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Abstract— Issues of modelling and control of molecular
weight distributions (MWDs) of polymerization products have
been studied under the recently developed framework of
stochastic distribution control, where the purpose is to design
the required control inputs that can effectively shape the
output probability density functions (PDFs) of the dynamic
stochastic systems. The B-spline Neural Network has been
implemented to approximate the function of MWDs provided
by the mechanism model, based on which a new predictive
PDF control strategy has been developed. A simulation study
of MWD control of a pilot-plant styrene polymerization
process has been given to demonstrate the effectiveness of
the algorithms.

I. INTRODUCTION

The molecular weight distribution (MWD) of a polymer
is one of the most important variables to be controlled
in industrial polymerization processes because it directly
affects many of polymer’s end-use properties such as ther-
mal properties, stress-strain properties, impact resistance,
strength and hardness, etc [1], [2]. Therefore, there has
been much incentive to control MWD accurately during
polymerization. The research into the modelling and control
of MWD in polymerization has constituted an important
area in process control for a decade, where the aim is to
select proper control strategies that can effectively control
the shape of the molecular weight distribution following the
quality requirements of the end-use polymer.

Information of molecular weight distributions for control
and optimization is normally obtained from mathematical
models because so far MWD is still very difficult to
measure on-line. Mechanistic MWD models are developed
based on the mass balance and energy balance principles,
which include a set of differential equations describing
the dynamics of the reaction species such as initiator,
monomer, radicals and polymers of different chain length.
These equations are functions of kinetic mechanism and
reaction operation conditions of the polymerization pro-
cess [3]. The control inputs can be chosen as initiator
concentration, feed rate of monomer and/or chain transfer
agent, reactor pressure and temperature, etc [4], [5]. As
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the polymer chain length of interests is usually a huge
number up to millions, direct solution of these hundreds of
thousands of differential equations is unfeasible in most real
situations and therefore various numerical techniques have
been devised to solve this problem. An adaptive orthogonal
collocation algorithm has been developed for the compu-
tation of the entire MWD which allows broad, bimodal
and fast changing distributions [6]. This technique has been
implemented for the modelling of the dynamic evolution of
MWDs during nonlinear emulsion polymerization reactions
[7]. The method of finite molecular weight moments has
been proposed for the calculation of MWD in free radical
polymerization [8]. Some polymerization systems have also
been modelled by statistical methods such as Markov chain
[9], [10], [11], Weibull distribution [12], [13] and Schultz-
Zimm distribution [14]. For a large number of practical
problems of linear polymerization under steady-state or
quasi-steady state conditions, the MWD of polymer chains
can be described satisfactorily by the generalized Schulz-
Flory distribution [3], [15], [16].

In recent years, various control strategies have been de-
veloped for the MWD control of polymerization processes.
The time optimal monomer and chain-transfer agent feed
profiles were computed and implemented experimentally for
the MWD control in non-linear emulsion copolymerization
systems [5]. An optimal control solution to get the desired
MWD of linear polymers within a minimum time has been
developed based on on-line reaction calorimetry [17]. The
two-step method was proposed in [18] and then modified
and validated by an experimental study, which aims for
getting the reactor temperature so as to obtain a polymer
with a prescribed MWD in a free-radical polymerization
batch reactor [1], [19]. The disturbance rejection has been
considered in the on-line two-step method for MWD control
[20]. Batch-to-batch modifications combined with multivari-
ate statistical process control have been implemented to
update manipulated variable trajectories so that the desired
MWD can be achieved after several batches [21]. State
estimation techniques such as extended Kalman filtering
have been implemented when it is desirable to monitor
on-line MWD and other time-varying model parameters or
unknown conditions [2], [22], [23], [24].

Most of the research studies are based on simulated
reactors. Industry-scale closed-loop control of MWD is still
a challenging subject not only because the lack of on-line
measurement of MWD, but also due to lack of systematic
solutions of output distribution control. In this paper, the
idea of closed-loop control of output probability density
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Fig. 1. styrene polymerization system in a CSTR pilot reactor

function (PDF) for non-Gaussian stochastic systems [25],
[26], [27] has been introduced to develop control strategies
for MWD control of polymerization processes, where the
B-spline neural network is used to approximate MWDs
obtained from the physical model. The key advantage of
using the B-spline decoupling models is that the obtained
weights model of the MWD can be mademathematically
equivalent to any existing physical models for MWD
systems subjected to a pre-specified small modelling error.
A predictive control algorithm has been proposed to realize
the dynamic tracking of the desired output distribution.

