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Abstract— This paper presents a novel approach to missile that work in Section I-C. Brief information on involutes is
guidance utilising the differential geometry of curves and not given in Section Il which leads to the heart of the paper,
relying on the line of sight (LOS) information. The targets — gection |11, where the new algorithm is derived in detail
trajectory is treated as a smooth curve of known curvature and T . '
the new algorithm is based on the involute of the target’s curve. The assumpuqns on t.he scenarios used to test the neW. law
The missile’s trajectory uses the concept of virtual target to  are collected in Section IV. The actual results follow in

generate the correct involute trace. It is shown that the missile Section V and the paper ends with conclusions in Section
is either on the trace immediately or can reach it through /|,

a flying in procedure. Following the trace may require a 3-
D manoeuvre, not described here, while the 2-D aspects of
the algorithm lead to very simple formulae. The reference
scenario is a planar air-to-air engagement of point masses with How can the curvilinear engagement geometry be refor-
a manoeuvrable target of the F-16 fighter class. Simulations for  mylated and endowed with appropriate intercept kinemat-

erfect target information show intercepts both for the involute . . . . .
an ond o quidance. PN based interF():epts ocour quicker, but 157 We believe that the differential geometry of spatial

the involute based trajectories are more difficult to evade and Ccurves [9], [1_0], [5] offers an attractive .Setting' for this'
always result in a side impact. task. Indeed, it has long been a tool for kinematic analysis

of material points, especially in mechanism and machine
I. INTRODUCTION theory [4].

This paper proposes a fresh look at the generation of The essence of differential geometric description of
intercept trajectories for missile guidance. The refeeencsmooth curves i3 is the use of Calculus to quantify how
scenario is a planar air-to-air engagement of point massgsyrve deviates locally from its linear approximation. The
with a manoeuvrable target of the F-16 fighter class. Thgoint mass velocity vector = v(t) over timet is expressed
motivation is to overcome, without the complexity of Opti-a5 a multiplev = v(t) of the unit tangent vectdT = T(t),
mal Control [1], the two shortcomings of the proportionali ¢ v(¢) = 4(¢)T(t). At the same moment in time, the
navigation (PN) algorithm [14] family: (i) reliance on the normal vectork — k(#) is obtained by differentiating” and
line of sight (LOS) for derivation of intercept geometryjs thereforé orthogonal toT. Again, k(t) = x(t)N, where
and kinematics, (ii) effectiveness against non-manoegvri \ is the unit normal vector ane is the curvature. The
targets only. The second limitation can be, to some extendyyature measures the local deviation of the curve from
alleviated through various modifications of the original PNpe rectilinear progression along the tangent line. Indeed
algorithm, e.g. augmented PN. Still, the kinematic rules afs jnversep = 1/k is the radius of best fitting circle in
the PN algorithm family aim at compensating the deviatioghe plane spanned by the tangent and normal vectors. The
of the missile velocity vector from the LOS. In particu-right-handed local coordinate frame is completed by the
lar, the target manoeuvres manifest the_mselves indireCthnormal vectorb(t) = 7(t)B, where B def v N is the
through the motion of the LOS. Such motion becomes VeT¥nit binormal vector. The torsiom measures locally how

rapid when the missile and target are close to each Oth?ﬁuch the curve deviates from the plane spanned by the

even for benign €vasive manoeuvres. This is an !nescapa?é%gem and normal vectors. It is convenient to replace the
consequence of usingtraight lines (intercept triangles) time parameter with the arc lengths def ftv(t)dt for then
- Jo !

to expresscurved trajectories (manoeuvres). Indeed thethe reparameterised curve has unit soeed o The
original PN was conceived for a target moving with a P peedsast = v.

constant speed along a straight line. A generalisation f}bove definitions and relationships are summafigsdthe

A. Background

renet-Serret equations:

scenarios with manoeuvres leads naturally to freeing the
intercept geometry of the rectilinear framework. T/(s) 0 r(s) 0 T(s)

