
Capacity-achieving Feedback Scheme for Flat Fading Channels with Channel State Information

Jialing Liu ∗

liujl@iastate.edu
Nicola Elia ∗

nelia@iastate.edu
Sekhar Tatikonda †

sekhar.tatikonda@yale.edu
∗ Dept. of Electrical and Computer Engineering, Iowa State University

† Dept. of Electrical Engineering, Yale University

Abstract— In this paper we propose a capacity-achieving
feedback scheme for an AWGN i.i.d. flat fading channel with
channel state information. This scheme considerably reduces the
encoding and decoding complexity and delay, and it extends the
Schalkwijk and Kailath scheme to i.i.d. time-varying channels.

I. INTRODUCTION

In this paper, we consider the problem of finding a
capacity-achieving feedback scheme for an additive white
Gaussian noise (AWGN) i.i.d. flat fading channel, with
channel state information (CSI) available instantaneously at
the receiver and with one delay at the transmitter. This
channel with various CSI assumptions has been studied in
[6], [2], [16], etc. [6] obtains the capacity of a fading channel
with instantaneous CSI at both the transmitter and receiver
(TRCSI), or at the receiver only (RCSI). [2] investigates
capacity of channels with memory and with imprecise or
delayed CSI. [16] provides Markov channel capacity with
instantaneous receiver-side CSI and delayed transmitter-side
CSI (DTRCSI). See also [10], [17].

In this paper, we present a capacity-achieving feedback
scheme for an AWGN i.i.d. flat fading channel (AIFFC)
under DTRCSI assumption. Although feedback cannot im-
prove capacity, we show that it leads to simpler encoders and
decoders, less coding delay, and doubly exponential decay of
the probability of error.

The feedback communication scheme in this paper is
an extension of that in [3] to i.i.d. time-varying channels,
and hence it is a further extension of the Schalkwijk and
Kailath scheme [13], [12]. Our scheme reveals the equiv-
alence between feedback stabilization over an AIFFC and
communication with access to noiseless feedback over the
same channel, and thus this work also fits into the framework
of investigating the interaction between information and
control; see [11], [5], [15], [4], [8] and references therein.

II. PRELIMINARIES

In this section we present briefly the channel model,
channel side information and capacities, and some relevant
properties of random processes.
Notations: We use upper case letters to designate random
variables and lower case letters to indicate their realizations.
In case where no confusion may arise, we may use lower
case letters for random variables. We represent time indices
by subscripts. We denote by Am

n the sequence of random
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variables {An, An+1, · · · , Am}, and am
n the sequence of

realizations {an, an+1, · · · , am}. Note that Am
n is a random

sequence, and (An)m is the m-th power of the random vari-
able An. We denote by {Ak}, {ak} the generic sequences.
We use a[1], a[2], · · · for a collection of fixed numbers.

A. Channel model and channel state information

Figure 1 (a) illustrates the channel model that we consider
in this paper, which we refer to as AWGN i.i.d. flat fading
channel (AIFFC). At time k, this discrete-time memoryless
channel F is described as

F : Yk = ξkXk + Nk, (1)

where Xk is the channel input, ξk is the channel state, Nk

is the channel noise, and Yk is the channel output. Here all
variables are assumed to be real. The channel state {ξk}
forms an i.i.d. random process given by

Pr(ξk = ξ[i]) = α[i], for k = 0, 1, · · · , (2)

where for i = 1, 2, · · · ,m, α[i], ξ[i] are fixed numbers,
α[i] > 0, and

∑m
i=1 α[i] = 1. We assume noise {Nk} is

an AWGN with unit variance.
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Fig. 1. (a) An AIFFC F . (b) Channel with DTRCSI. The receiver has CSI
instantaneously, and transmitter has CSI with one delay through feedback
from the receiver. (c) Channel with feedback. The transmitter has CSI and
information about the received signals with one delay through feedback from
the receiver.

We call ξk the channel state at time k. Knowing the
channel state information (CSI) at the transmitter side and/or
the receiver side significantly affects the transmission strategy
and the capacity [1]. In this paper we focus on the case of
delayed transmitter-side and instantaneous receiver-side CSI
(DTRCSI) [1], [2], since we are interested in channels with
noiseless feedback, which has the ability to feed back CSI



at the receiver to the transmitter with one delay. Hence, the
channel state ξk is available for the receiver at time k and
available for the transmitter at time k + 1, see Figure 1 (b).

