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Abstract— This paper studies robustness of a gradient-type and prove asymptotic stability of the Nash equilibrium

CDMA power control algorithm with respect to disturbances  under several assumptions on the functiohé) andP; (-),
and time-delays. This problem is of practical importance and on the number of users.

because unmodeled secondary interference effects from neigh- In thi tudv th bust f thi trol |
boring cells play the role of disturbances, and propagation n this paper, we study the robustness of this control law

delays are ubiquitous in wireless data networks. We first show against additive disturbances and time-delays. This study
Ly-stability, for p € [1,00], with respect to additive distur- is important because of modelling errors, power noise,
bances. Next, using theL. property and a loop transforma-  secondary interference effects, such as those from neigh-
tion, we prove that global asymptotic stability is preserved for boring cells, and propagation delays. Our starting point

sufficiently small time-delays in forward and return channels. . L - .
For larger delays, we achieve global asymptotic stability by is a passivity-based stability proof for the algorithm (3),

scaling down the step-size in the gradient algorithm. presented in the companion paper [6]. Using the Lyapunov
functions obtained from this passivity analysis, in thipga
l. INTRODUCTION we first show that the controller (3) is robust to additive

Power control has been a significant research topic fdi,-disturbances. In particulak-disturbances are pursued
wireless communication networks [1], [2], [3], [5]. In- here within the input-to state stability (ISS) framework of
creased power ensures longer transmission distance &bantag [7], which makes explicit the vanishing effect of
higher data transfer rate, but it also consumes battery airdtial conditions. We then proceed to the study of delays
produces greater amount of interference to neighboringsing this ISS property. We first represent the delayed
users. In code division multiple access (CDMA) systemsgystem as a feedback interconnection of the nominal delay-
this problem has been formulated as a noncooperative garfinee model, and a perturbation block, the ISS-gain of which
by Alpcan et al. [4], [5], in which each user tries to depends on the amount of delay. Then we prove global

maximize asymptotic stability (GAS) for sufficiently small delays
using the ISS Small-Gain Theorem of Testlal. [8], [9].
max J; =U; (v; (p)) — Pi (ps) (1) For larger delays, we achieve GAS by scaling down the
! stepsize);.
where U; is a utility function for thei'" user, andP; The paper is organized as follows. Section 2 gives the

represents the cost of power. The functign(p) in (1) is notation and definitions used in this paper, and reviews
the signal-to-interference ratio (SIR) of thé user, defined the first-order gradient power control algorithm and its
as nominal stability properties. Section 3 considers adedlitiv
disturbances and proves dn-stability property. Section 4

Lh;p; . .
vi (p) = %, (2) derives bounds for time-delays that the system can tolerate
,;1 Pkt o without losing stability. For larger delays, it proposes a
, ) , scaling of the step-size; in (3). Conclusions are given
where L is the spreading gain of the CDMA system, section 5.

h; is the channel gain between th& mobile and the

base station, and? is the noise variance containing the Il. NOTATIONS AND PRELIMINARIES

contribution of the secondary background interference Th e will use projection functions to ensure nonnegative

authors then propose the gradient-type power control lawalues for physical quantities, such as power. Given a
function f (x), its positive projection is defined as

. aJ; _ dU; LX;h; dP;(p;)
pi=—Xigot =21 hi S N >0, 3 )
OPi T I N ppto? ap; (f (x))+ f f(z) fz>0,orz=0andf(z)>0
7 : z 0 if z=0andf(z)<0.
Corresponding author. Electrical, Computer and Systemsnergng o .
Department, Rensselaer Polytechnic Institute, Troy, NY8023590, USA. If 2 and f () are_ vectors, thertf (x)):ﬁ_ is interpreted in
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the projection isactive. When ( f (x)); = f(x), we say
that the projection isnactive. We denote by|z|| the vector
norm ofz, and by||z||, the L,-norm ofz (t), p € [0, oc.
Ford € Lo, we defineﬂdHa = tlinolo sup ||d (¢t)||. A system
& = f (z,u) is said to banput-to state stable (ISS) if there
exist classK functions v, (-) and+ (-) such that, for any
inputu () € L andxg € R™, the response (¢) from the
initial statex (0) = z, satisfies

lzllz. <0 (lzol) + (lullp ) llwll, < v (lull,) -

1

- 10
i (10)

q:=¢(y)

11)

In this representation the forward block corresponds to the
mobiles and the feedback path corresponds to the base
station. Stability of the equilibrium* is proved in [6], using
passivity properties of both the feedforward and feedback
paths:

y:=hlp.