This paper is organised as follows. This introductory N'(s) | = | —&(s) 0 7(s) N(s) |, (1)
section continues by presenting a synoptic account of the B/(s) 0 —7(s) 0 B(s)

essential facts from Differential Geometry in Section I-A,
followed by a summary of the relevant prior work in Section igjnce . T = 1, differentiation givest - T = 0.
I-B. The novelty of the proposed approach is contrasted with 2Note that each off, N, B is a vector inR?, in general.
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where’ means differentiation with respect to Parameteri- accelerationk can be expanded in a functional series, but
sations of (1) differ by the factor of speed= ds/dt, as for only two coefficients can be determined, as the successive
any vectorx, we obviously havelx/dt = (dx/ds)(ds/dt). integrations ofk yield two independent equations. Cherry
It should be emphasised that differential geometry ofhose for this approximate representatior C; + Cat,
curves has nothing new to say about straight lines, aghich yielded:
k = 7 = 0 then. Indeed, such case can be handled by K, K,
PN, and hence our focus on manoeuvring targets. a. = E(Vf — Vo) + 55 (ry —ro—voty) — g, (4)
g
B. Prior work where the first error term is the velocity-to-go and the
There have not been many attempts to use the differentis#cond the position-to-go, whil&’;, = —2 and K, = 6.
geometric formulation for missile guidance. In seeker coordinates, the curvature corresponding to (4)
The notable work [3], [6], [7] is a recent example. Inwas approximately:
those papers the 3-D kinematics of missile-target point K, . K, .
masses were resolved with respect to the LOS. The mis- Ke =1 sind coso — | Sino—gu, (5)

sile trajectory arc lengths,, was used as the common .
parameter for both curves. The target/missile speed rat\l%heregl is the component of along Ny, / the LOS

: range,d the angle error betwees, and v;, and o the
m = vy /v, = const < 1 was assumed, together with), = 9 9 0 Vf 7

const. The resulting kinematics formulae combined the uni{1ead|ng error gngle. Lin's gener.allsatlon of .Cherrys ap-
vectore, along the LOS and the unit rotational vectgrof proach [8, Section 8.6] consisted in recalculationkgf and

17 LOS i (1) 50t e VecoR, Ty, (i spoea 1212 oPmal conrol. reulingflam maximization of e
ratio m) and N;, N, (with the curvaturess;, ,,) were b peedy F) = o) =

. ) L flight dynamics of the missile were included both for the
involved. Since the missile speed was assumed constant .. : : -

: L vertical and horizontal plane cases. Since the overriding

the guidance command only changed the direction of the . .

. . consideration was to obtain closed-form formulae f6r

velocity vector. The command was expressed in terms of the L : .

. . . and K, several simplifications had to be introduced into

desired curvature,,, obtained from the requirement that

the LOS ratev is zero. For this to work, the desired c:Iosingth(.a solution. T_he end re_sult was thus sut_)optlmal. The ana-
o, Iytical expressions obtained were rather involved fumgio
velocity v, would be needed. In the actual comm

mp . : b of the aerodynamic coefficients and engagement geometry.

\g;i fga;waglirtrﬁgu?eﬂ-Closmg spe€dand a heuristic The fundamental formula (5) was explicitly based on the
' LOS information, as indeed was the whole setting, which

P N; - e A r'w @) also requires independent determination of the predicted

" N,, - ey N,, ey’ intercept point. The same was also true in 3-D, when a

torsion command was included [12].

If A > 2, then the LOS ratev decreases, provided <
0, since substituting (2) to the target-missile kinematicsg. Novelty

resolved ore, andey, yields: This paper differs from the work described in Section

w = wo(r/r) 2. (3) I-Bin two main aspects. Firstly, it focuses on deriving an
algorithm for 2-D intercept trajectory generation thahat
An extra command for torsiom,, was necessary for the phased on a LOS framework. Secondly, an explicit aim is
law (2) to be well-defined, and the overall scheme workegh tackle manoeuvrable targets in a way that leads to a
only for a certain set of initial conditions. The end resuliconceptually and computationalymple guidance law.
was a generalisation of PN for arbitrarily manoeuvring (but The scenario considered is a planar air-to-air engagement
constant speed) targets, valid for some initial conditiongf an F-16 class manoeuvring target. It is assumed that both
The algorithm was based on the LOS informatien; ey,  the target and the missile speeds &ndv,,) are constant
r" andw, and also differential geometric quantities; N:  and the target's curvatureis known. The missile trajectory
andNN,,,. is then derived from these data and is an appropriate invo-
Previous noteworthy work includes the kappa guidancgte of the target's curve. An intercept algorithm is given b
[8, Section 8.6], [11], [12] which builds upon the classicakonstructing a kinematically correct involute, i.e. ondiath
work on the E guidance by Cherry [2]. The original algo-is consistent with the time-to-go requirement, resultirogyf
rithm of Lin [8] was 2-D and based on the simple reasoninghe constant ratio; /v,,,. This algorithm utilises the concept

of Cherry that in inertial coordinates the missile accelera of virtual target which is an aux”iary means to Compute the
is X = g + a., whereg is the gravity vector anch. the required involute.

