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Abstract—In analyzing large-scale systems, it is often desir- Lyapunov function can satisfy less rigid requirements as
able to treat the overall system as a collection of interconnected compared to a single scalar Lyapunov function. Moreover,
subsystems. Solution properties of the large-scale system are in large-scale systems_ several Lyapunov functions arise
then deduced from the solution properties of the individual naturally from the stability properties of each subsystem.
subsystems and the nature of the system interconnections. In An alternative approach to vector Lyapunov functions for
this paper we develop an analysis framework for discrete- ana')’zmﬁ large-scale dynamical systems is an input-output

time large-scale dynamical systems based owector dissipa- aPProac wherein stability criteria are derived by assuming

tivity notions. Specifically, using vector storage functions and E?ﬁ_?fz]h subsystem is either finite gain, passive, or conic

vector supply rates, dissipativity properties of the discrete- ] ) )
time composite large-scale system are shown to be determined Since most physical processes evolve naturally in
from the dissipativity properties of the subsystems and their ~continuous-time, it is not surprising that the bulk of large-
interconnections. scale dynamical system theory has been developed for
continuous-time systems. Nevertheless, it is the overwhelm-
ing trend to implement controllers digitally. Hence, in this
aéJer we extend the notions of dissipafivity theory [15],
Fl ] to developvector dissipativitynotions for large-scale
. . . nonlinear discrete-time dynamical systems; a notion not
Modern complex dynamical systems are h'QrE"Y.'merCOm{ewously considered in ‘the literature. In particular, we
nected and mutually interdependent, both physically an@itroduce a generalized definition of dissipativity for large-
through a multitude of information and communicationscale nonlinear discrete-time dynamical systems in terms of
network constraints. The sheer size (i.e., dimensionalitij vector inequalityinvolving a vector supply ratea vector
and complexity of these large-scale dynamical s%stems Oft%'fbrage functionand a nonnegative, semistable dissipation
necessitates a hierarchical decentralized architecture igfatrix. Generalized notions of vector available storage and
analyzing and controlling these systems. Specifically, in theector required supply are also defined and shown to be
analysis and control-system design of complex large-scagement-by-element ordered, nonnegative, and finite. On the
dynamical systems it is often desirable to treat the overadbsystem level, the proposed approach provides a discrete
system as a collection of interconnected subsystems. TBfergy flow balance in terms of the stored subsystem energy,
behavior of the a%gregate_ or composite (i.e., large-scalfhe supplied subsystem energy, the subsystem energy gained
system can then be predicted from the behaviors of thgom all other subsystems independent of the subsystem
individual subsystems and their mterconnectlons. The ne up||ng Strengths' and the Subsystem energy diss|pated_
for decentralized analysis and control design of large-scafgyrthermore, for large-scale discrete-time dynamical sys-
systems is a direct consequence of the physical size afins decomposed into interconnected subsystems, dissipa-
complexity of the dynamical model. In particular, computativity of the composite system is shown to be determined
tional complexity may be too large for model analysis whileirom the dissipativity properties of the individual subsys-
severe constraints on communication links between syst_e@ms and the nature of the interconnections.
sensors, actuators, and processors may render centralized
control architectures impractical.

An approach to analyzing large-scale dynamical systems Il. MATHEMATICAL PRELIMINARIES

was introduced by the pioneering work Sljak [1] and i i ; i it
involves the notion oftonnective stabilityln particular, the nlg tsrg?ngeﬁggnn\évseuIlgtrgggggdn%artlgﬂéﬁ;az\i/%ald(ijsecf;g![telc_)tri]%e

large-scale dynamical system is decomposed into a colleGrqa. ; :
tion of subsystems with local dynamics and uncertain inter- g€ fscalel nonhrt])eargyngmmal s;r/]stems. R}edenote the
actions. Then, each subsystem is considered independeriif}} Of real numbersZ, denote the set of nonnegative