We now review the stability properties of the gradient-t —~~

power control law (3). As shown in Alpcaset al. [4],
[5], the following assumption ensures that a unique N
equilibrium p* exists for the game (1).

Standing Assumption: The function P () in (1) is twice
continuously differentiable, nondecreasing, and strictly con-
vex in p;, i.e,

OP; (p;) O*P; (pi)
Ghbi) g T2\ : 4
and
Ui (vi) = uilog (vi + L), (5)

where u; is a constant, and v; and L are asin (2).

The choice of the logarithmic utility function in (5) is
meaningful because it represents the maximum achieva

bandwidth as in Shannon’s TheoreM.[Substituting this
U; (v:) in (3) and adding projectio());: to ensure positivity
of p;, we obtain

+

> hipr + 0
%

dP; (p;)
i dp;

Di = (6)

Note that in this derivation, the terf. hxpy.+0? in (3) has

k#i
been cancelled by the derivative of the logarithriiic and

replaced by~ hipy + 0. This means that we can represent  p; =

k
(6) as in Figure 1, in which the diagonal entriEs of the
forward block are given by

" +
DI ﬁi(%dﬂ—(pz)JrUi)\iUh') ;=1 M,
i Pi
(7)
where
w:= —h-q, (8)
T
h:=[hi ho har |, )

1A function ~ (-) is defined to be clas& if it is continuous, zero at
zero, and strictly increasing.

p
m v > 22_

o/ ]
3 z,
\
h Jxs
A T
q 1 y -
450 <—</

Fig. 1. First-order gradient algorithm of CDMA power coritro

Proposition 1: Consider the feedback system (9)-(7),

brf%presented as in Figure 1. The equilibrigm= p* is
glo

bally asymptotically stable.

Ill. ROBUSTNESS TODISTURBANCES

In this section, we provd., and input-to-state stability
of the first-order gradient power control algorithm (6)
with respect to additive disturbances, such as secondary
interference effects from neighboring cells. Denotinglby
and d,; disturbances acting on th&* mobile, we replace
(6) with the perturbed model,

+

+d; )

thpk 4 dy; + 02
k

dP; (p:)

Y
dp;

"(12)
and prove anl,-stability property p € [1, o0]):
Theorem 1. Consider the power control system (12),
where P; (p;) satisfies, for alp; > 0,i=1,2,--- M,

Pi” (pl) 2 n
where is a positive constant. Il = [d11,d12, - di]
and do = [da1,dao, - dap]are Lp-disturbancesp =

[0,00), then (12) guarantees

Ip —p*ll;, < @A (ap) ¥ ¢z U

+v2aA (1g) "0 (1B,
(13)
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where

. . apP; (p; *
VSZ uilxi (pi—p;) *)\i%fl)%* u,-)\,-wi
i N——

UAN) arh
=1 d d 14
Tk ﬂ \/— \ ” 1|| + — - ” 2” ( ) kidpfigé:)
1 L * _ __uwiXihy

i ax{ui}, u:min{ui}, +§; wx; (PiPi) uz)\w thpk+o
— uz’\bhz

A= ax{/\ b, A= mln {\i}, (15) ST herite?

k

h = max{h} h= mm{h}

Ah
+Z s (pi—p}) | - ug Awitdag
PR Zh“’k+"

k

andq andp are complementary indices, that is 5 (ri=22) ( api(os) . 4Pi(})
o; r; (20)
- . (m P ) widihy  uiiihy
p 1y q =1 (16) +; Wi thkarg thp;+gz
I k

+Z (pl Pi ) uiXihg o uiNihy
uiki thPkerzﬁf’Q thpk+02
k

k

+Z v (pi—p})dui

: < Pi—P; i (p;) | 4Pi(P]
|pp*|<mm\/z e (pi—p7) 22 5, (17) *Z( )<‘”Z,5i )4 d( )>
) z) (y—y")

