'B) >0, Q= (y*+ni)l >0. The function of the overall system (3). Exponential stabiliaat
following lemma gives a condition under whicH; is  of the overall closed-loop system is achieved. [ |
hyperbolic; thus, by lemma 1, it gives a sufficient condition Remark 3: Since 5 (AiT’ W(B_TBi)fl/ZBT)
for the existence of a uniqug@ = P' > 0 to the ARE (29). N '
Lemma 4: His hyperbolic if and only if is a continuous function ofy, f(y) = \/2y? —

5(A",v(B'B)~Y2B) is also a continuous function
5<A1T7 2(y2+m) (BiTBi)‘l/ZBiT) >1/2(y2+n;) . (33) of y. Therefore, iff(y) <O, then there exists m > y such

Proof: Consider the determinant of the matf(igl — H;) that f(y) < 0. Hence, iff(y) <O, then there exists an
ni > 0 such thatf(1/2(y2+ni) ) <0, that is, (33) holds.

—A —2(| —Bi(BiTBi)*lBiT) } Same arguments hold for condition (35). Hence, instead

sl
det(sl —Hj) :det[ (V24 sl+AT of checking conditions given by (33) and (35), one can

_ ol sl AT respectively check the following two conditions
= (1" det[ (ysz|—’li) =2( —B-(BﬁB-)‘lBT) } T TB)-1/2RT
(B B) ', V2y<5(AT.V2y(B/B)M?Bl),  (36a)
Since (y? + ni)l is non-singular, using the formula for / ~ A
determinant olf block matrices [20, p. 650], we obtain Ama(Qiz) < O(A,G). (36D)

dets]— H) — Notice that the conditions given by (36) guarantees the
els!—Hi) = existence ofn; > 0 and ni; > 0, but not their values.
(=™ det{—Z(wa)(l —Bi(BFBi)—lEsF) —(sl—A«)(slH\-T)] Conditions (33) and (35) with specifieq; and 7j; give

AV et G the rate of convergence of the controller and observer,
= (=1)" detG(s)). respectively.
From the above equatiors is an eigenvalue oH; if Remark 4:If the sufficient condition given in lemma 4

and only if G(s) is singular. Hence, to prove that is is satisfied, then there existsRa=P' > 0 satisfing (29)
3714



and akK; can be obtained by (27). As a special case, whefhe disadvantage of this approach is that one has to choose
the matrixB; is invertible, we have the following result. ~ the constants in the design also. Using (22for the terms
Lemma 6:1f B; is invertible, then there always exists aWIth under braces in (21), we obtain

symmetric positive definite solutioR to the ARE (29). —X AGiPX — X! BAgi% < X ALiABi% /&1 + &1x PPRx, (23a)
Proof: When B; is invertible, | — B;j(B{'B;) !B/ = 0, as h' B +x B < hThi /gia + & PRX;, (23b)
a result, the ARE (29) reduces to Lyapunov equation hT B + X Bh < h'h /s + 65X BB (230)
T . Al —
A'R+PA + (Y +m)l =0. (37) " Then by choosing same observer matrix as given by (27)

Since(y?+n;i)l > 0 andA is stable, there always exists aand the controller gain matrix as follows

R =P' > 0 satisfying (37) for any, n; > 0. ] Ki = — (&1 + €12) (B Bi) 1B/ R /2, 27)
Similarly, we have the following lemma dg;.
Lemma 7:1f G is invertible, there always exists a sym-
metric positive definite matri® to the ARE (30). A'R+RA +(s1+8&2)R( —Bi(B'B) B )R+y1+nml =0,  (29)
Proof: BecauseQj; + nil is a constant matrixg; can be AR +RA+&PR+Qu+7il —&C G =0. (30)
chosen large enough such that

the two AREs give by (29) and (30), respectively, become

The sufficient conditions for the existence of the positive
definite solutions to (29 and (30), respectively, are

~ A~
Q=Qu+nl—-&C'C <o. (38)
A — GG 6(A‘T’ (V2 +ni) (&1 +&2) (BiTBi)fl/szT) >\/(P+ni)(enteaz) . (33)
Notice that—Q; = GG > 0. The ARE (30) reduces to i
&i3(Amaxd(Qi1) + 1) < (A, VEi3& Gi). 35)