so that the stability of each subsystem is combined witfltegers,R" denote the set of x 1 column vectorss®
the interconnection constraints to obtainector Lyapunov denote the set of xn symmetric matrices\" (respectively,
function for the composite large-scale dynamical systeri) denote the the set of x n nonnegative (respectively,
guaranteeing connective stability for the overall systenpositive) definite matrices(-)* denote transpose, and let
Vector Lyapunov functions were first introduced by Bellmanl,, or I denote then x n identity matrix. Forv € RY
[2] and Matrosov [3] and further developed by Laksh-we write v >> 0 (respectively,u >> 0) to indicate that
mikanthamet al. [4], with [1], [5]-[10] ex;lzllomng their every component af is nonnegative (respectively, positive).
utility for analyzing large-scale systems. The use of vectdn this case we say that IS nonnegativeor positiveg
Lyapunoy functions in large-scale system analysis offers @spectively. LefR? and R% denote the nonnegative and
very flexible framework since each component of the vector . . - + ~q
positive orthants oR?; that is, ifv € R?, thenv € R, and
This research was supported in part by AFOSR under Grant F49620- € RY are eqU_Nalenta respectively, to>> 0 andv >> 0.
03-1-0178 and NSF under Grant ECS-0133038. Finally, we write || - || for the Euclidean vector norm,
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AV (z(k)) for V(z(k + 1)) — V(z(k)), B:(a), o € R™,

e > 0, for the open ball centered at with radiuse, and
M > 0 (respectively,M > 0) to _denote the fact that the
Hermitian matrixA/ is nonnegative (respectively, positive)
definite. The following definition introduces the notion of
nonnegative matrices.

Definition 2.1 ( [17]-[19]): Let W € R?*4. W is non-
negative(respectivelypositivg if W; ;) > 0 (respectively,
W(Lj) > 0), Z,j = 17...,q.

The following definition introduces the notion of class
W functions involving nondecreasing functions.

Definition 2.2: A function w = [wy, ..., w,]T : R? — RY
is of class W if w;(r') < w;(r"),i = 1,...,q, for all
r',r" € R? such thatr; < r7,; 1,...,q, wherer;
denotes thgth component of-.

Note that if w(r) = Wr, where W € R9%9, then
the function w(-) is of classW if and only if W is

nonnegative. The following definition introduces the noti
of nonnegative functions €19].

Definition 2.3: Let w [wi, -+ wy]t =V — RY,
whereV is an open subset d&? that containsR’ . Then
w is nonnegativef w(r) >> 0 for all r € RY.

Note that ifw : R? — RY is such thatw(-) € W and
w(0) >> 0, thenw is nonnegative. Note that, ii:(r) =

Wr, thenw(-) is nonnegative if and only i#¥ € R7*7 is
nonnegative.

Proposition 2.1 ( [19]): SupposeR’ c V. ThenRY is
an invariant set with respect to

]T

r(k+1) =w(rk)), r0)=ry, kecZ, Q)

whererg € Ri, if and only if w : ¥V — R? is nonnegative.

The following definition and lemma are needed for de
veloping several of the results in later sections.

Definition 2.4: The equilibrium solutionr(k) = r, of
(1) is Lyapunov stablaf, for every ¢ > 0, there exists
5 = d() > 0 such that ifry € Bs(ro) N RY, then
r(k) € Bo(re) N RY, k € Z,. The equilibrium solution
r(k) = r of (1) is semistablef it is Lyapunov stable and
there existsy > 0 such that ifry € Bs(ro) N RY, then
limy_, (k) exists and converges to a Lyapunov stabl
equilibrium point. The equilibrium solutiom(k) = r, of
(B is asymptotically stablef it is Lyapunov stable and
there existsd > 0 such that ifry € Bs(ro) N RS,
then limy_. . 7(k) = 7. Finally, the equilibrium solution
r(k) = r. of (1) is globally asymptotically stabléf the
previous statement holds for al) € Ri.

Recall that a matri¥l” € R?*9 is semistabldf and only
if limy,_ o, W exists [19]C whileW is asymptotically stable
if and only if limy_, ., W* = 0.