command vector. Ik is integrated twice in succession on

to, 1], two independent equations are obtained. They are Il. INVOLUTES

expressed in terms of the current (@) and final (atts; A curveC'is a (thrice) differentiable mapping: [0, ¢] —
predicted intercept point) velocities and positionsg,(ro R? and its trace is the séf(x) = {x(/) e R®| [ € [1,]]}
andvy, ry), and the time-to-ga, = ¢y — ¢o. The unknown This definition is kinematic in nature: the curxes formed
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by a point traversingR® and leaving the tracé (x). The 3) Orientation The target’s tangent vectdI'(s) and
same trace may correspond to many curves, e.g. each of the missile’s normal vectoN*(s) must be collinear

the circleszy ;(s) = cosks,x2 x(s) = sinks, s € [0, 2], for all s, as C* intersects the tangent lines f
k=1,2,...is a distinct curve, but their common trace is orthogonally.
2 + a3 = 1. Solution to problem 2 is possible after removing restric-
tion 1 which is done using the concept of virtual target
a0r P e described in Section IlI-A. Problem 3 is solved in Section

Missile track—

Predicted Intercept Pgi -B
an involute to the target rack .

700 -

Missile axial speed A. Correct involute generated by virtual target

(ows function k{e=vy A way to overcome restriction 1 is to postulate existence
of previous positions of the target, i.e. where it could have
beenbefore the engagement commenced. This leads to a
virtual trajectory obtained by concatenation of the prasio
positions with the current ones, thus implicitly expanding
the observed target trajectory. The expanded trajectany ca
be traversed by the virtual target at a constant speed,
different from the real target’s speed. Mathematicallis th
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, ‘ __Initial range, also called horizontal ff-set, ¢ an extension of the domain of the target’s curve, combined
O oy f 0 000 with its reparameterisation fromto s,,. For the real target,
equation (6) exists oft), ¢|, and hence so do all the involutes
Fig. 1. Trajectory produced by involute guidance law. as well. If (6) is reparameterised by, and extended to

) [0, ¢'], the same happens to its involutes, thus enriching the
The tangent line to a curvé’ generates the tangent ot of nossible missile intercept trajectories.

surface which for planar curves coincides with the defining T virtual target is an imaginary point mass, moving
plane. A curveC™ which lies on the tangent surface 6f 4t 5 constant speed,,;, which will reach the intercept

and intersects the tangent lines orthogonally is called aﬁbint at the same time as the real target, but starting at
involute of C', see Figure 1. The equation of an involute 5 5int behind? the real target. This new starting point is

of the curvex, is: obtained by reparameterising and extending the real target

x*(s) = x(s) + (¢ — s)T(s), (6) trajectory, so that restriction 1 is satisfied for the vittua
_ _ target. Hence, the missile position at the beginning of the
so thatx*(c) = x(c) is the intercept fos = ¢ and engagements = 0 is on the virtual target’s tangent at
v (s) = (c = 5)rN(s) @ e

Assuming that restriction 3 is satisfied, this enables the
Here v %! dx*/ds, while s, T(s), N(s) and x are intercept of the virtual target. Importantly, this can benelo
parameters of theriginal curve C. This is the kinematic PY following the trace of the involute the missileatready
model of an involute based missile-target engagement. {raversing (at launch). Moreover, this will also lead to the
The involute’s curvature is expressed in terms of théterceptof the real target. Indeed, both targets wilkarsit

original curve’s curvatures and torsionr: the same time at the point & ¢ for the real ands,,; = ¢’
s for the virtual), where the involute trace meets both virtua
(k)% = KT (8) and real trajectories. Figure 2 illustrates this concept.
(c—s)?K? In order to facilitate easy computation of and vy,
For 2-D 7 = 0 and in our case = vt, so that we postulate the extension of the observed trajectory by
1 concatenation of a circular arc. The radius of the arc will be
K* = pmpert (9) computed from the curvature of the target at the beginning

of the engagement
Reparameterisation of the above formulae with missile arc

length s,, = vyt = (v, /v)s is obvious, ag,, = const. pury = 1/£(0), (10)
wherex = k(s) is parameterised witls; see Section I-A
_ _ o for the notion of radius of curvature. The virtual trajegtor
There are three main problems in application of thgs parameterised by, and ats,. = 0 its Frenet frame
mathematical principles of involutes to practical guidanc (T, (0),N,.(0)) must be orthogonal to the missile’s
1) Position The missile’s positiorx*(s) has to be on the framé' at the beginning of the engageméfit* (0), N*(0)),
tangent line ofT'(s), i.e. the target’s velocity, see (6).
3For a forward quarter engagement this should rieafiiont of .