II. PROCESS MECHANISM MODELLING

The process in concern is a styrene bulk polymerization
reaction in a pilot-plant continuous stirred tank reactor
(CSTR) as shown in figure 1, in which styrene is the
monomer for polymerization and azobisisobutyronitrile is
used as the initiator. These two flows are injected into the
CSTR with a certain ratio adjusted by a Bruker HPLC
pump. The energy for the reaction is provided by the
heated oil in the CSTR’s jacket and the oil temperature
is controlled by a Tool-Temp temperature control unit TT-
162E. To simplify the process, the reaction temperature is
assumed to be kept constant. The total flow rate to the
system,F , is composed of the flow of monomer,Fm, and
the flow of initiator,Fi, i.e., F = Fm + Fi. The monomer
input ratio is defined asc = Fm/(Fi + Fm). Both F and
c can be changed by the control system. In this work,
adjustment ofc is considered to be the means to control
the MWD shape of the polystyrene product.

The following free radical polymerization mechanisms
are considered.

• Initiation I
Kd−→ 2R∗

R∗ + M
Ki−→ R1

• Chain propagationRj + M
Kp−→ Rj+1

• Chain transfer to monomerRj + M
Ktrm−→ Pj + R1

• Termination by combinationRj + Ri
Kt−→ Pj+i

where I is the initiator, M is the monomer,R∗ is the
primary radical,Rj is the live polymer radical with chain
length j, Pj is the dead polymer with chain lengthj. Kd,

Ki, Kp, Ktrm and Kt are reaction rate constants. A set
of mass balance equations can be derived to describe the
concentrations of the reaction species.

dI

dt
= (I0 − I)/θ − KdI (1)

dM

dt
= (M0 − M)/θ − 2KiI − (Kp + Ktrm)MR (2)

dR1

dt
= −R1/θ + 2KiI − KpMR1 + KtrmM(R − R1)

−KtR1R (3)
dRj

dt
= −Rj/θ − KpM(Rj − Rj−1) − KtrmMRj

−KtRjR (j ≥ 2) (4)

dPj

dt
= KtrmRjM +

Kt

2

j−1∑
l=1

RlRj−l − Pj/θ

(j ≥ 2) (5)

where θ = V/F is the average residential time of the
reactants in the CSTR and

R =
∞∑

j=1

Rj (6)

is the total concentration of the radicals. By denoting

P =
∞∑

j=2

Pj (7)

as the total concentration of the polymers, the following
formulation for the total concentrations of radicals and
polymers can be obtained from (3) to (7) as

dR

dt
= −R/θ + 2KiI − KtR

2 (8)

dP

dt
= −P/θ + KtrmMR +

Kt

2
R2 (9)

The initial concentrations of the initiator and monomer are
related to the monomer input ratioc throughI 0 = (1−c)I00

andM 0 = cM00. I00 andM 00 are the initial concentrations
decided by the chemical system design and the ratioc can
be adjusted according to the controller design algorithm.

Denote

α = 1 +
Ktrm

Kp
+

KtR

KpM
+

1
KpMθ

(10)

the static solutions to the concentrations of the reaction
species can be derived from (1)-(3) and (8)-(9) as

I =
I0

1 + Kdθ
(11)

R =
−1/θ +

√
1/θ2 + 8KtKiI

2Kt
(12)

M =
M0

1 + (Kp + Ktrm)Rθ
(13)

R1 =
2KiI + KtrmMR

KpMα
(14)

P = θ(KtrmMR +
Kt

2
R2) (15)



The dynamic model of MWDs with respect to time
has been set up by the moment method together with a
statistical distribution. The moments of the number chain-
length distributions of radicals and polymers are defined as

Um =
+∞∑
j=1

jmRj , m = 0, 1, 2, · · · (16)

Zm =
+∞∑
j=2

jmPj , m = 0, 1, 2, · · · (17)

It can be seen from (16) and (17) thatU0 = R andZ0 =
P . The differential equations of the leading moments are
derived using the generation function technique as follows
:

dU0

dt
= 2KiI − KtU

2
0 − U0/θ (18)

dU1

dt
= 2KiI + KpU0M − KtU0U1

+KtrmM(U0 − U1) − U1/θ (19)
dU2

dt
= 2KiI + KpM(2U1 + U0) − KtU0U2

+KtrmM(U0 − U2) − U2/θ (20)
dZ0

dt
= KtrmM(U0 − R1) +

Kt

2
U2

0 − Z0/θ (21)

dZ1

dt
= KtrmMU1 + KtU0U1 − Z1/θ (22)

dZ2

dt
= KtrmMU2 + KtU0U2 + KtU

2
1 − Z2/θ(23)

Once the moments of the dead polymer are obtained, the
calculation of MWD can be carried out through a statistical
distribution, chosen empirically in order to resemble the
MWD of the actual solution. In this work, the well-known
Weibull distribution

W (n) =
{

g
x0

(n − δ)g−1exp(− (n−δ)g

x0
) n ≥ δ

0 n < δ
(24)

is used, in whichn = 1, 2, · · · stands for the discrete points
of the distribution variable. The link between the leading
moments(Z0, Z1, Z2) and the three Weibull parameters
(g, x0, δ) can be established in the same way as described
in [13].