Whenp = oo, the system satisfies the ISS estimate

Proof: The derivative of the storage function +(y+° P

+ 1 _ 1 h: i— *
2 S e ie? S pro? | PP
k k

i

oy _ 1 1 2 )
Vi(p—p") = §Xi:um (pi — ;) (18) + 5 s i ps
Since (y+02 - —y*iaz) (y—y*) < 0andP/ > n, we
along the solution of (12) is obtain .
V<Y =i —p))” + 2 a (0 — p)) du

N +> hi m—ﬁ Ipi — p;|
i o a7 (os) ’ . .
%=X s o 1) (-3 S v, +dh)pi. (19) < —2lp =2 + gk o = ol s
+Z a‘i |d2z| |pz )'K|
< 2mv+f MV |ldi ]| + V2E2EVY | da
< — aV—|—26\/—
which, from [?, Theorem 6.1], implies that

We first note

+
5 (pi PJ( AM‘FUiA'wi‘Fdli)

gui (pi — )( NLTANRY wz—l—dh)pi ‘ (op)™7 \/—H (1) * 18I, @1)
and
because, if the projection is inactive then both sides of the H\/_H < e ‘\/—H — 18Il (22)

inequality are equal, and if the projection is actipe= 0
and —\; 22@9) oy \jw; + dy; < 0, then the left hand side Inequality (13) and (17) then f0||0WS from (21), (22), and

dp;
is zero, and the right hand side is non-negative. By adding B <
and subtracting:; \;w;} and Z%A hi _ we obtain Ilp =™l < V20X [W (D)
kPE+
O
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IV. ROBUSTNESS TOTIME-DELAYS

=212
_ o (MENIR] s
We now prove that global asymptotic stability is pre- 92 = 2Mh7< uNpo +uarh (24)
served for sufficiently small time-delays between mobiles h
and the base station. This study is important because wirdhere
less data networks exhibit significant propagation delays. _ 25
Denoting byr; the round-trip delay for thé!" mobile, we 7= max {7;}. (25)
represent the algorithm (6) as in Figure 3: This means that for sufficiently smait, the small-gain
condition
N w V4 g192 < 1 (26)
by holds and GAS is preserved. ifis not sufficiently small,
- v then we can scale down the stepsizén the power control
i hr(eW (9) to recover GAS:
Theorem 2: Consider the feedback interconnection in
L Figure 3, and suppose th&; (p;), i = 1,2,--- M, are
4 ’ o(y)=- e’ ‘N such that for allp; > 0,
‘ y+o© N4
m > P/ (pi) > n2 (27)

Fig. 2.  First-order gradient algorithm of CDMA power coritin the
case of time-delay. with 77 > 1, > 0. If either the delayr or the stepsize\ is

small enough that (26) is satisfied, then the power control
scheme (9)-(7) guarantees global asymptotic stability.
Proof: We first show that the feedforward path in Figure 4

To transform the delay robustness problem to the framewo[ aeSﬁ?;InSgtges Zi\l/r; sfztﬁza g\]/;/?n ;;rrcc));/]e_ ;Elfolg, t;\:]o d ?Leep:é(\:/\(/)f:%re
of Theorem 3, we add and subtract the tefri from step qives the dain from to d

hT (e=*7) in Figure 3, and represent it as in Figure 4, Pg g 7 .
where the inner loop represents the nominal system without SteP 1: We let

delay, and the outer loop is the perturbation due to delay. 1 Z 1

V1(P—p*):§ o

WhEYEhT(e’”i):z[ hie %™ hoe 5™ ... hpe 5™ ]

2
(pi, —P%k)

as in (18). Following the same stapes as (20), we obtain

V<Y L (pip)) (—(“”d—,ﬁh%) +a—a")w—y")

<=2 lp—p" 1> +lla—a" | RIllp—p" |
’ <2222V 1v2aX |g—q" ||| RIVV.

From [?, Theorem 6.1], we have

_uAmay ava ||h| .
TR NVRN (NAZ0] Bt H,/X/(O)H+\f4V2M72 -l

which, with [|p () — p*|| < MHWH yields

Fig. 3. Equivalent system of gradient algorithm of CDMA pawentrol
after loop-transformation.