2) SpeedThe ;peed ShO.UId* decrease linearly, reaching “Note that the missile’s frame is parameterisedsbyiot sy,¢; see (6)—
zero at the impact point*(s) = (c — s)x, see (7). (q).

IIl. | NVOLUTE BASED GUIDANCE LAW
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500

[ % ' ‘ B. Flying in on the correct involute
T / As explained in Section llI-A, the virtual trajectory is
36

obtained by adding a circular arc to the real trajectory. The
Nt T radius of this arg,. is given by (10) and the corresponding
‘ arc lengthdc by (11), obtained from the angular difference
00 between the real and virtual frames.

Figure 2 shows that fo6d = = /2 the virtual target’s
and missile’'s frames can be aligned, so that restriction
3 is obeyed. If the missile were farther in the negative
direction of horizontal separation, there would still éxis
00 > 7/2 satisfying requirement 1, but not 3. While the
missile position would then indeed be on the corresponding
~to0g L = - - 2 tangent line of the virtual target, the virtual target's and

Horizontal distance ] missile’s frames couldhot be aligned, i.e. restriction 3
would be violated. Such situation is illustrated in Figure
3, where the initial missile position is,,, (0) = (0,4000),
while the target is ak(0) = (0,0). The circular arc with
i.e. ats = 0. Since the orientations of both the missile’s anc[‘fjld'usf)Vrt = %, Is extended by-(3/2)r and there exists

, . a tangent lind of this arc on whichx,, (0) lies. However,
the target's frames (both parameterisedshyare assumed o . .
. he tangent vectom'; of this line is not collinear with the
to be known at0, the angular difference between the real .” . . )
. . - I missile’s normal vector which iN,, = (0,1), i.e. parallel
and virtual frames)é is readily computed. Indeed it is the L ) . e
. , to the direction of sideward separation. If the missile lseep
angle through which the target's frant@ (0), N(0)) has to flying straight on (zero manoeuvre effort), there will come
be rotated to be orthogonal {@*(0), N*(0)). Hence the ying g '

) ; - a moment (captured in Figure 3 ferr/2), whenT,; and
arc length of the extension of the observed trajectory is N,, are indeed collinear. At that moment the situation is

8¢ = pPyrt 00. (11) like in Figure 2, so that the virtual target algorithm can be

_ activated, and the missile will start flying along the cotrec
The target moves with the constant speedand the involute, while obeying restrictions 1 and 3.

Virtual target

ok

Real Target

Sideward distance [m]

-500 -

Miss|le

Fig. 2. Finding the correct involute.

intercept occurs at = ¢, so that Therefore, the 2-D aspects of the algorithm are as fol-
G 12 lows.
tgo = D’ (12) Case 11f, at the beginning of the engagement, the

missile is close enough to the target, a virtual target can
be computed satisfying 1 and 3. This also means that the
d =c+éc. (13) missile is immediately on the correct involute and can
) follow its trace.

Hence, the constant speed of the virtual target must be  c55e 2If, at the beginning of the engagement, the missile

J Sec is too far for the alignment of its frame with the virtual

Vvt = 4 = (1 + ?)U (14)  target's frame to occur, it first executes the flying in phase.

7 This means that the missile continues flying in a straiglat lin

while, using (11), we have

and, finally, until the alignment occurs, i.e. when it attains the correct
Se involute and the situation reduces to Case 1.
Syrt = Uyt = (1 + ;)S (15) The criterion for distinguishing the cases follows from

the definition of the virtual trajectory. The extension oé th
Deal trajectory is an arc of the circle with radius and centre
derived from the positiork(s) and curvatures(s) of the

which, together with (13), completes the virtual extensio
and reparameterisation of the target’s trajectory. Repara

eterising (6) withs,, generates the trace of the COrreCttarget, see (10) and Figure 3. The criterion tests whether

mv_lc_)rllute 7 (x ) thus fsolvmg proplem L but th issil the current normal of the missile is collinear with a tangent
e trace Is a reference trajectory, but the missile m f the circle. If this is true, then this is Case 1; otherwise

not arrive at the intercept point & = t,,, as it flies at |l]t is Case 2.

a constant speed. This is the essence of problem 2. If t €The vector connecting the target's centre of curvature

engagement begins too latg, > ¢y, and the missile will .o iccilars position at, see Figure 3, is
never make it. If the engagement begins too eaply< ’ ’

t40, SO it will have to loiter above the tangent plane, while Ric(s) = (X(S) + H(S)N(S)) = Xm(s) (16)
following the trace. This requires a 3-D manoeuvre and

is thus outside the remit of this paper; a way to do it isnd its length isR,,.(s) = ||R.,..(s)||. The angle between
described elsewhere. the missile’s unit normal vectolN,,(s) and R,..(s) is
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Collinearity achieved, switchover occurs.
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Fig. 3. Forward quarter target engagement and intercept.