In addition, in this paper we allow the transmitter to have
access to the noiseless feedback from the receiver. We assume
that, during the transmission at time k, the transmitter has
information about both ξk−1 and Vk−1, where Vk−1 depends
on the received signals Y k−1

0 . See Figure 1 (c). This feedback
communication scheme is consistent with that in [16], which
investigates a finite-state Markov channel (FSMC) whose
receiver feeds back both the precise CSI and the channel
output to the transmitter with delay.

B. Channel capacity under different CSI assumptions

In this subsection, we briefly present some capacity for-
mulas of fading channels under different CSI assumptions,
see [6], [1], [2], [16] for detailed results.

First, for an FSMC with AWGN, if CSI is available to both
the transmitter and receiver before the symbol transmission,
i.e., if under TRCSI assumption, the capacity subject to the
average input power constraint

EX2 ≤ P (3)

is given by

CTR =
1

2
max

γ
Eξ ln(1 + ξ2γ(ξ)), (4)

where γ(·) satisfying

Eξγ(ξ) ≤ P (5)

is the power allocation function that maps the channel state
ξ[i] to the channel input power γ(ξ[i]) for each i. The optimal
power allocation is obtained analytically and has a “water-
filling in time” interpretation.

Second, for an FSMC with AWGN, if under DTRCSI
assumption, the capacity subject to (3) is given by

CDTR =
1

2
max

γ
E ln(1 + (ξk+1)

2γ(ξk)), (6)

where expectation is w.r.t. the joint distribution of ξk and
ξk+1, and γ(·) is the power allocation function that maps the
channel state ξ to the channel input power γ(ξ) to be used
at the next instant of time and such that (5) holds.

Third, for an FSMC with AWGN, if CSI is available only
to the receiver before the symbol transmission, i.e., if under
RCSI assumption, the capacity subject to (3) is given by

CR =
1

2
Eξ ln(1 + ξ2P). (7)

Note that the capacities given in (4), (6), and (7) satisfy

CR ≤ CDTR ≤ CTR (8)

since the transmitter may preform better power adaptation
when it can access more information about the channel state.

In the case of AIFFC, i.e., the case where the channel
state forms an i.i.d. process, the capacities under TRCSI and
RCSI assumptions remain unchanged. However, the capacity

under DTRCSI assumption becomes smaller and in fact equal
to CR.

Proposition 1 (Capacity for DTRCSI). Given P > 0, the
feedforward capacity of an AIFFC with DTRCSI subject to
the average input power constraint (3) is given by

CDTR =
1

2

m
∑

i=1

α[i] ln(1+ξ[i]2P) =
1

2
Eξ ln(1+ξ2P). (9)

Proof: In i.i.d. case, the capacity formula (6) reduces to

CDTR =
1

2
max

γ
Eξk+1

Eξk
ln(1 + (ξk+1)

2γ(ξk))

≤ 1

2
max

γ
Eξk+1

ln(1 + (ξk+1)
2
Eξk

γ(ξk))

≤ 1

2
Eξ ln(1 + ξ2P) = CR.

The first inequality is according to the concavity of capacity
functions and Jensen’s inequality. By (8), we obtain
CDTR = CR for i.i.d. fading.

Remark 1 (Constant power allocation strategy). Note
that for i.i.d. fading channels with DTRCSI, capacity is
achievable without power adaptation, as is the case with-
out transmitter-side CSI. This is because power adaptation
can improve capacity only when the transmitter has prior
(deterministic or stochastic) knowledge of the channel state
before the symbol transmission, e.g., channels with TRCSI,
channels with memory; see also [2].

The capacity given by (9) is also known as the ergodic
capacity, since it is achieved when the channel becomes
ergodic [6], [1], [2]. We can intuitively interpret it as follows.
When ξk takes value ξ[i], the channel behaves like an AWGN
channel with capacity C[i] = ln(1 + ξ[i]2P)/2. Suppose
among K channel uses, there are K[i] times in which ξ takes
value ξ[i], hence the channel can transmit approximately
∑

K[i]C[i]/K nats per channel use. By the Strong Law
of Large Numbers [14], the empirical frequency K[i]/K
converges to its expectation α[i] almost surely. Then (9)
follows.