Lemma 2.1:SupposéV € R9*? is nonsingular and non-
negative. If W is semistable (respectively, asymptotically
stable), then there exist a scata> 1 (respectivelyo > 1)
and. a nonnegative vectgr € Ri, p # 0, (respectively,
positive vectorp € R%) such that

W=Tp = ap. (2

Next, we present a stability result for discrete-time large
scale nonlinear dynamical systems using vector Lyapund#
functions. In particular, we consider discrete-time nonlineay

orbth

€3). Finally, we recall the notions of dissipativity

dynamical systems of the form
z(k+1) F(z(k)), k> ko, (3)

where F' : D — R™ is continuous orD, D C R" is an
open set with0 € D, and F(0) = 0. Here, we assume
that (3) characterizes a discrete-time large-scale nonlinear
dynamical system composedginterconnected subsystems
such that, for ali = 1, ..., ¢, each element of'(z) is given

by F;(z) = fi(z:) + Z;(x), where f; : R™ — R™ defines

the vector field of each isolated subsystem of @3), D —

R™: defines the structure of interconnection dynamics of
the ith subsystem with all other subsystems, € R™,

1i(0) =0, L-(O? =0, and>.? , n; = n. For the discrete-
time large-scale nonlinear dynamical system (3) we note
that the subsystem stateg(k), k > ko, foralli =1,..., 4,
belong toR™ as long asz(k) £ [2] (k),...,z] (k)" €

D, k > ko. The next theorem presents a stability result for
(3) via vector Lyapunov functions by relating the stability
erties of a&omparison systero the stability properties

e discrete-time large-scale nonlinear dynamical system.

Theorem 2.1 (J4]):Consider the discrete-time large-
scale nonlinear dynamical system given by (3). Suppose

there exist a continuous vector functiéh: D — Ri and
a positive vectorp € RY such thatV'(0) = 0, the scalar
functionv : D — R, defined byv(z) = pTV(z), x € D,

is such thaw(0) =0, v(z) > 0, x # 0, and

V(F(z)) << w(V(x)),

1’(]90) = Xy,

zeD, (4)
wherew : Ri — RYis a clasg/V function such that(0) =

0. Then the stability properties of the zero solutig) = 0
to

r(k+1) =w(r(k)), r(ko)=ro, k2> ko, (5)

imply the corresponding stability properties of the zero
solution z(k) 0 to (3). That is, if the zero solution
#(k) = 0 to (5) is Lyapunov (respectively, asymptotically)
stable, then the zero solutian(k) = 0 to (3) is Lyapunov
(respectively, asymptotically) stable. If, in additidd,= R™
and V(z) — oo as ||z|| — oo, then global asymptotic
stability of the zero solutiom(k) = 0 to (5) implies global
asymptotic stability of the zero solution(k) = 0 to (3).

If V: D — R satisfies the conditions of Theorem 2.1
we say thatV (z), z € D, is avector Lyapunov function
for the discrete-time large-scale nonlinear dynamlféelcl)systgm

an
eometric dissipativity [19], [21] for discrete-time nonlinear
ynamical systemg of the form

z(k+1) = f(z(k)) + Gz(k))u(k),
z(ko) = xo, k> ko, (6)
y(k) = hz(k)) + J(x(k))u(k), @)

wherez €¢ D C R, uw ¢ U C R™, y € Y C R,

f D — R™ and satisfiesf(0) = 0, G : D — R"™*™,

h: D — R! and satisfies(0) = 0, andJ : D — RI*™,

For the discrete-time nonlinear dynamical systéhwe
assume that the required properties for the existence and
unigueness of solutions are satisfied; thatui(s% satisfies
sufficient regularity conditions such that (6) has a unique
solution forward in time. Note that since all input-output
pairsu € U, y € Y, of the discrete-time nonlinear
dynamical systeny; are defined orZ,, the supply rate
[15] satisfying s(0,0) = 0 is locally summable for all
Input-output pairs satisfying (6), (7); that is, for all input-
tput pairsu € U, y € Y satisfying (6), (7)s(-, -) satisfies