III. B-SPLINE PDF MODEL

Consider a continuous probability density function
γ(y, uk) defined on[a, b] interval, the linear B-spline neural
network can be used to give an approximation ofγ(y, u k)
[26]:

γ(y, uk) =
n∑

i=1

ωi(uk)Bi(y) + e0 (25)

whereuk is the control input at sample timek; Bi(y)(i =
1, · · · , n) are the pre-specified basis functions defined on
the intervaly ∈ [a, b]; n is the number of basis functions;
ωi(uk)(i = 1, · · · , n) are the expansion weighs;e0 repre-
sents the approximation error which satisfies|e| < δ1 (δ1 is

a known small positive number). To simplify the expression,
e0 is neglected in the following. Due to the fact that the
integration of a PDF over its definition domain should be 1,
there are onlyn−1 independent weights out of the original
n weights [25]. Denote

L(y) =
Bn(y)∫ b

a
Bn(y)dy

(26)

ci(y) = Bi(y) − L(y)
∫ b

a

Bi(y)dy,

i = 1, · · · , n − 1 (27)

C(y) = [ c1(y), c2(y), · · · , cn−1(y) ] (28)

Vk = [ ω1(uk), ω2(uk), · · · , ωn−1(uk) ]T (29)

the static B-spline PDF model (25) can be represented in a
compact form as

γ(y, uk) = C(y)Vk + L(y) (30)

Equation (30) is the static PDF model approximated by the
B-spline neural network, in whichC(y) is known when the
basis functionsBi(y), (i = 1, · · · , n) are chosen and fixed.
Denote

fk(y) = γ(y, uk) − L(y) (31)

then (30) is transformed into

fk(y) = C(y)Vk (32)

For dynamic systems, it is assumed that the weights
vector in (29) is dynamically related to the system by

Vk+1 = EVk + Fuk (33)

whereE andF are known matrices with appropriate dimen-
sions. Equation (33), together with the B-spline approxima-
tion in (30), constitute the state-space dynamic model of the
deterministic control inputuk and the output PDFγ(y, uk).
As γ(y, uk) is related tofk(y) by (31), the output PDF can
be derived from (32) and ((33) to be

fk(y) = C(y)(I − z−1E)−1(Fuk−1) (34)

This can be expanded to the following form according to
matrix theory [26]

fk(y) =
n−1∑
i=1

aifk−i(y) +
n−2∑
j=0

C(y)Djuk−1−j (35)

where

C(y)Djuk−1−j =
n−1∑
i=1

dj,iuk−1−jBi(y) (36)

All the parametersai, (i − 1, . . . , n − 1) and dji,
(j = 0, · · · , n− 2, i = 1, · · · , n− 1) can be estimated by a
standard least-square identification algorithm [26].



IV. PREDICTIVE CONTROL OF OUTPUT PDF

The purpose of control algorithm design is to choose
a control sequenceuk such that the actual output PDF
γ(y, uk) is made as close as possible to a desired PDF
g(y). For the general control of output PDF, the following
performance function is formulated that primarily contains
a measure of the distance between the output PDF and the
target PDF

J1 =
∫ b

a

(γ(y, uk) − g(y))2dy +
1
2
λu2

k (37)

where λ > 0 is a pre-specified weighting factor that
imposes an energy constraint for the control input. For
the performance index (37), solutions to both static and
dynamic PDF systems are given in [26], where the static
approach is based on gradient search and the dynamic
control algorithm provides a compact global optimization
solution.

In this paper, a new PDF control strategy is proposed
based on the long-range predictive control principle. Let
z−1 be used as the unit back-shift operator, i.e.,z−1uk =
uk−1, then (35) can be reformulated as

α(z−1)fk(y) = β(z−1, y)uk−1 (38)

where

α(z−1) = 1 +
n−1∑
i=1

aiz
−i (39)

β(z−1, y) =
n−2∑
j=0

C(y)Djz
−j (40)

In order to invent the predictive control strategy, the fol-
lowing Diophantine equation is introduced:

1 = Gq(z−1)α(z−1) + Hq(z−1)z−q (41)

whereq is the predictive step and

Gq(z−1) = 1 +
q−1∑
i=1

gq,iz
−i (42)

Hq(z−1) =
n−2∑
j=0

hq,jz
−j (43)

By multiplying Gq(z−1) on both sides of (38), there is

Gq(z−1)α(z−1)fk(y) = Gq(z−1)β(z−1, y)uk−1 (44)

Taking (41) into (44), the following predictive formulation
of the output PDF can be obtained:

fk+q(y) = Hq(z−1)fk(y) + Gq(z−1)β(z−1, y)uk+q−1

q = 1, 2, · · · , p (45)

Considering the following expansion

Gq(z−1)β(z−1, y) =
n+q−3∑

i=0

sq,iz
−i (46)

(45) can be further represented as

Π(y, k, p) = H̄fk(y) + Ω(y)Uk + ΦŪk (47)

where

Π(y, k, p) = [fk+1(y) fk+2(y) · · · fk+p(y)]T (48)

H̄ = [H1(z−1) H2(z−1) · · · Hp(z−1)]T(49)

Ω(y) =




s1,0 0 · · · 0
s2,1 s2,0 · · · 0

...
...