Now we address the problem of feedback capacity. For
an AIFFC with DTRCSI, the capacities for the channels in
Figure 1 (b) and 1 (c) are equal; see [16] for a rigorous
proof. However, the transmitter-side information about the
channel state and channel output can considerably simplify
the encoding and decoding and lead to better performance in
terms of probability of error, as we will show in this paper
(see also [13], [12]).

C. Some useful properties about random processes
Let WK−1

0 , K ≤ +∞ be an i.i.d. discrete real random
process with Pr(W = w[i]) = α[i], where

∑m
i=1 α[i] = 1

and α[i] > 0 for i = 1, 2, · · · ,m. For K trials, K < ∞,
denote β

[i]
K the empirical frequency, i.e., the fraction of trials

in which w[i] is obtained. From the Strong Law of Large
Numbers, we have for any ε > 0, it holds

Pr( lim
K→∞

|β[i]
K − α[i]| < ε) = 1. (10)



In other words, the empirical frequency β
[i]
K converges almost

surely to α[i], the expected value of β
[i]
K . Thus we define the

typical set and typical sequence in the following way (see
also [14]).

Definition 1 (Typical set and typical sequence). For any
ε > 0, define the typical set E

(ε)
K w.r.t. the sequence W K−1

0

to be the set of all realizations wK−1
0 satisfying

|
∑K−1

k=0 111w[i](wk)

K
− α[i]| ≤ ε, i = 1, 2, · · · ,m. (11)

Each sequence in the typical set is a typical sequence.

Here 111a(·) is the indicator function. From (10), it follows

Pr( lim
K→∞

E
(ε)
K ) = 1, (12)

namely, for large enough K, almost every sequence is typical,
and it contains w[i] roughly Kα[i] times.

When considering stochastic dynamical systems, we often
need to deal with a sequence of cumulative products UK

1

of the random sequence W K−1
0 , where Uk :=

∏k−1
i=0 Wi,

K ≤ ∞. In this paper we are interested in the case where the
sequence is almost surely convergent to zero only. Suppose

w̄ :=
m
∏

i=1

w[i]α[i] (13)

is such that |w̄| < 1. Then from (10), we have w̄k → 0 and
Uk

a.s.→ 0 as k → ∞. Furthermore,
Uk

w̄k

a.s.→ 1 as k → ∞. (14)

This property allows us to define the typical set and typical
sequence for the cumulative products as follows.

Definition 2 (Typical set and typical sequence for cumu-
lative products). For any ε > 0, define the typical set E

(ε)
K

w.r.t. the cumulative product sequence UK
1 to be the set of

all realizations uK
1 satisfying

| uk

w̄k
− 1| ≤ ε for all k = 1, 2, · · · ,K. (15)

Each sequence in the typical set is a typical sequence.

Thus by definition it holds

Pr( lim
K→∞

E
(ε)
K ) = 1, (16)

in other words,

Pr( lim
K→∞

{uK |(1 − ε)w̄K ≤ uK ≤ (1 + ε)w̄K}) = 1. (17)

Therefore, the sequence {UK} can be approximated by
sequence {w̄K} with arbitrarily small error except for a set of
sequences with zero probability measure, provided |w̄| < 1.

III. CAPACITY-ACHIEVING FEEDBACK SCHEME FOR
AIFFC WITH DTRCSI

In this section, we present a feedback scheme that achieves
the capacity of the AIFFC with DTRCSI. We first describe
the proposed scheme, and then prove that it achieves the ca-
pacity and the doubly exponential decay of error probability.

A. The setup and strategy

Communication setup
The communication setup to be used for information

transmission analysis is shown in Figure 2 (a), where x0 is
the message to be encoded at the transmitter and recovered
at the receiver, and −x̂0,k is the decoded message, i.e., the
estimate of x0 at time k. From this figure we can identify
the transmitter, the channel F , and the receiver. Parameters
A and B are scalars depending on the channel state ξk. Note
that the channel state ξk is available and used at the receiver
side at time k, and used at the transmitter side at time k +1,
which is consistent with the assumption of DTRCSI. Note
also that the communication setup allows us to adapt the
transmission strategy to the channel variation.