wi |8(u(k), y(R))| < 00, ki, ko € Zy.
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Definition 2.5 ( [20], [21]): The discrete-time nonlinear D — Ri, called avector storage functignand a nonsin-
dynamical systemy given by (6), (7) isgeometrically gular nonnegativelissipation matrix € R?%? such that
dissipative (respectively, dissipativg with respect to the . 0? = 0, W is semistable (respectively, asymptotically
supply rates(u, y) if there exist a continuous nonnegative-gtap e), and theector dissipation inequality
definite functionv, : R™ — R, called astorage function
and a scalap > 1 (respectivelyp = 1) such thats(0) =0 Vi(z(k)) << WF RV (z(kg))

and thedissipation inequality k1
k—1—i . .
Prog(e(ke)) < pMug(x(kr)) + ij WHEIS (i), y (i),
ka—1 t=ro
+ 37 P s(u(i), y(@)), ke = Ky, (8) k2 ko, (13)
i=k1 is satisfied, where:(k), k > ko, is the solution to (9) with

: g . u € U. The discrete-time large-scale nonlinear dynamical

e o L7 B el iy ysiemC given by (9), (10) vecior osdlese wih especy

dynamical systeny given by (6), (7) idossless with respect ir?eql?al\i/tilcig rsgﬁgﬁe){j raas a(l1u7e3{q)u:';1lityew\ill'gfcs(,)ermilsstst;lI Iae.lon

to the supply rates(u,y) if the dissipation inequality is . .

satisfied as an equality with= 1 for all ky > ki > ko. Note that if the subsystem§; of G are disconnected
that is,Z;(x) = 0 forall i = 1,...,q, and W € R?*? is

diagonal, positive definite, and semistable, then it follows
from Definition 3.2 that each of isolated subsystef)s

1. VECTORDISSIPATIVITY THEORY FOR is dissipative or geometrically dissipative in the sense of
DISCRETETIME LARGE-SCALE NONLINEAR Definition 2.5. A similar remark holds in the case where
DYNAMICAL SYSTEMS g = 1. Next, define thevector available storagef the

discrete-time large-scale nonlinear dynamical systeivy

In this section we extend the notion of dissipative
dynamical systems to develop the generalized notion of Va(zo)

Uy namica) SyStoms. We hegin by conaideing DISOrEIBme & qo | S p-Gtickog
nonlinear dynamical systents of the form = szol,pum k:zko (u(k),y(k))|
x(k+1) = F(x(k),uk)), z(ko) = xo, k > ko, (9) (14)
y(k) = H(xz(k), u(k)), (10) wherez(k), k > ko, is the solution to (9) withe(kg) = zp
wherez € D CR*, u e U CR™, y € Y CR!, F and admissible inputs € /. The supremum in (14) is taken

DxU — R", H:DxU — », D'is an open set with componentwise which implies that for different elements
0 € D, andF(0,0) = 0. Here, Wjé assume thgtrepresents of V,(-) the supremum is calculated separately. Note, that

a discrete-time large-scale dynamical system composed ¥#(%o) >> 0, zo € D, sin_ceVarS:co) is the supremum over
g interconnected controlled subsystegssuch that, for all & Set of vectors containing the zero vectdr € ko). To

i=1,...q state the main results of this section the following definition
B is required.
Fi(z,u) = filzi) + Zi(x) + Gi(zi)u;,  (11) Definition 3.3 ([19]): The discrete-time large-scale
Hi(ziug) = hilas) + Ji(a@s)ui, (12) nonlinear dynamical “systenty given by (9), (10) is

completely regchabléf for all = %ID_Q }1%") éh?_re gxist

wherez; € R, u; € Uy C R™, y; 2 H,(z;,u;) € Y; C @k < ko and a square summable input-) defined on
R, ﬁé‘“yi) is the input-output pair for theth subsystem, ]Lki’ko] such that the state(k), k > k;, can be driven