. . .
...

sp,p−1 sp,p−2 · · · sp,0


 (50)

Uk = [uk uk+1 · · · uk+p−1]T (51)

Φ =




s1,1 s1,2 · · · s1,n−2

s2,2 s2,3 · · · s2,n−2+1
...

...
. . .

...
sp,p sp,p+1 · · · sp,n+p−3


 (52)

Ūk = [uk−1 uk−2 · · · uk−n+2]T (53)

The following performance index is formulated for the
purpose of predictive PDF control:

J2 =
∫ b

a

[Π(y, k, p) − A(y)]T [Π(y, k, p) − A(y)]dy

+UT
k R̄Uk (54)

whereA(y) = [a(y), a(y), · · · , a(y)]T ∈ Rp corresponds to
the target distribution bya(y) = g(y)−L(y) when the same
basis functions to approximateγ(y, uk) have been used.̄R
is the weighting matrix for the control input. Taking (47)
into (54) and denote

ξ(y) = H̄fk(y) + ΦŪk (55)

as the known term at the sample timek, the optimization
solution to (54) can be obtained by making∂J2/∂Uk = 0
to be

Uk = −(
∫ b

a

Ω(y)T Ω(y)dy + R̄)−1

∫ b

a

(ξ(y) − A(y))dy

(56)
The coefficientsgq,i andhq,j in the Diophantine equation
(41) can be obtained with a recursive derivation which is
not given in detail here due to the page limit. Interested
readers may contact the authors for the further information.

V. SIMULATION

The styrene bulk polymerization process is described in
section II, whose main parameters used are listed in table
1. Seven forth-order univariate B-spline functions [28] are
chosen to formulate the basis functions. The range of the
control input, i.e., the monomer input ratioc, is [0.2, 0.8].
Simulation results are shown in figures 2 - 6. Comparing
fig.2 with fig. 3, it can be seen that the B-spline MWD
model agrees well with the result from the mechanistic
model. Figures 5-6 show how the target MWD is achieved



by the predictive PDF control strategy after some control
steps.

Table 1. Model parameters

Kd 9.48 × 1015exp(−30798.5/rT )
Ki 0.6Kd

Kp 6.306× 108exp(−7067.8/rT )
Ktrm 1.386× 108exp(−12671.1/rT )
Kt 3.75 × 1010exp(−1680/rT )
V 3.927
F 0.0238
T 353
I00 0.1E-3
M00 9.6E-3
r 1.987
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Fig. 2. MWD curves from mechanism model
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Fig. 3. MWD curves from B-spline model

VI. CONCLUSIONS

In this paper, a B-spline approximation model has been
used to decouple the static and dynamic effects of the
control input on the output MWD shape. In this context,
the control of the MWD shape can be realized through
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the control of the weights (coefficients) in the B-spline
expansion on the considered MWD. A physical model of
the process was firstly developed and used as a starting
point for the establishment of the equivalent B-spline
models. This is then followed by a new predictive PDF
control method, in which the control input is selected that
minimizes a performance measure of the functional error
between the target distribution and the estimated MWD. A
simulation example is given for the dynamic MWD control
system, where desired results have been achieved.

NOTATION

I initiator or its concentration (mol · L−1)
I00 initial initiator concentration (mol · L−1)
I0 controlled ed initial initiator concentration (mol · L−1)
Kd initiator decomposition rate constant (min−1)
Ki initiation reaction constant (L · mol−1 · min−1)
Kp propagation rate constant (L · mol−1 · min−1)
Ktrm chain transfer rate constant (L · mol−1 · min−1)
Kt termination rate constant (L · mol−1 · min−1)
M monomer or its concentration (mol · L−1)
M00 initial monomer concentration (mol · L−1)
M0 controlled initial monomer concentration (mol · L−1)
Rj live polymer of chain lengthj or its concentration
(mol · L−1)
R total concentration of live polymer radicals (mol · L−1)
Pj dead polymer of chain lengthj or its concentration
(mol · L−1)
P total concentration of dead polymer (mol · L−1)
T reaction temperature (K)
F total feed flow rate (L · min−1)
V volume of reaction mixture (L)
θ average residential time of reactants in the CSTR (min)
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