We describe the operation of the communication setup as
follows. At time 0, the channel input is x0 = x̃0 (noticing
x̂0 = 0). Then the receiver receives the channel output

y0 = ξ0x0 + N0 (18)

as well as the channel state ξ0, and it sends ξ0 to the
transmitter. After this the transmitter and receiver do the
following updates

x̃1 = A(ξ0)x̃0

x̂1 = B(ξ0)y0

x̂0,0 = x̂0 = 0.
(19)

Then the system reaches the next discrete instant of time,
i.e., time 2, and the channel input becomes

x1 = x̃1 + x̂1, (20)

and the channel output becomes

y1 = ξ1x1 + N1. (21)

Like before, the receiver sends ξ1 to the transmitter, and then
the transmitter and receiver do the updates

x̃2 = A(ξ1)x̃1

x̂2 = A(ξ1)x̂1 + B(ξ1)y1

x̂0,1 = 1
A(ξ0)

x̂1.
(22)

Then the system reaches time 2 and repeat the above proce-
dures. In general, at time k, the system performs

xk = x̃k + x̂k

yk = ξkxk + Nk

x̃k+1 = A(ξk)x̃k

x̂k+1 = A(ξk)x̂k + B(ξk)yk

x̂0,k = 1
∏k−1

j=0
A(ξj)

x̂k.

(23)

These recursions will generate a sequence of estimates
{−x̂0,k} that approaches x0, as we will show later.

Without affecting the transmitted message, estimates of the
message, and the channel inputs and outputs, we can make
the power of the feedback signal bounded by using the time-
varying scaling factor α in Figure 1 of [3], which implies that
this scheme is an extension of the Schalkwijk and Kailath
scheme, and furthermore, it leads to simpler encoders and
decoders and less coding delay.

Control setup
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Fig. 2. (a) The communication setup. (b) The control setup.

The recursion of x is

xk+1 = A(ξk)xk + B(ξk)yk initial state: x0

yk = ξkxk + Nk,
(24)

see Figure 2 (b) for the corresponding block diagram. Note
that (24) is indeed a simple control system, which we refer to
as the control setup, as opposed to the communication setup
shown in Figure 2 (a). The zero-input response and zero-state
responses of (24) correspond to x̃k and x̂k respectively, and
the channel input power is bounded only if (24) is stable.

Choice of parameters
Given any P > 0, we choose the parameters in the

communication setup as

a[i] := A(ξ[i]) : =
√

Pξ[i]2 + 1

b[i] := B(ξ[i]) : = − Pξ[i]√
Pξ[i]2+1

. (25)

We will show the communication setup along with this
choice of parameters is indeed capacity-achieving in the next
subsection.

B. Main result

Our main result states:

Theorem 1 (Capacity-achieving scheme). Suppose F is
any given finite-state AIFFC, where the channel state ξk has
an i.i.d. distribution given by (2) and is available instanta-
neously to the receiver and with one delay to the transmitter.
Given any P > 0, the setup described in Section III-A, with
the parameters given by (25), achieves the feedback capacity

C =
1

2

m
∑

i=1

α[i] ln(1 + ξ[i]2P) (26)

subject to the average input power constraint

EX2 ≤ P. (27)

Moreover, the probability of error decays to zero doubly
exponentially.

Remark 2 (Significance of “almost sure” notion). The-
orem 1 relies on the Strong Law of Large Numbers, and
capacity (26) is achieved when the channel states produce
typical sequences. When the channel states produce nontyp-
ical sequences, any non-zero capacity cannot be guaranteed.

Therefore, we focus our attention on typical sequences only,
and state our results in an almost sure fashion.

To prove this theorem, we first show that the scheme
described in the previous subsection can transmit reliably
at rate

m
∑

i=1

α[i] ln(|A(ξ[i])|) =
1

2
Eξ ln(1 + ξ2P). (28)

Then we show the power constraint (27) is satisfied.
Achievable rate
In this part we present a proposition about the achievable

rate of the communication setup with any given parameters
a[i] := A(ξ[i]) and b[i] := B(ξ[i]). It essentially says that,
if the choice of parameters is such that in the control setup
of Figure 2 (b), the plant K is unstable but the closed-loop
with F is stabilized, then the communication setup reliably
transmits x0 at an average rate determined by the average
growing rate of the unstable plant. We thus establish the
equivalence between communication and control.