Ip(®) =11, <Y [1p(0) —p* |+ ZA jg—g*, . (28)
u’\|| R
With this representation we prove stability using a small- p () —p*[l, < UTH” lg—a*|l, - (29)
gain argument. From Theorem 3, it is not difficult to show 2
that the ISS gain of the feedback path framto ¢ is Next, because
.
Ih|l (v2ax axh 1 ’(‘Adi—()*““) | e |
= | ——=+5]- 23
g1 p o \/50_4 o (23)
HPHS‘ 7>\—d}f1;")+>\—d}3§5*) Fu Ajwi —u Ajw;
In Theorem 4 below, we also show that the feedforward e ar(o*)
path fromg to d, has gain < ‘—AT‘D)“d—pH+”“Whi‘1*—“'i*ihiq”-
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Thus, from (27), we obtain

. N * N7 * M
< — — T .
18l < X llp = p* || + @Ak |lg — ¥, llda]| < \/2Mh7 _;f;ax{o,t_ﬂ 1pi ()% do
which implies, from (28) and (29) =

M o . 2
+4/2Mh7 ;fmin{w_?} |p; (0)|” do.

By changing the sequence of the sum and integral, we

19l <2200 0)—p |\+(M+uxh)nq I, (30)

s obtain
1901, = (R a3 = (31) -
. dy| < [2MB7 [ , 5 (0)|*d
Step 2: Next, we claim that the subsystem frgino d, ld=]l < \/ Tfmax{oat—T} ;::1 Pi (2)do
satisfies . M )
_ ) +4/2Mh7 fmin{O,tff} 121 |pl (0)| do
ld2ll, < V2MAT [|p (#)l], , (32) - —
< \J2MR72 5 (o)
+\/2M7m"f0. (o)) do,
sl <V2MAFIpI L min{0,t—7}
Va2 - |22 —aiaa{ ugAy -+ uapAy peol[- from which (32) and (33) follows.
TR (33) Combining (30)- (31) and (32)-(33) from Step 1 and 2,
To prove this, we first note that we conclude that thd...-gain and asymptotic gain of the
feedforward path are:
|d2 (1) = Zm(f ™) thmm <Zh I , Bi(@)ldo
i1 dall, < g2llg —q"ll,» (34)
s; hi fmx{a_’t_,i} |pi<o>|<io+i=§jl hi fmin{o,t_n.} |pi(o)|do
which implies by Young's Inequality ldall,, <gella—a" Il +V2MRF AR 500) |
. ) + sup H AL dmg{ UIANL o UMAM }w(t)H'
2 t . —7<t<0
0 <2 (32 b lngarny 19 0] do (35)
1:134 9 whereg, is as in (24).
+2 (E hi [2 2 (a)|da) Step 3: Finally, we show that the feedback path has a
i- min{0,¢=7:} complementary gairy; as in (23). For the inner loop in
2 . .
< oM E (hi f;ax{o o i (0)] da) Figure 4, it follows from Theorem 3 that
2 le—all = ||77zr — 7o
#2321 0) 4 Iy =y +dsl|
_ t A 2 < h” + d
< 2Mh z (fm{o,t_ﬂ.} [pi ()] dor) < ot o=l + g lldal
5 and, thus
+2Mh Z (fmm{O t—7i} |p2 ( )| dU) ' %
||q_q ||a Sgl ||d2||a’ (36)
Applying Cauchy-Schwarz inequality to each term, we get
M
dy (t)* <2MB7 3 [0 o,y i ()P do la—a"ll,. <LBlaxe=* /S~ I (p(0)—p) 2 +ailldall,_. (37)
i=1 ) i
M
+2MhT S fr?lin{o tori) |Ds (cr)|2 do Substituting (36) and (37) into (34) and(35), and using the
i=1 o small-gain condition (26), we conclude
which implies the vector norm af; is
1dall, <0, (38)
M
'dzlf\/W”Tfo;ax{o,t_”} |pi(o)|*do
i=1
Y Idol], < L0 g 1p(0) —p*[|+ 22022 7| p(0)—p” |
+,4 [2MhT . |pi(o)|%do. 2L = 1—g19
Z;J;uﬁom—n} v sup || LB () Q(”H (39)
+—7’-<t§0
Because max{0,t—7} > max{0,{—7} and 1=9g192
min {0,¢ — 7z} > min{0,¢ — 7}, we get Finally, from Theorem 3, we have
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(5]

lp—p"ll, <0 (40)

