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Abstract—The problem of robust output feedback 

stabilization for a class of nonlinear systems with 
partially known uncertainties is considered. A class of 
continuous adaptive robust output feedback controllers 
that can guarantee uniform ultimate boundedness of the 
resulting closed-loop systems in the presence of 
uncertainties is proposed. In contrast with some results 
presented in the control literature, the adaptive law for 
updating the estimate values of the unknown parameters 
is continuous, and the existence of the solutions to the 
resulting closed-loop systems in the usual sense can be 
guaranteed. Moreover, due to the continuity of the 
output feedback controller and adaptive law, the 
proposed adaptive robust output feedback controller is 
easily implemented in practical robust control, and no 
chattering will appear in practical systems. Finally, an 
illustrative example is given to demonstrate the 
utilization of the results. 

I. INTRODUCTION 

THE problem of stabilization for uncertain systems has 
been widely researched over the last few decades. There 

are two major approaches to deal with the problem. One is 
the state feedback stabilization, through which many results 
have been achieved when all state variables of systems are 
available (see [1-3]). However, it is often impossible or 
difficult to measure all state variables in practical systems. 

Another approach is the output feedback stabilization (see 
[4-9]). Sabrei and Khalil [9] studied a class of systems with a 
nominal linear part and matched uncertainties, and derived a 
sufficient condition for the existence of stabilizing static 
output feedback control. Steinberg and Corless [6] showed 
that if the nominal system is strictly positive real, the robust 
stabilization in the presence of matched uncertainties is 
achievable via linear static output feedback. Later, Zeheb [8] 

and Steinberg [7] demonstrated that for single-input/ 
single-output systems, the robust stabilization problem 
could be solved by a linear static output feedback if the 
nominal systems are minimum phase and have relative 
degree one. These results were extended by Guo [4] to 
multivariable systems with an equal number of inputs and 
outputs. And the nominal systems are minimum phase and 
have a non-singular high-frequency gain.  
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In all of the robust control schemes mentioned above, the 
bounds of uncertainties are assumed to be known and the 
designed controllers are based on the assumed bounds of 
uncertainties. However, it is often difficult to estimate the 
bounds of uncertainties for practical systems. If the actual 
bounds of the uncertainties exceed the assumed values used 
in controller design, the stability of the system could not be 
guaranteed. To ensure the stability, one has to use large 
bounds of uncertainties in the controller design, which 
definitely leads to large conservativeness. 

When the bounds of uncertainties are unknown, there are 
robust control schemes that are applicable to systems with 
uncertainties satisfying the matching condition [10-12]. Wu 
and Shigemaru [11] and Wu [12] studied the robust 
stabilization of linear time-varying systems and nonlinear 
systems with unknown bounds of uncertainties and 
presented a class of continuous adaptive robust state 
feedback controllers that can guarantee the resulting 
closed-loop systems uniform ultimate bounded. Liu and 
Zhang [10] investigated the problem of decentralized output 
feedback stabilization for a class of interconnected systems 
with unknown bounds of uncertainties and suggested a class 
of nonlinear output feedback controllers that can guarantee 
the resulting closed-loop systems uniform ultimate bounded. 
Other works in robust control of uncertain systems have 
been reported in [13-15]. 

Based on the framework described in [10-12], this paper 
discusses the adaptive robust feedback stabilization for a 
class of nonlinear systems with uncertain parameters. The 
uncertainties are bounded, but the bounds of the 
uncertainties are unknown in controller design. The 
proposed controller can guarantee the resulting closed-loop 
systems uniform ultimate boundedness. Moreover, due to 
the continuity of the output feedback controller and adaptive 



 
 

 

law, the proposed adaptive robust output feedback controller 
is easily implemented in practical robust control, and no 
chattering will appear in practical systems. Finally, an 
illustrative example is given to demonstrate the utilization of 
the results.  