Suppose a[i] is any real number with |a[i]| ≥ 1 and
m
∏

i=1

|a[i]| > 1. (29)

Define

ā :=

m
∏

i=1

a[i]α[i]. (30)

Then it holds |ā| > 1. Let

Acl(ξk) := A(ξk) + B(ξk)ξk, (31)

i.e., Acl(ξk) is the closed-loop matrix at time k. We have the
following proposition:

Proposition 2 (Achievable rate). If the interconnection
between F and K of Figure 2 (b) is almost surely stable,
then the associated communication setup of Figure 2 (a)
reliably (in the sense that the probability of error converges
to zero almost surely) transmits the initial state, x0, from the
transmitter to the receiver at rate

R = (1 − ε) ln(|ā|), (32)

for any given ε > 0. Moreover, the probability of error decays
to zero doubly exponentially.



Proof: To prove the achievable rate, we first show the
estimate x̂0,k has mean −x0 and a variance decaying to zero,
and then we choose the data rate accordingly to ensure that
the error probability goes to zero.

Clearly we have

x̂0,k = (

k−1
∏

j=0

A(ξj))
−1x̂k = (

k−1
∏

j=0

A(ξj))
−1xk − x0.

Because of (29), the sequence {(∏k−1
j=0 A(ξj))

−1} almost
surely converges to zero. By (14), we know for any given
ε1 > 0, for large k it holds that (

∏k−1
j=0 A(ξj))

−1 lies within
(1− ε1)ā

−k and (1 + ε1)ā
−k almost surely. So we have for

k large enough (
∏k−1

j=0 A(ξj))
−1 a.s.

= ā−k, and hence

x̂0,k
a.s.
= ā−kxk − x0. (33)

As the closed-loop is almost surely stable and the noise
is zero mean, xk tends to zero and E(xk)2 converges to a
steady-state value σ2 almost surely as k tends to infinity.
Therefore x̂0,k almost surely has a Gaussian distribution
N (−x0, ā

−2kσ2) for large enough k. (The reader can verify
that the approximations in the mean and variance do not
affect our analysis.)

Recall that x0 is the message to be recovered at the
receiver. We now show that we can increase the number of
messages to be sent exponentially according to the decay rate
of the variance of the estimate, and the probability of error
still decays to zero.

Consider k channel uses. Denote by σj the square root
of the j-th variance of the estimate, namely σj := |ā|−jσ.
Now we equally partition the interval I = (−

√
P,

√
P) into

Mk−1 = (σk−1)
−(1−ε) segments, and let the center of each

segment represents a message to be transmitted. Suppose at
time k − 1 at the receiver side, the estimate x̂0,k−1 is in
the i-th segment. Then the i-th message, the center of that
segment, is decided. Then the probability of error is

PEk−1 = 2Q(
√
P(σk−1)

−ε), (34)

which goes to zero as k → ∞ if ε > 0. Here Q(·) is the
complementary cdf of normalized Gaussian distribution (Q-
function) [7].

Noticing that the number of possible messages is Mk−1,
we have the transmission rate to be

R = lim
k→∞

ln Mk−1

k
= lim

k→∞

−(1 − ε)

k
ln σk−1

= lim
k→∞

−(1 − ε)

k
(−k ln |ā| + ln σ) = (1 − ε) ln(|ā|).

Hence the channel can transmit reliably at rate R = (1 −
ε) ln(|ā|) for any ε > 0, in the sense that the probability
of error converges to zero, if the sequence {ξk} is a typical
sequence. Since the typical sequences occur almost surely,
we conclude that the system transmits reliably (in the sense
that the probability of error converges to zero almost surely)
the initial state x0 at rate R.

Now we show the error probability decays doubly expo-
nentially. Using the Chernoff bound [7], we have

PEk−1 ≤
√

2

πP (σk−1)
ε exp(−1

2
(σk−1)

−2εP)

=

√

2

πP
σε

|ā|(k−1)ε
exp(−1

2
σ−2ε|ā|2(k−1)εP),

namely, the error probability decays doubly exponentially.

We apply the proposition to the specially chosen parame-
ters in (25), and we get

Corollary 1. Let a[i] and b[i] be as in (25). The intercon-
nection between F and K of Figure 2 (b) is almost surely
stable, and the associated communication setup of Figure
2 (a) reliably (in the sense that the probability of error
converges to zero almost surely) transmits the initial state,
x0, from the transmitter to the receiver at rate

R =
1 − ε

2
Eξ ln(1 + ξ2P), (35)

for any given ε > 0.

