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Abstract— This paper presents a novel approach to missile
guidance utilising the differential geometry of curves and not
relying on the line of sight (LOS) information. The target’s
trajectory is treated as a smooth curve of known curvature and
the new algorithm is based on the involute of the target’s curve.
The missile’s trajectory uses the concept of virtual target to
generate the correct involute trace. It is shown that the missile
is either on the trace immediately or can reach it through
a flying in procedure. Following the trace may require a 3-
D manoeuvre, not described here, while the 2-D aspects of
the algorithm lead to very simple formulae. The reference
scenario is a planar air-to-air engagement of point masses with
a manoeuvrable target of the F-16 fighter class. Simulations for
perfect target information show intercepts both for the involute
law and PN guidance. PN based intercepts occur quicker, but
the involute based trajectories are more difficult to evade and
always result in a side impact.

I. I NTRODUCTION

This paper proposes a fresh look at the generation of
intercept trajectories for missile guidance. The reference
scenario is a planar air-to-air engagement of point masses
with a manoeuvrable target of the F-16 fighter class. The
motivation is to overcome, without the complexity of Opti-
mal Control [1], the two shortcomings of the proportional
navigation (PN) algorithm [14] family: (i) reliance on the
line of sight (LOS) for derivation of intercept geometry
and kinematics, (ii) effectiveness against non-manoeuvring
targets only. The second limitation can be, to some extent,
alleviated through various modifications of the original PN
algorithm, e.g. augmented PN. Still, the kinematic rules of
the PN algorithm family aim at compensating the deviation
of the missile velocity vector from the LOS. In particu-
lar, the target manoeuvres manifest themselves indirectly
through the motion of the LOS. Such motion becomes very
rapid when the missile and target are close to each other,
even for benign evasive manoeuvres. This is an inescapable
consequence of usingstraight lines (intercept triangles)
to expresscurved trajectories (manoeuvres). Indeed the
original PN was conceived for a target moving with a
constant speed along a straight line. A generalisation to
scenarios with manoeuvres leads naturally to freeing the
intercept geometry of the rectilinear framework.

This paper is organised as follows. This introductory
section continues by presenting a synoptic account of the
essential facts from Differential Geometry in Section I-A,
followed by a summary of the relevant prior work in Section
I-B. The novelty of the proposed approach is contrasted with

that work in Section I-C. Brief information on involutes is
given in Section II which leads to the heart of the paper,
Section III, where the new algorithm is derived in detail.
The assumptions on the scenarios used to test the new law
are collected in Section IV. The actual results follow in
Section V and the paper ends with conclusions in Section
VI.

A. Background

How can the curvilinear engagement geometry be refor-
mulated and endowed with appropriate intercept kinemat-
ics? We believe that the differential geometry of spatial
curves [9], [10], [5] offers an attractive setting for this
task. Indeed, it has long been a tool for kinematic analysis
of material points, especially in mechanism and machine
theory [4].

The essence of differential geometric description of
smooth curves inR3 is the use of Calculus to quantify how
a curve deviates locally from its linear approximation. The
point mass velocity vectorv = v(t) over timet is expressed
as a multiplev = v(t) of the unit tangent vectorT = T(t),
i.e. v(t) = v(t)T(t). At the same moment in time, the
normal vectork = k(t) is obtained by differentiatingT and
is therefore1 orthogonal toT. Again,k(t) = κ(t)N, where
N is the unit normal vector andκ is the curvature. The
curvature measures the local deviation of the curve from
the rectilinear progression along the tangent line. Indeed,
its inverseρ = 1/κ is the radius of best fitting circle in
the plane spanned by the tangent and normal vectors. The
right-handed local coordinate frame is completed by the
binormal vectorb(t) = τ(t)B, whereB

def
= T × N is the

unit binormal vector. The torsionτ measures locally how
much the curve deviates from the plane spanned by the
tangent and normal vectors. It is convenient to replace the
time parametert with the arc lengths

def
=

∫ t

0
v(t)dt, for then

the reparameterised curve has unit speed, asds/dt = v. The
above definitions and relationships are summarised2 by the
Frenet-Serret equations:


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T′(s)
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B′(s)



 =
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

 , (1)

1SinceT · T = 1, differentiation givesṪ · T = 0.
2Note that each ofT, N, B is a vector inR

3, in general.



where′ means differentiation with respect tos. Parameteri-
sations of (1) differ by the factor of speedv = ds/dt, as for
any vectorx, we obviously havedx/dt = (dx/ds)(ds/dt).