II. PROCEDURE FOR PAPER SUBMISSION 
Consider a class of nonlinear systems which are described 

by 
)),()(,(),( txutxGtxFx ξ++=& ,             (1a) 

),( txHy = ,                                                 (1b) 
where , u and are the state, control 
input and measurable output respectively. F  

, ,  
are known. The uncertain ξ(•) is assumed to be bounded. 
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The question is how to design an output feedback 
controller that can guarantee the stability of the non-linear 
system (1). Before investigating the robust control of the 
system (1), the following assumptions are proposed: 

Assumption 1: for all x∈Rn and t≥0, there exists known 
function  and an unknown const 
vector  such that  
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is also assumed to be continuous uniformly bounded with 
respect to time and locally uniformly bounded with respect 
to the output y.  

Assumption 2: The known functions F(•), G(•), ρ(•) and 
H(•), as well as the unknown function ξ(•), verify the 
Carathèodory conditions, i.e. for all t and x in a bounded 
domain D of the (t, x)-space. 

 1) they are continuous in x for almost all t; 
 2) they are Lebesgue measurable in t for each x; 
 3) there exist Lebesgue summable functions ,1),( =itmi  

 such that  5,4,3,2
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)(),(),(),( 54 tmtytmtx ≤≤ ρξ . 

Therefore, equation (1) can be considered as a Carathèodory 
equation provided that u is defined as a Carathèodory 
function of y and t. Furthermore, we assume that each one of 
these functions is locally Lipschitz continuous in its first 
argument x (y). Thus, under these basic assumptions, the 
system described by equation (1) is well posed in the sense 
that the local existence and uniqueness of the solutions can 
be proved. 

Assumption 3: There exists a C1 function V  

 and an output feedback function 
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where ),( tyψ  is continuous for y and t, and the scalar 
functions 2,1),( =• ic  are of Ki ∞-class and c3(•) of K-class. 

Assumption 4: There exists an nonsingular m×m matrix 
function D(y,t) such that 
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x
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where V0(x,t) is given by Assumption 3. 
Remark 1: Assumption 1 defines the uncertainty bands for 

ξ(x,t) (similar to the constraint in [12]), which are partially 
known (for output y). i.e. they are linear in some unknown 
constant vectors. Assumption 2 is a technical assumption for 
mathematical completeness, which can guarantee the 
existence and uniqueness of the solutions of state equation 
(1). Assumption 3 shows that the nominal system can be 
stabilized via output feedback in the sense that a Lyapunov 
function exists. Indeed, in order to guarantee the robust 
stability of uncertain systems, their nominal systems must be 
stabilizable via output feedback. Assumption 4 is the 
generalization of the fundamental conditions for discussing 
the output feedback stabilization. It is closely related to the 
passiveness of the systems[4-10, 16, 17]. 

III. ADAPTIVE ROBUST CONTROL SCHEME 
For equation (1), we propose an output feedback 

controller described by 
)()()( 10 tututu += ,                     (6) 

where 
),(0 tyu ψ= ,                          (7) 
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where the scalar 0>ε , and the vector  is the 
estimate of the unknown parameter vector , hich is 
updated by the following adaptive law 

pRt ∈)(θ̂
pR∈*θ
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where the parameter δ is any positive constant, ppR ×∈Γ  is 
any constant symmetric positive definite matrix, and  
is finite. 

)(ˆ
0tθ

Applying (7) and (8) to equation (1) yields a closed-loop 
system of the form 

)),(),()(,(),( 1 txutytxGtxFx ξψ +++=& .   (10) 



 
 

 

Moreover, we define 
*)(ˆ~ θθθ −= t .                        (11) 

Then, equation (9) can be rewritten as the following error 
equation 

*
2
1 ),(),()(~)(~ θδρθδθ Γ−Γ+Γ−= tyytyDtt&

~
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In the following, we denote (  as the solution for the 
closed-loop system (10) and the error equation (12). 

),θx

Remark 2: Under the assumptions stated in §2, it is 
obvious that both the closed-loop system (10) and the error 
system (12) are continuous, and the existence and continuity 
of the solution to equations (10) and (12) in the usual sense 
can be guaranteed. Moreover, the controller (6) consisting of 
(7), (8) and adaptive law (9) can be easily implemented in 
practical control design. 

Remark3: From Assumption 1 and 2, it is obvious that the 
output feedback controller (6) is locally uniformly 
continuous. Moreover, from equation (6) we can easily 
prove that 

)(ˆ)),((),()( tttytytu T θρψ +≤ ,             (13) 

which shows that the control u(t) is locally uniformly 
bounded when the solution to the adaptive law (9) exists. 