Proof: It suffices to show the control setup of Figure
2 (b) is almost surely stable. Consider the dynamics of the
control setup:

xk+1 = (A(ξk) + B(ξk)ξk)xk + B(ξk)Nk

= 1
A(ξk)xk + B(ξk)Nk.

(36)

To establish the almost sure stability of (36), we only need
to show the unforced dynamics

xk+1 =
1

A(ξk)
xk (37)

is almost surely stable; namely, we need to show (37) leads
to xk

a.s.→ 0 as k → 0, which is clearly true by |ā| > 1 and
(14). Thus (36) is almost surely stable.

Power computation
Now we compute the channel input power for the specially

chosen parameters given in (25).

Proposition 3 (Power computation). Let a[i] and b[i] be as
in (25). The channel input power is given by

Ex2 =
a[i]2 − 1

ξ[i]2
= P for i = 1, 2, · · · ,m, (38)

and hence it satisfies the average input power constraint (27).

Proof: Note first that P = (a[i]2 − 1)/ξ[i]2 for i =
1, 2, · · · ,m by (25). To show (38), it is sufficient to show
that, Ex,N (xk)2 exponentially converges to P almost surely,
since it then implies the time average of Ex,N (xk)2 is P .
Note the expectation in Ex,N (xk)2 is w.r.t. the system state
x and channel noise N but not the channel state ξ.

Now we study the recursion for Ex,N (xk)2. By

xk+1 = a[i]−1xk + b[i]Nk with Pr α[i], (39)

we obtain

Ex,N (xk+1)
2 = a[i]−2

Ex,N (xk)2 + b[i]2 with Pr α[i].



Using b[i] = −Pξ[i]/a[i], we get

Ex,N (xk+1)
2 = a[i]−2(Ex,N (xk)2+P2ξ[i]2) with Pr α[i],

which yields

Ex,N (xk+1)
2 − P = a[i]−2(Ex,N (xk)2 − P) with Pr αi.

Hence, as k goes to infinity, Ex,N (xk)2 − P exponentially
converges to zero almost surely, i.e., Ex,N (xk)2

exponentially converges to P almost surely. Thus the
result follows.

An example
An analog AWGN erasure channel is a discrete-time

memoryless channel with an AWGN followed by an erasure,
in other words, the receiver obtains a noisy version of
the transmitted symbol with probability 1 − e or nothing
(i.e., the symbol being lost) with probability e at each time
step. This channel with delayed noiseless feedback satisfies
the DTRCSI assumption since the receiver and transmitter
can determine the ideal CSI from the channel output: they
determine Sk = 0 if and only if they receive yk = 0.

This channel has the same capacity as the channel with
an erasure followed by an AWGN, and our result applies to
this channel. It yields that, when the channel is open, i.e.,
S = 0, we use a(0) = 1 and b(0) = 0; when the channel
is closed, i.e., S = 1, we use a(1) =

√
P + 1 and b(1) =

1
a(1)−a(1). This strategy has a clear practical meaning: when
the receiver finds a signal is lost due to S = 0, it notifies the
transmitter, then the transmitter uses a(0) = 1, and hence,
the lost signal is to be transmitted and received again in
the next step; otherwise the transmitter will generate another
signal and send it through the channel. In this process, the
transmitter and receiver adapt their parameters according to
the channel variation, and therefore the uncertainty interval
(see [11]) about the transmitted symbol shrinks if Sk = 1,
remains if Sk = 0, and converges to zero eventually. We
can show if the adaptive transmission is not used, i.e., if
constant a and b are used instead all the time, the closed-
loop system cannot transmit at the capacity rate. Thus, this
idea of adaptive transmission helps us to achieve the feedback
capacity, and it coincides with the ideas in [11], [15].

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we showed that an extension of the feedback
scheme in [12], [3] achieves the capacity of an AWGN
i.i.d. flat fading channel with precise CSI available to the
receiver immediately and to the transmitter with delay. The
error probability decreases to zero doubly exponentially. We
established the equivalence between feedback stabilization
over the channel and communication with access to noiseless
feedback over the same channel. In our scheme, we designed
the transmitter and receiver to adapt their strategies according
to the status of the channel, and we explored the notion
of almost sure convergence that is intrinsic to the Shannon
capacity of a time-varying channel.