It should be emphasised that differential geometry of
curves has nothing new to say about straight lines, as
κ = τ = 0 then. Indeed, such case can be handled by
PN, and hence our focus on manoeuvring targets.

B. Prior work

There have not been many attempts to use the differential
geometric formulation for missile guidance.

The notable work [3], [6], [7] is a recent example. In
those papers the 3-D kinematics of missile-target point
masses were resolved with respect to the LOS. The mis-
sile trajectory arc lengthsm was used as the common
parameter for both curves. The target/missile speed ratio
m = vt/vm = const < 1 was assumed, together withvm =
const. The resulting kinematics formulae combined the unit
vectorer along the LOS and the unit rotational vectoreθ of
the LOS with (1), so that the vectorsTt, Tm (with the speed
ratio m) and Nt, Nm (with the curvaturesκt, κm) were
involved. Since the missile speed was assumed constant,
the guidance command only changed the direction of the
velocity vector. The command was expressed in terms of the
desired curvatureκmp obtained from the requirement that
the LOS rateω is zero. For this to work, the desired closing
velocity r′mp would be needed. In the actual commandr′mp

was replaced with the real closing speedr′ and a heuristic
gain A > 2 was introduced:

κm = m2κt

Nt · eθ

Nm · eθ

− A
r′ω

Nm · eθ

. (2)

If A > 2, then the LOS rateω decreases, providedr′ <
0, since substituting (2) to the target-missile kinematics,
resolved oner andeθ, yields:

ω = ω0(r/r0)
A−2. (3)

An extra command for torsionτm was necessary for the
law (2) to be well-defined, and the overall scheme worked
only for a certain set of initial conditions. The end result
was a generalisation of PN for arbitrarily manoeuvring (but
constant speed) targets, valid for some initial conditions.
The algorithm was based on the LOS information:er, eθ,
r′ andω, and also differential geometric quantities:κt, Nt

andNm.
Previous noteworthy work includes the kappa guidance

[8, Section 8.6], [11], [12] which builds upon the classical
work on the E guidance by Cherry [2]. The original algo-
rithm of Lin [8] was 2-D and based on the simple reasoning
of Cherry that in inertial coordinates the missile acceleration
is ẍ = g + ac, whereg is the gravity vector andac the
command vector. If̈x is integrated twice in succession on
[t0, tf ], two independent equations are obtained. They are
expressed in terms of the current (att0) and final (attf ;
predicted intercept point) velocities and positions (v0, r0

andvf , rf ), and the time-to-gotg = tf − t0. The unknown

acceleration̈x can be expanded in a functional series, but
only two coefficients can be determined, as the successive
integrations ofẍ yield two independent equations. Cherry
chose for this approximate representationẍ ≈ C1 + C2tg
which yielded:

ac =
K1

tg
(vf − v0) +

K2

t2g
(rf − r0 − v0tg) − g, (4)

where the first error term is the velocity-to-go and the
second the position-to-go, whileK1 = −2 and K2 = 6.
In seeker coordinates, the curvature corresponding to (4)
was approximately:

κc =
K1

R
sin δ cos σ −

K2

R
sin σ − g⊥, (5)

whereg⊥ is the component ofg along Nm, R the LOS
range, δ the angle error betweenv0 and vf , and σ the
heading error angle. Lin’s generalisation of Cherry’s ap-
proach [8, Section 8.6] consisted in recalculation ofK1 and
K2 via optimal control, resulting from maximisation of the
final (impact) speedvf with δ(tf ) = σ(tf ) = 0. Nonlinear
flight dynamics of the missile were included both for the
vertical and horizontal plane cases. Since the overriding
consideration was to obtain closed-form formulae forK1

and K2, several simplifications had to be introduced into
the solution. The end result was thus suboptimal. The ana-
lytical expressions obtained were rather involved functions
of the aerodynamic coefficients and engagement geometry.
The fundamental formula (5) was explicitly based on the
LOS information, as indeed was the whole setting, which
also requires independent determination of the predicted
intercept point. The same was also true in 3-D, when a
torsion command was included [12].

C. Novelty

This paper differs from the work described in Section
I-B in two main aspects. Firstly, it focuses on deriving an
algorithm for 2-D intercept trajectory generation that isnot
based on a LOS framework. Secondly, an explicit aim is
to tackle manoeuvrable targets in a way that leads to a
conceptually and computationallysimple guidance law.