The following theorem shows that the solution (  to 
the close-loop system (10), the error system (12) is 
uniformly ultimately bounded. 

)~,θx

Theorem 1: Consider the closed-loop system (10) and the 
error system (12) satisfying Assumptions 1-4. Then the 
solution  to the closed-loop 
system (10) and the error system (12) is uniformly ultimately 
bounded in the presence of the uncertain 

))(~),(,;()~,( 000 ttxttx θθ

)),(( ttxξ . 
Proof: For the close-loop system (10), the error system (12), 
we define a Lyapunov function candidate as  

)(~)(~),()~,( 1
0 tttxVxV T θθθ −Γ+= ,              (14) 

where V0(x,t) is a Lyapunove function for the nominal 
system of the system (1), and Γ-1 is any symmetric positive 
definite matrix. Then, taking the derivative of V  
along the trajectories of the closed-loop system (10) and the 
error equation (12) leads to 
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and with equation (4), (5) and (12) , we get 
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Substituting the inequality (2) into (16), we obtain 
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It can be obtained from the equation (8) that 
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Therefore, it follows from the equation (18) and the 
inequality 

0,0,0 >≥∀≤
+

≤ bab
ba

ab ,             (19) 

that 
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On the other hand 
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Then, with (20) and (21), the inequality (17) can be rewritten 
as 
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where is of K-class. 



 
 

 

From (22), it is obvious that the Lyapunov function 
 decreases monotonically along any solution of the 

equation (10) and (12) until the solution reaches the compact 
set 

)~,( θxV
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Therefore, it can be concluded that the solution (  ;()~, tx θ

))(~),(, 000 ttxt θ  of the closed-loop system (10) and the 
error system (12) is uniformly ultimately bounded with the 
bound  ε~  given by (24). 

Remark 4: It is worth pointing out that the parameters ε 
and δ can be selected by the system designer. Therefore, by 
choosing these parameters correctly, we can guarantee better 
stability results for adaptive systems. In fact, it can be seen 
from equation (23) that a smaller ε~  can be guaranteed by 
choosing parameters ε and δ which are small enough. 
However, we should note that making δ small will lead to a 
high adaptive gain, and letting ε→0, the controller (6) will 
be reduced to a standard saturation-type controller, resulting 
in a tradeoff between the better stability results and large 
gains, and the loss of continuity of the controller. 

Remark 5: In contrast to some results in the control 
literature ([16,17]), the adaptive controller (6) has good 
continuity. Thus, it can be easily implemented in practical 
engineering. 

In the rest of this section, as a special case of the results 
obtained above, we consider the uncertain linear system 
described by 

))),(()(()()( ttxtuBtAxtx ξ++=& ,           (25a) 
y=Cx,                                                           (25b) 

where x∈Rn. u and y∈Rm are the states, input and output, and 
A, B and C are constant matrices of appropriate dimensions. 

Here, for the system (25), we make the following standard 
assumption. 

Assumption 5: The matrix pair (A,B,C) defined in 
equation (25) is stabilizable and detectable. Transfer 
function G(s)=C(sI-A)-1B is minimum phase. The nominal 
system of the system (25) is nonsingular high-frequency 
gain, i.e. det(CB)≠0. 

Lemma 1: Consider the system satisfying Assumption 5 
as described 
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,
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BuAxx&                               (26) 

Then, there exists positive definite matrix P  and 
nonsingular matrix K  such that 

IAPPBKCIA T αβα ++−+ ()( 2
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0)2
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KCPB T = ,                                        (28) 

where βα ,  and γ  are constants. And the closed-loop 
system consisting of the system (26) and Kyu β2

1−=  is 
asymptotically stable. 

Lemma 1 can be derived directly from the theorem 2.11 
and theorem 3.3 in Guo [4]. 