B D DD ~ AT
(=A) R+R(-A)-RR+GG =0. (39) where Qi 2 (&1 + &2)?PBi (B B)~ "B/ R/(4&1). Notice
Since(l,~A) is observable ang—AT,G;) is controllable, that with this approach, one has to also (?hoose thrge more
ARE (39) has a unique positive definite solutiBn21]. @  CONStants&is, &i2, &3, for each subsystem in the design of
It is possible that a matri; is invertible, i.e., all state the decentralized controller and observer.
variables of the-th subsystem are available for feedback,
then the condition for existence of a positive definite solué ider the followind | -scal tem:
tion to the ARE (30) is given by (38) instead of (35). onsider the following large-scale system:
Remark 5:Since the constarg, affects the convergence , _ { 0 1 }x . [o }u +hy(), %4(0) = {5 }
rate of the observation error and the stability of the overal® ~ |-125 —225 | 1|1 |0 5
system, a natural question to ask is what happens if wg=[ 1 0 |x
increase/decrease the value §f The following lemma 0 1 0 0
Xo = |: X2+ [0
1

V. SIMULATION

gives a result related to this. 0 0 1 ]
Lemma 8:1f the sufficient condition (35) is satisfied for a —375 -50 -135
particularg;, then there exists a symmetric positive definitg,=[ 1 0 0 ]x,
solution to the ARE (29) for any’ > g instead ofsg. - -
Moreover, the solution corresponding 8 for the ARE v¥here ?1 - 1 x2 ], X% = X1 X2 Xes |,
(30), P!, satisfies? > B. X' =[x x5 |, h(x) = arcodxz)Hix, ha(x) =
Proof: Lemma 8 is the direct result of lemma 3. B 01C0Sxi)H2x, a1 = az = 0.2, H; = l25/v/10 ~and
Remark 6: The convergence rate of each subsystem obi2 = l35/1/15 are normalized matricefs,; denotes aix j

) e dimensional matrix with all its elements being 1. The gain
server can be increased by amplifying the observer 9alllis computed based on the valuesaf a», H1 andHs as

matrix L; obtained from (27) by/ /. LetLi = &P 'C /2, y—=0.4. The following constant gains are chosen= 0.5,
whereR, = PiT > 0 is the solution to the ARE (30) obtained &; = 0.125, n; = 0.1, i1 = 0.5, 2 = 0.01 andn, = 0.2.
with &. Then the inequality (31) becomes It is checked that the conditions given by (33) and (35)
are satisfied for both subsystems. Thus, there exist pesitiv
definite solutions to (29) and (30). These solutions are

p, _ [09317 00080 | 5 _ [16912 00114
1~ [0.0080 00061 |* "t 7 |0.0114 00116 |’

Since £i,7£i > 0, the convergence rate of to zero is 0.7895 06622 00306 ] 0.4309 03852 00055
&: { [ ] .

g1 o1 o

Uz + ha(X)x,%2(0) = [

N
VOeR) < = 3 [ x4 A% %+ (6f — 80X G X . (40)

increased. 0.6622 08394 00378 |, P, = [0.3852 06109 00149
Remark 7:The inequality (22) used in separating the 0.0306 00378 00093 0.0055 00149 00085
terms can be quite conservative. Instead of (22), one e control and observer g

use the following inequality

ain matrices from (27) are

XTY +YTX <XTX/e+eYTY 0cr.  (22) - | oot K- 000 =] s | e oats7 |.
+ < Je+EY Y, e>0eR. (22) -0 ~0.0093 | -0 0.1625
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To increase the convergence rate of the observers, \u®]
choose 100; and 1Q., as the observer gain matrices for the
first and second subsystem, respectively, in the simulatiom]

The simulation results are shown in Figures 1 and 2. In
Fig. 1, the stateq; and its estimate; 1, the statex;» and [12
its estimatex;», and the control; are shown in the first,
second and third plot, respectively. Fig. 2 shows the states
Xo, their estimates,, and the controll,. It can be observed [13]
from both the figures that the state of the overall system,
and their estimates, converge to zero.

]

[14]

VI. CONCLUSION [13]

In this paper, we proposed a decentralized control angs;
observer for a class of large-scale interconnected non-
linear systems. The interconnecting nonlinearity of ea(i%

.
subsystem was assumed to be bounded by a quadr |c]
form of states of the overall system. Local output signals
from each subsystem are required to generate the lod&d!
feedback controller and exact knowledge of the nonlineg{g,
interconnection is not required for designing the proposed
decentralized controller and observer. Sufficient coaditi [20!
for the existence of the decentralized controller and ofeser |54
are given via the analysis of two AREs. Simulation results
on a numerical example verify the proposed design.

There are some challenging problems related to the quan-
tity . The quantities5(A,C) or 5(AT,B") are realization
dependent. The properties df as a function of various
state-space realizations is of importance. In partictitaal-
ing the state-space realization that maximizes the value of
o will be useful.
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