I RML R and s - D — R™ are continuous and fom z (ki) = 0 to x(ko) = xo. A discrete-time large-scale
s:a\tisfy £(0) = 0 and j(o) — 0. G : R% — RMXm nonlinear dynamical syster§ is zero-state observabli

% - ) — Y i — —0Ni —

is continuous,h; : R™ — R! and satisfiesh;(0) = 0, u(ffl_)h* 0 an(;yl(kc) delmF:Ly xd(k) 7t0.t' | |
J; : R RExmi S o — S — g, and . _Theorem 3.1:Consider the discrete-time large-scale non-

L :7. Furtherm%glfor the sygéﬁlwe assume that linear dynamical systent; given by (9), (10) a”‘ile;‘s'
t éfrequired properties for the existence and unigqueness ”:%ﬁ?i%t%ésr %%rr?ﬁleetgtlxleregggagle?ﬁisl}%e e(reﬂ§ ectivel
solutions are satisfied. We define the composite input angf, toticgall Stable) cﬂ"hen ’ P Y
composite output for the discrete-time large-scale sysiem ymp y :
asu = [uf,..,ul]T andy £ [y, ...,y7]T, respectively. K—1
Note that in this case the sbt= U x - - - x U, contains Z W*(k+1fko)5(u(k)7y(k)) >> (),
the s]gt of input ?/alues ard = Y; x --- x ), contains the
set of output values.

>

Definition 3.1: For the discrete-time large-scale nonlin- K zko, weld, (15)
ear dynamical systeidi given by (9), (10) a vector functAlon for x(ko) = 0 if and only if V,(0) = 0 and V,(z) is finite
S = [s1,..,84T : U x Y — R? such thatS(u,y) = for all z € D. Moreover, if (15? holds, theW,(z), = € D,

[$1(u1,91), -y 8¢(tq,yg)]T and S(0,0) = 0 is called a is a vector storage function fa¥ and hencej is vector
vector supply rate dissipative (respectively, geometrically vector dissipative)

Definition 3.2: The discrete-time large-scale nonlinear'V/th "€SPECt to the vector supply rafu, y).
dynamical systeng given by (9), (10) isvector dissipative It follows from Lemma 2.1 that it/ € R?*9 is nonsin-
(respectivelygeometrically vector dissipatiyavith respect gular, nonnegative, and semistable (respectively, asymptot-
to the vector supply rat§(u, y) if there exist a continuous, Ically stable), then there exist a scatar> 1 (respectively,

nonnegative definite vector functioli = [vg1,...,v5]T :  a > 1) and a nonnegative vectgs & Rj_,p % 0,

3701

k=ko



(respectivelyp € R%) such that (2) holds. In this case,  addition, assume that there exist functions: )V, — U;
B such thatx;(0) = 0 and s;(x;(v:),v:) < 0,y; # 0, for

pTWF =apTWw k) = = ofpT keZ,. (@6) alli=1,..,q Then for all vector storage functiori :
D — R the storage functiony(z) £ pTVi(z), = € D,

Using (16), we define the (scalaayailable storagefor the is positive definite; that isp,(0) = 0 andva(z) > 0, z €

discrete-time large-scale nonlinear dynamical systeivy

D, x #0.
Kl Next, we introduce the concept eéctor required supply
va(zo) & sup |- Z prTw ==kl g(y(k),y(k))| of a discrete-time large-scale nonlinear dynamicafps s-
K>ko,u() | kg, tem. Specifically, define the vector required supply of the
discrete-time large-scale dynamical systény
K—1 V(o)
= sup = > oM Ros(u(k),y(k) |, (A7) ho—1
K2ko,ul) L k=to £ inf > w kRIS (u(k), y(k)), (20)

_ K>—ko+1,u(-)
wheres : U x ) — R defined ass(u,y) = p*S(u,y) h=—K

is the (scalar) supply rate for the discrete-time Iarge-sca{ghere“k% k > —K, is the solution to (9) withe(—K) =
nonlinear dynamical systerd. Clearly, v,(z) > 0 for all 5 gnq z(ko) = mo. Note that since, with(ky) = 0, th
z € D. As in standard dissipativity theory, the availablefmum in (20) is the zero vector it follows th&tﬁo) —0.