0..(s). The candidate circle for the extending arcsdbtas
radius

R, (s) = 1/k(s). a7)
Hence, the flying in criterion is
sin0,c(s) < Ry(8)/Rne(s) = Casel
SinOpc(s) > Ry(S)/Rne(s) = Case 2. (18)

The values = s for which Case 1 occurs is used to
define the virtual target with,,, = R,(s0), see (10) and
@av).

IV. SIMULATED SCENARIOS

The following assumptiorisare made regarding the na-
ture and capabilities of the target:

« the target is an F-16 class fighter;

« the target will manoeuvre in the end-game;

« Mmanoeuvres up tog sustainable fox 10 seconds;
« the missile-target engagements are all aspect.

1000

800

Missile trajectory Target trajectory

600 Intercept point

400
200
0

Begining of target manoeuvre

-200

Horizontal distance [m]

-400

-600 |-

-800

Missile launch |

-1000 v v
2500 2000 1500 1000 500

Sideward distance [m]

Fig. 4. Forward quarter involute target quasi-planar man@eengage-
ment.
800~
Intercept point
600~
4001 Target trajectory
200+
E
8
§ or Begining of target manoeuvre
‘_g“ _200 Missile trajectory
E
-400
-600
-800
Missile launch
-1000 i i i i j
2500 2000 1500 1000 500 0
Sideward distance [m]
Fig. 5. Forward quarter PN target quasi-planar manoeuvragamgent.

V. RESULTS AND DISCUSSION

The evasive manoeuvre assumed here is a tightly bankedg o1, the PN (which is a benchmark) and the new

turn or loop [13].

The above capabilities will now be described terms of;

differential geometric parameters, namély, N, . The
principal plane of the manoeuvre, or the tangent plane,

algorithm intercept the target for perfect target inforimat
owever, the engagement times and trajectories vary con-
siderably.

'S The involute engagement model guarantees a perpendic-

horizontal in the earth Cartesian coordinate system. i thj,, impact. The PN guidance law varies in the impact
context, the following assumptions are made for the tight'&ngle, depending on the engagement. In the two scenarios

banked turn manoeuvre:
1) the curvature of the target’s trajectory is known;
2) the curvature is constant= 0.34;
3) the turn is less than 1 complete cycle;

displayed, it evolves into a head-on or tail-chase manasuvr
In general, the benchmark provides a shorter engagement
time. This is because it takes a more direct approach to the
intercept point.

4) the target's speed is 300 m/s (Equivalent Air Speed). These results can be interpreted in two ways. One is

Four engagements are simulated:
1) involute law: forward quarter engagement, Figure 4
2) PN law: forward quarter engagement, Figure 5;
3) involute law: rear quarter engagement, Figure 6;
4) PN law: rear quarter engagement, Figure 7.

Shttp://www.fas.org/man/dod-101/sys/ac/f-16.htm

that the best missile trajectory should be a straight line to

the impact point. Another is that a straight line trajectory

allows the pilot to plan an evasive action. On the other
hand, an unexpected, curved trajectory adds uncertainty to
the evasion strategy, especially that pilots tend to base th
strategy on the LOS information. Furthermore, a perpendic-
ular impact angle from the outside ensures that the missile
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is approaching the target from its blind side, if it is puflin
maximumyg in a level turn. In terms of lethality, hitting the
cockpit increases target kill probability when compared to
head-on or tail-chase impacts.

VI. CONCLUSIONS

This paper presented a basic model of intercept engage-
ment derived from the differential geometric concept of in-
volute, focusing on 2-D aspects. Assuming that the target’s
curvature was available, the resulting guidance law was
shown to be viable and did not rely on LOS information.

Future work requires derivation of effective estimators
of the target's curvature and torsion. Also, the guidance
law needs further analysis, especially quantification ef th
capture region and generalisation to 3-D engagements.
Performance should be tested under uncertainty in target
information.

It seems that the differential geometry of curves is a
productive tool for guidance against manoeuvring targets
and should be exploited further.
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