Thus, for the system (25), the following adaptive robust 
feedback controller is presented 
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where the matrix K  is defined by the equations (27) and 
(28), ε  is any positive constant,  the estimate of 
the unknown parameter θ  with adaptive variable 
satisfying 

pR∈•)(θ̂
pR∈*

),()(ˆ)(ˆ tyKytt ρθδθ Γ+Γ−=& ,                         (32) 

where is δ is any positive constant, Γ  is any 
symmetric positive definite matrix,  is finite. 

ppR ×∈

0θ̂=0 )(θ̂ t
Remark 6: The controller described in equation (29) 

consists of two parts p1(•) and p2(•). Here, p1(•) is a linear 
feedback controller which is used to stabilize the nominal 
system, and p2(•) is a bounded, continuous adaptive output 
feedback controller which is used to compensate for the 
system uncertainties, which are partially known, to produce 
some type of stability result. 

Applying equation (28) and (29) to (25) yields a closed- 
loop system of the form 

)(][)( 2
1 txPBBAtx Tβ−=&  

)]),(()),(([ 2 ttxttypB ξ++ .     (33) 
On the other hand, the equation (32) can be rewritten as the 
error equation 

*),()(~)(~ θδρθδθ Γ−Γ+Γ−= tyKytt& ,        (34) 

where 
*)(ˆ)(~ θθθ −= tt .                            (35) 

Thus, the closed-loop system consisting of the system (33) 
and the error equation (34) is uniformly ultimately bounded, 
which can be verified by the following Theorem 2. 

Theorem 2: Confider the closed-loop system (33) and the 
error equation (34) satisfying Assumption 1, 2 and 5. Then, 
the solution  ))(~),(,;)(~, 000 ttxttx θθ

)),( ttx

(  to (33) and (34) is 
uniformly ultimately bounded in the presence of the 
uncertain (ξ . 
Proof: As in the proof of Theorem 1, we define a Lyapunov 
function candidate for the equations (33) and (34) as 

)(~)(~)()()~,( 1 tttPxtxxV TT θθθ −Γ+= ,         (36) 
where nnRP ×∈  is the solution to the equations (33) and 
(34), Γ is defined by the equation (32). Similar to the proof 



 
 

 

for Theorem 1, taking the derivative of V  along the 
trajectories of the equations (33) and (34) leads to 

)~,( θx

ε ,                    (37) θδθ
+−≤ )~,()~,( xV

dt
xdV

where 
}{ )(,2min min Γ= δλαδ , 2*2 θδεε +=

~
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From the equation (37), it is obvious that V  decreases 
monotonically along any solution of the equations (33) and 
(34) until the solution reaches the compact set 

),( θx

}{ ff VxVx ≤=Ω )~,()~,( θθ ,                   (39) 

where 
εδ 1−=fV ,                                 (40) 

Therefore, it can be concluded that the solutions (  )~,θx

))(~),(,;( 000 ttxtt θ  of the equations (33) and (34) are 
uniformly ultimately bounded with the bound given by (40).  

IV. SIMULATIONS 
Consider the uncertain nonlinear system as described 
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where θ  is an unknown uncertain parameter. If 
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the system (41) satisfying Assumption 1-4. From the 
equations (6)-(9), the following adaptive output feedback 
controller is obtained 
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where , )1(2),( 2 tetyD −+−= ttyty sin)1(),( 2+=ρ . 

Letting 1−=θ , 01.0=δ , ,  and 1.0=Γ 0)0(ˆ =θ
1.0=ε , the initial condition )5,3,5()0( −=x , the 

simulation results of the system responses and the adaptive 
variables are shown in Figs. 1-2. 

 
Fig 1. The system (40) responses 

 

 
Fig 2. The adaptive variable . )(ˆ tθ

V. CONCLUSION 
The problem of robust output feedback stabilization for a 

class of nonlinear systems with partially known 
uncertainties is considered. A class of continuous adaptive 
robust output feedback controllers that can guarantee 
uniform ultimate boundedness of the resulting closed-loop 
systems in the presence of uncertainties is proposed. In 
contrast with some results presented in the control literature, 
the adaptive law for updating the estimate values of the 
unknown parameters is continuous, and the existence of the 
solutions to the resulting closed-loop systems in the usual 
sense can be guaranteed. Moreover, due to the continuity of 
the output feedback controller and adaptive law, the 
proposed adaptive robust output feedback controller is 
easily implemented in practical robust control, and no 
chattering will appear in practical systems. 
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