The scenario considered is a planar air-to-air engagement
of an F-16 class manoeuvring target. It is assumed that both
the target and the missile speeds (vt and vm) are constant
and the target’s curvatureκ is known. The missile trajectory
is then derived from these data and is an appropriate invo-
lute of the target’s curve. An intercept algorithm is given by
constructing a kinematically correct involute, i.e. one which
is consistent with the time-to-go requirement, resulting from
the constant ratiovt/vm. This algorithm utilises the concept
of virtual target which is an auxiliary means to compute the
required involute.

II. I NVOLUTES

A curveC is a (thrice) differentiable mappingx: [0, c] →
R

3 and its trace is the setT (x) = {x(∫) ∈ R
∋| ∫ ∈ [′, ⌋]}.

This definition is kinematic in nature: the curvex is formed



by a point traversingR3 and leaving the traceT (x). The
same trace may correspond to many curves, e.g. each of
the circlesx1,k(s) = cos ks, x2,k(s) = sin ks, s ∈ [0, 2π],
k = 1, 2, . . . is a distinct curve, but their common trace is
x2

1 + x2
2 = 1.
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Fig. 1. Trajectory produced by involute guidance law.

The tangent line to a curveC generates the tangent
surface which for planar curves coincides with the defining
plane. A curveC∗ which lies on the tangent surface ofC
and intersects the tangent lines orthogonally is called an
involute of C, see Figure 1. The equation of an involutex∗

of the curvex, is:

x∗(s) = x(s) + (c − s)T(s), (6)

so thatx∗(c) = x(c) is the intercept fors = c and

v∗(s) = (c − s)κN(s), (7)

Here v∗ def
= dx∗/ds, while s, T(s), N(s) and κ are

parameters of theoriginal curve C. This is the kinematic
model of an involute based missile-target engagement.

The involute’s curvature is expressed in terms of the
original curve’s curvatureκ and torsionτ :

(κ∗)2 =
κ2 + τ2

(c − s)2κ2
. (8)

For 2-D τ = 0 and in our cases = vt, so that

κ∗ =
1

c − vt
. (9)

Reparameterisation of the above formulae with missile arc
lengthsm = vmt = (vm/v)s is obvious, asvm = const.

III. I NVOLUTE BASED GUIDANCE LAW

There are three main problems in application of the
mathematical principles of involutes to practical guidance:

1) Position The missile’s positionx∗(s) has to be on the
tangent line ofT(s), i.e. the target’s velocity, see (6).

2) SpeedThe speed should decrease linearly, reaching
zero at the impact point:v∗(s) = (c − s)κ, see (7).

3) Orientation The target’s tangent vectorT(s) and
the missile’s normal vectorN∗(s) must be collinear
for all s, as C∗ intersects the tangent lines ofC
orthogonally.

Solution to problem 2 is possible after removing restric-
tion 1 which is done using the concept of virtual target
described in Section III-A. Problem 3 is solved in Section
III-B.

A. Correct involute generated by virtual target

A way to overcome restriction 1 is to postulate existence
of previous positions of the target, i.e. where it could have
beenbefore the engagement commenced. This leads to a
virtual trajectory obtained by concatenation of the previous
positions with the current ones, thus implicitly expanding
the observed target trajectory. The expanded trajectory can
be traversed by the virtual target at a constant speed,
different from the real target’s speed. Mathematically, this is
an extension of the domain of the target’s curve, combined
with its reparameterisation froms to svrt. For the real target,
equation (6) exists on[0, c], and hence so do all the involutes
as well. If (6) is reparameterised bysvrt and extended to
[0, c′], the same happens to its involutes, thus enriching the
set of possible missile intercept trajectories.

The virtual target is an imaginary point mass, moving
at a constant speedvvrt, which will reach the intercept
point at the same time as the real target, but starting at
a point behind3 the real target. This new starting point is
obtained by reparameterising and extending the real target’s
trajectory, so that restriction 1 is satisfied for the virtual
target. Hence, the missile position at the beginning of the
engagements = 0 is on the virtual target’s tangent at
svrt = 0.

Assuming that restriction 3 is satisfied, this enables the
intercept of the virtual target. Importantly, this can be done
by following the trace of the involute the missile isalready
traversing (at launch). Moreover, this will also lead to the
intercept of the real target. Indeed, both targets will arrive at
the same time at the point (s = c for the real andsvrt = c′

for the virtual), where the involute trace meets both virtual
and real trajectories. Figure 2 illustrates this concept.