[6]
* (1—9192)HP(0)—P*H+wgzl\p(0)—p*|\
lp—p*llp. < e 7
| s S p0) | 8]
o 1-g192
A swp !T—A—""’if;“”—qu)H

+ —7<t<0 [9]

1-g192 ) (1)
which proves global asymptotic stability as defined®h [ [10]

If the small-gain condition violates (26), then we can scale
down the user-dependent stepsizeby x > 0, and rewrite

(26) as [12]

(42)

hll ( k2v2a232R T a?X|h| |, -1
L) (s2vzeX%h +0L4)\/2Mhm(7"1 Rl ah ) <1

which is satisfied for sufficiently smaklt. Thus, for any
delay 7, the scaled controller

. uikAih; dP; (pz)
= — KA 43
P > hipi + 0?2 M, “3)
k
wherex is as (7?), achieves GAS. O

V. CONCLUSION

We have addressed robustness of the first-order gradient
power control algorithm in [4] against disturbances and
time-delay. Using an ISS property of the nominal, delay-
free, system, and a small-gain argument, we showed that
global asymptotic stability is preserved in the presence of
small time-delays. For larger delays, we achieved GAS
by scaling down the step-size of the gradient algorithm.
One shortcoming of reducing the gains, however, is that it
may cause degradation in performance. Our next research
task will be to investigate how robustness and performance
can be improved with the broader classes of controllers
proposed in our companion paper [6].

VI. ACKNOWLEDGEMENT

The first author would like to thank Jie Wu for helpful
discussions on CDMA systems background and implemen-
tation issues. This research was supported in part by the RPI
Office of Research through an Exploratory Seed Grant.

REFERENCES

[1] S. Deb, S. Shakkottai, and R. Srikant. Stability and esgence of
tcp-like congestion controllers in a many-flows regirelNFOCOM
2003, San Francisco, CA, April 2003.

[2] J. Zander. Performance of optimum transmitter power coirroel-

lular radio systemd.EEE Trans. on \ehicular Technology, 41(1):57—

62, 1992.

R.D. Yates. A framework for uplink power control in celgul

radio systemslEEE Journal on Selected Areas in Communications,

13(7):1341-1347, 1995.

[4] T. Alpcan and T. Basar. "A Hybrid Systems Model for Powem@ol
in Multicell Wireless Networks”in Proc. of WiOpt'03: Modeling
and Optimization in Mobile, Ad Hoc and Wreless Networks, INRIA
Sophia-Antipolis, France, March 3-5, 2003.

(3]

T. Alpcan, T. Basar, R. Srikant, and E. Altman, “CDMA ugkipower
control as a noncooperative gam&\reless Networks, vol. 8, pp.
659-669, November 2002.

X. Fan, M. Arcak, and J.T. Wen. Passivation designs forMzD
uplink power pontrolin Proc. of the 2004 American Control Conf.,
Boston, MA, May 2004.

E. Sontag, Smooth stabilization implies coprime factditra | EEE
Transactions on Automatic Control, vol. 34, pp. 435-443, 1989.
A. Teel, “A nonlinear small gain theorem for the analysfscontrol
systems with saturationfEEE Transactions on Automatic Control,
vol. 41, no. 9, pp. 1256-1271, 1996.

Jiang,Z.-P. and Teel,A.R. and Praly,L., “Small-Gain ®tem for ISS
Systems and ApplicationsMathematics of Control, Sgnals, and
Systems, Vol.7, 1994, 95-120

C. E. Shannon, The Mathematical Theory of Informationbara,
IL:University of lllinoisPress,1949 (reprinted 1998).

] H. Khalil, Nonlinear Systems, 2nd ed. Englewood Cliffs, NJ: Prentice

Hall, 1996.
J. Hale and S. Verduyn Lunéhtroduction to Functional Differential
Equations, Springer-Verlag New York, Incorporated, 1993.

3627



	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: ThP11.6
	Page0: 3622
	Page1: 3623
	Page2: 3624
	Page3: 3625
	Page4: 3626
	Page5: 3627