storagev, (z), = ¢ D, denotes the maximum amount of \joreover, sinceg is completely reachable it follows that
(scaled) energy that can be extracted from the dlscrete—tln%a 2) << oo,z € D. Using the notion of the vector

large-scale n_onllnear dynamical systénat any mstaan.. required Stapply we present necessary and sufficient con-
The following theorem relates vector storage functiongitions for dissipativity of a large-scalé dynamical system
and vector supply rates to scalar storage functions and scaléith respect to a vector supply rate.

supply rates of discrete-time large-scale dynamical systems.taorem 3 4:Consider the discrete-time large-scale non-

_ Theorem 3.2:Consider the discrete-time large-scale nonlinear dynamical systeng given by (9), (10) and assume
linear dynamical systerg given by (9), (10). Supposg is  thatG is completely reachable. The&his vector dissipative
vector dissipative (respectively, geometrically vector dissitrespectively, geometrically vector dissipative) with respect
pative) with respect to the vector supply réte i/ x Y —  to the vector supply raté(u,y) if and only if

R? and with vector storage functiolf; : D — R{i. Then

. = . << .
there exist® € Ri, p # 0, (respectivelyp € ]R{i) such that 0<<Vi(z) <<oo, z€D (21)
G is dissipative (respectively, geometrically dissipative) wittMoreover, if (21) holds, therVr(a;?, x € D, is a vector
respect to the scalar supply ratéu,y) = p*S(u,y) and storage function forG. Finally, if the vector available
with storage functions(x) £ pTV,(z), = € D, satisfying fﬁg%ﬂge%(@, z € D, is a vector storage function f@,

v(z(k) < amFRoly (a(k))

- 0 << Vo(z) << Vi(z) << o0, x€D. (22)
—  (h_1—i . . The next result is a direct consequence of Theorems 3.1
+ o P s(u(i), y(@), and 3.4. a
i=ko Proposition 3.1: Consider the discrete-time Iar%/e[—scale
k> ko, wel,(18) nonlinear dynamical systeg given by (9), (10). Lefl/ =

diag [p1, ..., ftg) be such thatd) < p; < 1,7 = 1,...,q.
If Vo(z),z € D, andV,(z), x € D, are vector storage
functions forg, then

0 < va(2) Svs(), w€D. (19) Vi) = MVi(2) + (I, - M)Vi(z), z€D, (23)
Remark 3.1:1t follows from Theorem 3.1 that if (15) . i
holds for z(ky) = 0, then the vector available storageis a vector storage function faf.
Va(z), z € D, is a vector storage function fd. In this Next, recall that ifG is vector dissipative (respectively,
case, it follows from Theorem 3.2 that there exists R, g%ometrlcally vector dissipative), then there exjst c
p # 0, such thatvy(z) £ pTV,(z) is a storage function R, p # 0, anda > 1 (respectivelyp € RY anda > 1)
for G that satisfies (18), and hence by (19),(z) < such that(2)and (16) hold. Now, define the (scatequired

wherea > 1 (respectively,a > 1). Moreover, in this case
va(x), € D, is a storage function fo§ and

pTVa(z), z € D. supplyfor the large-scale nonlinear dynamical systérby
Remark 3.2:1t is important to note that it follows from v (o)

Theorem 3.2 that i§ is vector dissipative, the@ can either ko—1

be (scalar) d|§S|pat|ve or (scalar) geoman.caIIy d|ss,|p.at|ve. a inf Z pTW_(kH_kU)S(u(k:),y(k:))
The foII_owmﬁ theorem provides sufficient conditions K>—ko+1,u(")

guaranteeing that all scalar storage functions defined in k=—K

terms of vector storage functions; thatis(z) = p V(x), . el

of a given vector dissipative discrete-time large-scale non- = inf Z af R (u(k), y(k)),

linear dynamical system are positive definite. K2—kot+1,u(), T
Theorem 3.3:Consider the discrete-time large-scale non- z0 €D, (24)

linear dynamical systeny given bz (9?], (10) and assume

that G iS zero-state observable. Furthermore, assume thahere s(u,y) = pTS(u,y) and z(k), k > —K, is the