Up to this point, many important problems remain un-
solved. First, how to construct feedback schemes to achieve

capacities without CSI is unclear. Second, how to construct
capacity-achieving feedback schemes for more complicated
fading channels, for example, frequency-selective fading
channels, remains to be seen; in fact, we are not even clear
about the feedback capacity of some fading channels. These
are subjects to future work. We report the study of a capacity-
achieving feedback scheme for a Markov channel in [9].

V. REFERENCES

[1] E. Biglieri, J. Proakis, and S. Shamai (Shitz). Fading channels:
Information-theoretic and communications aspects. IEEE
Trans. Inform. Theory, 44(6):2619–2691, Oct. 1998.

[2] G. Caire and S. Shamai (Shitz). On the capacity of some
channels with channel state information. IEEE Trans. Inform.
Theory, 45(6):2007–2019, Sept. 1999.

[3] N. Elia. Control-oriented feedback communication schemes.
Proc. 42nd IEEE Conf. Decision and Control, pages 3161–
3166, Dec. 2003. See also: When Bode meets Shannon:
Control-oriented feedback communication schemes, accepted
by IEEE Trans. Autom. Contr.

[4] N. Elia. Feedback stabilization in the presence of fading
channels. Proc. of the 2003 American Control Conference,
pages 4438–4443, June 2003.

[5] N. Elia and S.K. Mitter. Stabilization of linear systems
with limited information. IEEE Trans. Automat. Contr.,
46(9):1384–1400, 2001.

[6] A. J. Goldsmith and P. P. Varaiya. Capacity of fading channels
with channel side information. IEEE Trans. Inform. Theory,
43(6):1986–1992, Nov. 1997.

[7] S. M. Kay. Fundamentals of Statistical Signal Processing II:
Detection Theory. Prentice-Hall PTR, Englewood Cliffs, N.J.,
1998.

[8] J. Liu and N. Elia. Quantized feedback stabilization of
non-linear affine systems. International Journal of Control,
77(3):239–249, Feb. 2004.

[9] J. Liu, N. Elia, and S. Tatikonda. Capacity-achieving feedback
scheme for Markov channels with channel state information.
submitted to IEEE Trans. Inform. Theory, Feb. 2004.

[10] R. Negi and J. M. Cioffi. Delay-constrained capacity with
causal feedback. IEEE Trans. Inform. Theory, 48(9):2478–
2494, Sept. 2002.

[11] A. Sahai. Anytime Information Theory. PhD thesis, MIT,
Cambridge, MA, 2001.

[12] J.P.M. Schalkwijk. A coding scheme for additive noise
channels with feedback Part II:Bandlimited signals,. IEEE
Trans. Inform. Theory, IT-112(2):183–189, Apr. 1966.

[13] J.P.M. Schalkwijk and T. Kailath. A coding scheme for addi-
tive noise channels with feedback I: No bandwidth constraint.
IEEE Trans. Inform. Theory, IT-12:172–182, Apr. 1966.

[14] A. N. Shiryaev. Probability. Springer-Verlag, New York, 2nd
edition, 1996.

[15] S. Tatikonda and S. Mitter. Control under communication
constraints: Part I and Part II. submitted to IEEE Trans. Autom.
Contr., March 2002.

[16] H. Viswanathan. Capacity of markov channels with receiver
csi and delayed feedback. IEEE Trans. Inform. Theory,
45(2):761–771, March 1999.

[17] S. Yang, A. Kavcic, and S. Tatikonda. Feedback capacity
of finite-state machine channels. submitted to IEEE Trans.
Inform. Theory, Dec. 2002.


	MAIN MENU
	Front Matter
	Technical Program
	Author Index

	Search CD-ROM
	Search Results
	Print
	View Full Page
	Zoom In
	Zoom Out
	Go To Previous Document
	CD-ROM Help

	Header: Proceeding of the 2004 American Control Conference
Boston, Massachusetts June 30 - July 2, 2004
	Footer: 0-7803-8335-4/04/$17.00 ©2004 AACC
	Session: ThP11.1
	Page0: 3593
	Page1: 3594
	Page2: 3595
	Page3: 3596
	Page4: 3597
	Page5: 3598