In order to facilitate easy computation ofc′ and vvrt,
we postulate the extension of the observed trajectory by
concatenation of a circular arc. The radius of the arc will be
computed from the curvature of the target at the beginning
of the engagement

ρvrt = 1/κ(0), (10)

whereκ = κ(s) is parameterised withs; see Section I-A
for the notion of radius of curvature. The virtual trajectory
is parameterised bysvrt and atsvrt = 0 its Frenet frame
(Tvrt(0),Nvrt(0)) must be orthogonal to the missile’s
frame4 at the beginning of the engagement(T∗(0),N∗(0)),

3For a forward quarter engagement this should readin front of .
4Note that the missile’s frame is parameterised bys, not svrt; see (6)–

(9).
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Fig. 2. Finding the correct involute.

i.e. ats = 0. Since the orientations of both the missile’s and
the target’s frames (both parameterised bys) are assumed
to be known at0, the angular difference between the real
and virtual framesδθ is readily computed. Indeed it is the
angle through which the target’s frame(T(0),N(0)) has to
be rotated to be orthogonal to(T∗(0),N∗(0)). Hence the
arc length of the extension of the observed trajectory is

δc = ρvrt δθ. (11)

The target moves with the constant speedv and the
intercept occurs ats = c, so that

tgo =
c

v
, (12)

while, using (11), we have

c′ = c + δc. (13)

Hence, the constant speed of the virtual target must be

vvrt =
c′

tgo

=
(

1 +
δc

c

)

v (14)

and, finally,

svrt = vvrtt =
(

1 +
δc

c

)

s (15)

which, together with (13), completes the virtual extension
and reparameterisation of the target’s trajectory. Reparam-
eterising (6) withsvrt generates the trace of the correct
involute T (x∗) thus solving problem 1.

The trace is a reference trajectory, but the missile may
not arrive at the intercept point attf = tgo, as it flies at
a constant speed. This is the essence of problem 2. If the
engagement begins too late,tf > tgo and the missile will
never make it. If the engagement begins too early,tf <
tgo, so it will have to loiter above the tangent plane, while
following the trace. This requires a 3-D manoeuvre and
is thus outside the remit of this paper; a way to do it is
described elsewhere.

B. Flying in on the correct involute

As explained in Section III-A, the virtual trajectory is
obtained by adding a circular arc to the real trajectory. The
radius of this arcρvrt is given by (10) and the corresponding
arc lengthδc by (11), obtained from the angular difference
δθ between the real and virtual frames.

Figure 2 shows that forδθ = π/2 the virtual target’s
and missile’s frames can be aligned, so that restriction
3 is obeyed. If the missile were farther in the negative
direction of horizontal separation, there would still exist
δθ > π/2 satisfying requirement 1, but not 3. While the
missile position would then indeed be on the corresponding
tangent line of the virtual target, the virtual target’s and
missile’s frames couldnot be aligned, i.e. restriction 3
would be violated. Such situation is illustrated in Figure
3, where the initial missile position isxm(0) = (0, 4000),
while the target is atx(0) = (0, 0). The circular arc with
radiusρvrt = Rv is extended by−(3/2)π and there exists
a tangent linel of this arc on whichxm(0) lies. However,
the tangent vectorTl of this line is not collinear with the
missile’s normal vector which isNm = (0, 1), i.e. parallel
to the direction of sideward separation. If the missile keeps
flying straight on (zero manoeuvre effort), there will come
a moment (captured in Figure 3 for−π/2), whenTl and
Nm are indeed collinear. At that moment the situation is
like in Figure 2, so that the virtual target algorithm can be
activated, and the missile will start flying along the correct
involute, while obeying restrictions 1 and 3.

Therefore, the 2-D aspects of the algorithm are as fol-
lows.

Case 1 If, at the beginning of the engagement, the
missile is close enough to the target, a virtual target can
be computed satisfying 1 and 3. This also means that the
missile is immediately on the correct involute and can
follow its trace.

Case 2If, at the beginning of the engagement, the missile
is too far for the alignment of its frame with the virtual
target’s frame to occur, it first executes the flying in phase.
This means that the missile continues flying in a straight line
until the alignment occurs, i.e. when it attains the correct
involute and the situation reduces to Case 1.