G is vector dissipative (respectively, geometrically vectogolution to (9) withz(—K) = 0 andz (ko) = xo. It follows
dissipative) with respect to the vector supply réte:,y)  from (24) that the required supply of a discrete-time large-
and there existv > 1 andp € R% such that (2) holds. In scale nonlinear dynamical system is the minimum amount
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of generalized energy which can be delivered to the discrete-As a sgecial case of vector dissipativity theory we can
time large-scale system in order to transfer it from an initiahnalyze the stability of discrete-time large-scale nonlinear
statez(—K) = 0 to a given stater(kg) = zo. Using the dynamical systems. Specifically, assume that the discrete-
same arguments as in case of the vector required supplyfiine large-scale dynamical systeghis vector dissipative
follows thatv,(0) = 0 andv,(z) < oo, = € D. (respectively, geometrically vector dissipative) with respect

Next, using the notion of required supply, we show thattO the vector supply rate(u,y) and with a continuous

. . q
all storage functions of the form,(z) = pTVS(x), where vector storage functio; : D — R . Moreover, assume

q . that the conditions of Theorem 3.3 are satisfied. Then it
p € Ry, p # 0, are bounded from above by the requweqtzonows from Proposition 3.2, withi(k) = 0 andy(k) = 0,

supply and bounded from below by the available storhat

age. Hence, a dissipative discrete-time large-scale nonlinear

dynamical s?/ste_m can only deliver to its surroundings a Vi(z(k +1)) << WVs(z(k)), k> ko, (28)

fraction of all of its stored subsystem energies and can only ) ) )

store a fraction of the work done to all of its subsystemswherex(k), k > kg, is a solution to (9) withe(kg) = x¢
Corollary 3.1: Consider the discrete-time large-scale®d (k) = 0. Now, it follows from Theorem 2.1, with

nonlinear dynamical syste@ given by (9), (10). Assume «(r) = Wr, that the zero solution:(k) = 0 to (9), with

that G is vector dissipative with respect to a vector supply:(k) = 0, is Lyapunov (respectively, asymptotically) stable.

rate S(u,y) and with vector storage functidi, : D — Ri. “More generally, the problem of control system design for

Thenwv,(z), z € D, is a storage function fof. Moreover, discrete-time large-scale nonlinear dynamical systems can

if A ’TV D wh R 0 th be addressed within the framework of vector dissipativity

if vs(x) = p Vi(2), 2 € D, wherep € R, p # 0, then theory. In particular, suppose that there exists a continuous

. =4
0 < va(2) < v3(z) < 0r(z) < 00, € D. (25) vector functionV; : D — R such thatV(0) = 0 and

Remark 3.3:1t follows from Theorem 3.4 that iG is Vi(a(k+1)) << F(Vi(xz(k)),u(k)), k> ko, u €U, (29)
vector dissipative with respect to the vector supply rate —y
S(u,y), thenV,(z), € D, is a vector storage function where 7 : R}, x R™ — R? and F(0,0) = 0. Then the
for G and, by Theorem 3.2, there exigtse @i’ p # 0, control system design problem for a discrete-time large-
such thatvy(z) 2 pTV.(z), = € D, is a storage function scale dynamical system reduces to constructingrergy

=9
for G satisfying (18). Hence, it follows from Corollary 3.1 feedback control law : R’ — U of the form

thatpTV,(z) < v.(2), z € D.
p V(o) < ula), @ | 4= O(Va(w)) £ [6F (Va(2)), ... 67 (Va(@))]", € D, (30)

The next result relates vector (respectively, scalar) avail-
able storage and vector (respectively, scalar) required SUphereg, : R — 14;, ¢;(0) =0, i = 1, ..., g, such that the
g%tgé];ector lossless discrete-time large-scale dynamlca ro solutionr(k) = 0 to the comparison system
~ Theorem 3.5:Consider the discrete-time large-scale non+(k + 1) = w(r(k)), (ko) = Vi(z(ko)), k> ko, (31)
linear dynamical systerg given byégg, (10). Assume that _ .
G is completely reachable to and from the origin. df is rendered asymptotically stable, whewé-) = F(r, ¢(r))
is vector lossless with respect to the vector supply ratg of class)V. In this case, if there exists€ R such that
S(u,y) andV,(x), « € D, is a vector storage function, then ) 2 pTV,(z), = € D, is positive definite, then it follows

Va(z) = Vi(x), x € D. Moreover, if Vi(z), z € D, is a us( : _
vector storage function, then all (scalar) storage functions &ﬁtﬂ] Jgﬁ/%rﬁngyz(-s}ogh?st g]s(;rﬁ%igtf%ﬁ’;@tﬁf&g 0 to (9),

_ T q
the form . (z) = p~Vi(2), » € D, wherep € Ry, p # 0, As can be seen from the above discussion, using an

are given by energy feedback control architecture and exploiting the
_ _ comparison system within the control design for discrete-
vs(0) = va(2o) = vr(20) time large-scale nonlinear dynamical systems can signif-
K-1 icantly reduce the dimensionality of a control synthesis
- _ Z aF TR0 g (u(k), y(k)) problem in terms of a number of states that need to be
’ stabilized. It should be noted however that for stability
k=ko analysis of discrete-time large-scale dynamical systems the
ko—1 comparison system need not be linear as implied by (2_8?.
= Z ak+1—kos(u(k)7y(k))7 (26) A discrete-time nonlinear comparison system would stil
~ guarantee stability of a discrete-time large-scale dynamical
k=—K system provided that the conditions of Theorem 2.1 are

where z(k), k > ko, is the solution to (9) withu € U, satisfied. For further details see [22].

mrg—K) =0, z(K) =0, z(ko) = 20 € D, and s(u,y) =
pS(u,y). IV. CONCLUSION

The next proposition presents a characterization for

vector dissipativity of discrete-time large-scale nonlineay, !N this paper we have extended the notion of dissipativity
dynamical systems. {heory to vector dissipativity theory. Specifically, using vec-

o ) . . . tor storage functions and vector supply rates, dissipativity
Proposition 3.2: Consider the discrete-time large-scaleproperties of aggregate Iaré;e-sca]e discrete-time dynamical
nonlinear dynamical systeggiven by (9), (10) and assume systems are shown to be determined from the dissipativity

Vi = [Us1yeenstsg)t 0 D — Ri is a continuous vector properties of the individual subsystems and the nature of
storage function foiG. Then G Is vector dissipative with their mterco.nneqtlorésé.] [?e'[aggd,pro?gsz ]o(fjthelresults in éhlg
i i aper are given in [22]. In addition, evelops extende
respect to the vector supply ratu, y) if and only if &akljman-Ya gbowc%-Popoa/ ci?nd_mons, in terms of the local
subsystem dynamics and the interconnection constraints,
Va(e(k +1)) << WVi(a(k)) + S(u(k), y()), for c%aracterizing vector dissipativeness via vector storage

k>ko, welU. (27) functions for large-scale discrete-time dynamical systems.
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Furthermore, using the concepts of vector dissipativity and
vector storage functions as candidate vector Lyapunov func-
tions, feedback interconnection stability results of large-
scale discrete-time nonlinear dynamical systems are also
developed |nd[22]. General stability criteria are given for
Lyapunov and asymptotic stability of feedback intercon-
nections of large-scale discrete-time dynamical systems.
In the case of vector quadratic supply rates involving net
subsystem powers and input-output subsystem energies,
these results provide a positivity and small gain theorem
for large-scale discrete-time systems predicated on vector
Lyapunov functions
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