The criterion for distinguishing the cases follows from
the definition of the virtual trajectory. The extension of the
real trajectory is an arc of the circle with radius and centre
derived from the positionx(s) and curvatureκ(s) of the
target, see (10) and Figure 3. The criterion tests whether
the current normal of the missile is collinear with a tangent
of the circle. If this is true, then this is Case 1; otherwise
it is Case 2.

The vector connecting the target’s centre of curvature
with the missile’s position ats, see Figure 3, is

Rnc(s) =
(

x(s) + κ(s)N(s)
)

− xm(s) (16)

and its length isRnc(s) = ‖Rnc(s)‖. The angle between
the missile’s unit normal vectorNm(s) and Rnc(s) is
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θnc(s). The candidate circle for the extending arc ats has
radius

Rv(s) = 1/κ(s). (17)

Hence, the flying in criterion is

sin θnc(s) 6 Rv(s)/Rnc(s) ⇒ Case 1
sin θnc(s) > Rv(s)/Rnc(s) ⇒ Case 2. (18)

The values = s0 for which Case 1 occurs is used to
define the virtual target withρvrt = Rv(s0), see (10) and
(17).

IV. SIMULATED SCENARIOS

The following assumptions5 are made regarding the na-
ture and capabilities of the target:

• the target is an F-16 class fighter;
• the target will manoeuvre in the end-game;
• manoeuvres up to 9g, sustainable for< 10 seconds;
• the missile-target engagements are all aspect.

The evasive manoeuvre assumed here is a tightly banked
turn or loop [13].

The above capabilities will now be described terms of
differential geometric parameters, namelyT, N, κ. The
principal plane of the manoeuvre, or the tangent plane, is
horizontal in the earth Cartesian coordinate system. In this
context, the following assumptions are made for the tightly
banked turn manoeuvre:

1) the curvature of the target’s trajectory is known;
2) the curvature is constantκ = 0.34;
3) the turn is less than 1 complete cycle;
4) the target’s speed is 300 m/s (Equivalent Air Speed).

Four engagements are simulated:

1) involute law: forward quarter engagement, Figure 4;
2) PN law: forward quarter engagement, Figure 5;
3) involute law: rear quarter engagement, Figure 6;
4) PN law: rear quarter engagement, Figure 7.

5http://www.fas.org/man/dod-101/sys/ac/f-16.htm
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Fig. 4. Forward quarter involute target quasi-planar manoeuvre engage-
ment.
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Fig. 5. Forward quarter PN target quasi-planar manoeuvre engagement.

V. RESULTS AND DISCUSSION

Both the PN (which is a benchmark) and the new
algorithm intercept the target for perfect target information.
However, the engagement times and trajectories vary con-
siderably.

The involute engagement model guarantees a perpendic-
ular impact. The PN guidance law varies in the impact
angle, depending on the engagement. In the two scenarios
displayed, it evolves into a head-on or tail-chase manoeuvre.
In general, the benchmark provides a shorter engagement
time. This is because it takes a more direct approach to the
intercept point.

These results can be interpreted in two ways. One is
that the best missile trajectory should be a straight line to
the impact point. Another is that a straight line trajectory
allows the pilot to plan an evasive action. On the other
hand, an unexpected, curved trajectory adds uncertainty to
the evasion strategy, especially that pilots tend to base the
strategy on the LOS information. Furthermore, a perpendic-
ular impact angle from the outside ensures that the missile
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Fig. 6. Rear quarter involute target quasi-planar manoeuvreengagement.
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Fig. 7. Rear quarter PN target quasi-planar manoeuvre engagement.

is approaching the target from its blind side, if it is pulling
maximumg in a level turn. In terms of lethality, hitting the
cockpit increases target kill probability when compared to
head-on or tail-chase impacts.

VI. CONCLUSIONS

This paper presented a basic model of intercept engage-
ment derived from the differential geometric concept of in-
volute, focusing on 2-D aspects. Assuming that the target’s
curvature was available, the resulting guidance law was
shown to be viable and did not rely on LOS information.

Future work requires derivation of effective estimators
of the target’s curvature and torsion. Also, the guidance
law needs further analysis, especially quantification of the
capture region and generalisation to 3-D engagements.
Performance should be tested under uncertainty in target
information.

It seems that the differential geometry of curves is a
productive tool for guidance against manoeuvring targets
and should be exploited further.
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